
Automated Planning (TDDD48)

Jendrik Seipp
Mika Skjelnes

Linköping University

Lab 5

Important: For submission, consult the rules at the end of this document. Non-
adherence to these rules might lead to a penalty in the form of a deduction of points.
Some points are bonus points. These can help you reach the point quota per lab
(4/12 points) and the overall point quota (50% · 7 · 12 = 42 points).

Exercise 5.1 (1+1+1 points)

Consider the transition system T = ⟨S,L, c, T, s0, S⋆⟩ with S, L, T , s0 and S⋆ as depicted below
and with c(oi) = i for all 1 ≤ i ≤ 6. Note that this is not a unit-cost task. Instead, each operator
costs as much as its index.

s1 s2

s4

s3

s7

s5

s8s6

o1

o5

o2

o3

o5

o6

o4

o3

o3
o2

o5

o6

o1

(a) Consider the abstraction α that maps all states depicted in the same color to the same
abstract state, i.e., α(s1) = sr, α(s2) = α(s3) = α(s4) = sb, α(s5) = sy, and α(s6) =
α(s7) = α(s8) = sg. Graphically provide T α and give hα.

(b) Assume you may change the abstraction α from part (a) by mapping one concrete state to
another (already existing) abstract state. If you care about having some positive effect on
the heuristic quality, which change do you make? Justify your answer. (There are multiple
reasonable options.)

(c) Provide an abstraction β of T such that |Sβ | = 4 and such that there is no abstraction
β′ ̸= β with |Sβ′ | = 4 and hβ′

(s1) > hβ(s1). Graphically provide the transition system T β .

Bonus Exercise 5.2 (0.5+0.5+0.5+0.5=2 bonus points)

In the Sokoban domain, a worker has to push boxes to goal positions, but cannot pull them. The
figure below illustrates an example problem. The goal is to push one box to each tile indicated
by a red dot. (It does not matter which box is located at which position.) In any given state, the
worker may move to an empty tile adjacent to its current location, where empty means that tile
is neither a wall nor there is a box. If there is a box, the worker may still move there if the tile
behind the box (from the worker’s perspective) is empty, pushing the box to that empty tile.

In the following, we suggest four abstraction functions for Sokoban problems. While they might
seem reasonable at a first glance, all of them come with different practical limitations. Point out
and explain the problems with these suggestions in 2–3 sentences each.

(a) α1: Each state is mapped to the number of boxes that are on a goal location.

(b) α2: Each state is mapped to an abstract state by ignoring the position of the agent.

(c) α3: Each state s is mapped to f(s) mod n where f is a bijection from the set of states S
to the natural numbers from 1 to |S| (i.e., f : S → {1, . . . , |S|}) and n = 106 is used to limit
the number of abstract states.

Hint: You may assume that it is possible to evaluate f(s) for a given state s efficiently. In
fact, we will discuss a specific function of this kind in lecture E6 (perfect hash function for
Pattern Database heuristics).

(d) α4: A state is mapped to s1 if 5 or fewer moves are necessary to move all boxes to a goal
location; it is mapped to s2 if between 5 and 10 moves are necessary; and so on.

Exercise 5.3 (2+3+1 points)

Note: to simplify implementation details, for the exercises in this part you can assume that the
planning tasks that you have to deal with possess a simplified structure. In particular, you can
assume that they are SAS+ tasks with the additional restrictions that (i) for every operator o,
the set of state variables that appear in pre(o) is the same as the set of state variables that ap-
pear in eff(o), and (ii) the goal formula mentions all the state variables of the problem, which
implies that there is one single goal state. The tasks are converted to this simplified form au-
tomatically without you having to do anything about it, so you can safely assume that condi-
tions (i) and (ii) always hold. This simplified form, by the way, is called Transition Normal
Form (TNF), and is useful to make the proofs of theorems and implementation of algorithms
easier. You can find more details about the way TNF tasks are represented in the code in file
fast-downward/src/search/planopt heuristics/tnf task.h.

(a) In the files fast-downward/src/search/planopt heuristics/projection.* you can find
an incomplete implementation of a class projecting a TNF task to a given pattern. Complete
the implementation by projecting the initial state, the goal state and the operators.

The example task from the lecture and two of its projections are implemented in the files
projection test.*. You can use them to test and debug your implementation by calling
Fast Downward as ./fast-downward.py --test-projections. Of course, the tests will
fail until you have added your code.

(b) In the files fast-downward/src/search/planopt heuristics/pdb.* you can find an in-
complete implementation of a pattern database. Complete the implementation by comput-
ing the distances for all abstract states as described in the code comments. You can run your
implementation using the heuristic planopt pdb(pattern=greedy(1000)) in an A∗ search.
It uses a greedy pattern generation algorithm which results in an abstract state space with
at most 1000 states.

You can debug your code by comparing it to the built-in PDB implementation of Fast
Downward. The according heuristic is pdb(pattern=greedy(1000)) which should find the
same pattern. Make sure the patterns are identical (printed as “Greedy generator pattern”)
and that both implementations result in the same amount of expanded states before the last
f -layer (printed as “Expanded until last jump”).

Examples from the castle directory:

instance pattern expanded until last jump

castle-8-5-4-cards [56, 57, 58, 59, 60, 61, 62, 63, 64] 3718
castle-8-5-10-cards [57, 58, 59, 60, 61, 62, 63, 64, 65] 744
castle-8-5-13-cards [56, 57, 58, 59, 60, 61, 62, 63, 64] 6742

(c) Analyze what effect the abstraction size has on the search performance. To do so, run your
implementation of the PDB heuristic on all problem instances of the castle domain with an
abstract state spaces of at most 1000 states as well as at most 100000 states. Then, compare
the preprocessing time (i.e., difference between total time and search time), search time, and
expanded states before the last f -layer.

The run-experiment.sh script can be used as a starting point to run the experiment.

Bonus Exercise 5.4 (2 bonus points)

Consider a logistics problem similar to the running example from the lecture. A single truck needs
to pick up and deliver two packages between three locations. The figure below illustrates the initial
state of the problem. The color of each package indicates its destination.

W R B

BTo RTo

Formally, we can describe this problem as a SAS+planning task Π = ⟨V, I,O, γ⟩ with
• V = {t, pB , pR} where dom(t) = {W,R,B} and dom(pB) = dom(pR) = {W,R,B, T};

• I = {t 7→ W,pB 7→ R, pR 7→ B};

• O = {moveo,d | o, d ∈ {W,R,B}, o ̸= d}∪{loadp,l | p ∈ {pB , pR}, l ∈ {W,R,B}}∪{unloadp,l |
p ∈ {pB , pR}, l ∈ {W,R,B}} where

– moveo,d = ⟨t = o, t := d, 1⟩,
– loadp,l = ⟨t = l ∧ p = l, p := T, 1⟩, and
– unloadp,l = ⟨t = l ∧ p = T, p := l, 1⟩; and

• γ = pB = B ∧ pR = R.

Visualize the factored transition system induced by the atomic projections of Π. Make sure to
indicate initial states, goal states, and transition labels in all factors.

Exercise 5.5 (1+1+0.5+0.5 points)

Consider the factored transition system F = {T1, T2, T3} with label set L = {ℓ1, ℓ2, ℓ3, ℓ4} and cost
function c(ℓ1) = 1 and c(ℓ2) = c(ℓ3) = c(ℓ4) = 2. The transition systems look as follows:

T1:
α

β

ℓ1, ℓ3

ℓ1

ℓ2, ℓ4ℓ3

T2:
X

Y

Z

ℓ3

ℓ1, ℓ3

ℓ1

ℓ2, ℓ4

ℓ2

ℓ1, ℓ4

T3:
0 1

2 3

4 5

ℓ1, ℓ4

ℓ3

ℓ2

ℓ1, ℓ4
ℓ3

ℓ2

ℓ3

ℓ1, ℓ3

ℓ2

ℓ1

(a) Graphically provide the synchronized product T1 ⊗ T2.

(b) We discussed the f -preserving shrinking strategy in the lecture. It repeatedly combines two
states that have the same g- and h-values. Now consider instead h-preserving shrinking which
repeatedly combines two states with the same goal distance. Apply h-preserving shrinking
to T3 until no additional states have the same h-value and provide the resulting transition
system T ′

3 .

(c) For all transition systems T ∈ F , enumerate all pairs ℓ, ℓ′ ∈ L such that ℓ locally subsumes
ℓ′ in T .

(d) Based on your results for the previous part: Is there an exact label reduction for F? If yes,
provide the functions λ and c′. If no, explain why not.

Submission rules:

• Lab sheets must be submitted in groups of 2–3 students. Clone the labs repo (https:
//github.com/mrlab-ai/tddd48-labs) and push it to a repo at the University GitLab
instance https://gitlab.liu.se. Make sure the repo is private and give read access to
Mika Skjelnes (mika.skjelnes@liu.se).

• For non-programming exercises, create a single PDF file at the location labX/solution.pdf.
If you want to submit handwritten solutions, include their scans in the single PDF. Make
sure it is in a reasonable resolution so that it is readable. Put the names of all group members
on top of the first page. Either use page numbers on all pages or put your names on each
page. Make sure your PDF has size A4 (fits the page size if printed on A4).

• For programming exercises, directly edit the code in the cloned repository and only create
those code text file(s) required by the lab. Put your names in a comment on top of each file.
Make sure your code compiles and test it. Code that does not compile or which we cannot
successfully execute will not be graded.

https://github.com/mrlab-ai/tddd48-labs
https://github.com/mrlab-ai/tddd48-labs
https://gitlab.liu.se

