
Automated Planning (TDDD48)

Jendrik Seipp
Mika Skjelnes

Linköping University

Lab 3

Important: For submission, consult the rules at the end of this document. Non-
adherence to these rules might lead to a penalty in the form of a deduction of points.
Some points are bonus points. These can help you reach the point quota per lab
(4/12 points) and the overall point quota (50% · 7 · 12 = 42 points).

Bonus Exercise 3.1 (2+1=3 bonus points)

For both parts, you do not need to show intermediate results, but partial points may be awarded
for wrong results with correct intermediate steps.

(a) Consider the following ordered BDD:

a

b b

c

dd d d

c

0 1 0 1 0 1

0 1

0

1
0

1

01 0 1 01

0 1

01

0

1

Provide the equivalent reduced ordered BDD.

(b) Provide a reduced ordered BDD for the formula

φ = (a ∨ b) → (d ∨ ((c ∨ d) → (¬a ∧ b)))

with order a ≺ b ≺ c ≺ d.

Exercise 3.2 (1+1+2+2 points)

Let Π = ⟨V, I,O, γ⟩ be a propositional planning task with the following components.

• V = {v1, v2, v3}

• I(v1) = 1, I(v2) = 0 and I(v3) = 0

• O = {o1, o2}

– o1 = ⟨v1, v2 ∧ ¬v3⟩
– o2 = ⟨v2,¬v2 ∧ v3⟩

• γ = v3

Furthermore, we assume a variable order v1 ≺ v′1 ≺ v2 ≺ v′2 ≺ v3 ≺ v′3. Your task is to execute
symbolic forward breadth-first search on this planning task by hand.



(a) Draw the reduced ordered BDD for γ, i.e., bdd-formula(γ).

(b) Draw the reduced ordered BDD for I, i.e., bdd-singleton(I).

(c) Draw the reduced ordered BDDs for o1 and o2, i.e., bdd-formula(τV (o1)) and
bdd-formula(τV (o2)).

(d) Describe the steps that symbolic forward breadth-first search will execute for the symbolic
representation of planning task Π created in steps (a)-(c). In your description, specify
the formulas (not the BDDs themselves) represented by the BDDs reached0, reached1 and
reached2.

Exercise 3.3 (4.5+1.5 points)

Update the course repository (/vagrant/tddd48 in your course VM) with git pull. Navigate to
the new directory lab3 which contains the files required for this exercise.

Pyperplan (https://github.com/aibasel/pyperplan) is a lightweight STRIPS planner written
in Python. While it is not as fast as Fast Downward, it is very easy to extend and modify.

(a) In the file pyperplan/src/search/bdd bfs.py you find an incomplete implementation of
a BDD-based breadth-first search. Complete it by using the utility methods in the file
pyperplan/src/search/bdd.py. Do not modify anything else than the file pyperplan/src/
search/bdd bfs.py (and do not modify the constructor of BDDSearch yet, this is for part
(b)). Test your search on the tasks in the directory blocks and make sure that it can find
valid plans.

You can run the code with the command
./pyperplan/src/pyperplan.py -s bdd blocks/domain.pddl blocks/p1.pddl

(b) The constructor of BDDSearch contains a commented out alternative variable order for the
variables within the BDD. Change the order by commenting out the old order and including
the new order instead. Print the number of total BDD nodes after adding each operator and
after each expansion step (use the provided method print bdd nodes()). Compare the two
variable orders on a small task and discuss the results.

Submission rules:

• Lab sheets must be submitted in groups of 2–3 students. Clone the labs repo (https:
//github.com/mrlab-ai/tddd48-labs) and push it to a repo at the University GitLab
instance https://gitlab.liu.se. Make sure the repo is private and give read access to
Mika Skjelnes (mika.skjelnes@liu.se).

• For non-programming exercises, create a single PDF file at the location labX/solution.pdf.
If you want to submit handwritten solutions, include their scans in the single PDF. Make
sure it is in a reasonable resolution so that it is readable. Put the names of all group members
on top of the first page. Either use page numbers on all pages or put your names on each
page. Make sure your PDF has size A4 (fits the page size if printed on A4).

• For programming exercises, directly edit the code in the cloned repository and only create
those code text file(s) required by the lab. Put your names in a comment on top of each file.
Make sure your code compiles and test it. Code that does not compile or which we cannot
successfully execute will not be graded.

https://github.com/aibasel/pyperplan
https://github.com/mrlab-ai/tddd48-labs
https://github.com/mrlab-ai/tddd48-labs
https://gitlab.liu.se

