
Automated Planning (TDDD48)

Jendrik Seipp
Mika Skjelnes

Linköping University

Lab 1

Important: For submission, consult the rules at the end of this document. Non-
adherence to these rules might lead to a penalty in the form of a deduction of points.
Some points are bonus points. These can help you reach the point quota per lab
(4/12 points) and the overall point quota (50% · 7 · 12 = 42 points).

Exercise 1.1 (Setting Up Fast Downward, 1 point)

The Fast Downward planning system is a tool that we use frequently for demos in the lecture and
for the labs. Your task in this exercise is to get access to the course repository as well as to install
the planner. We describe two ways of setting up your system in the following: we start with the
recommended way that uses Vagrant and VirtualBox, which should be possible on all Intel and
AMD architectures. Afterwards, we point to relevant repositories and installation instructions in
case you want to or have to set up your system manually. Please follow the instructions for one
of these two ways.

Installation with Vagrant and VirtualBox Start by installing Vagrant and VirtualBox by
following the installation instructions for your operating system at https://www.vagrantup.com
and https://www.virtualbox.org, respectively. If your operator system is Ubuntu 22.04, you
can install both tools by running the following commands in a console:1

sudo apt update

sudo apt install virtualbox vagrant (for Ubuntu 22.04)

With both tools installed, you can set up the virtual machine that runs the Fast Downward
planner:

(a) Download the Vagrant configuration file (Vagrantfile) from the course website.

(b) Move the downloaded file to an empty directory. Make sure that your operating system didn’t
add a (possibly hidden) file extension (we have seen this happen frequently on Windows).

(c) Open a console in that directory and execute vagrant up (this may take a while).2

Over the course of the semester, you’ll have to interact with the virtual machine set up with
Vagrant repeatedly. Here are the most important commands to do so:

• vagrant up to start the virtual machine (after the first time, this won’t take as long)

• vagrant halt to stop the virtual machine

• vagrant ssh to connect to the virtual machine

• exit to disconnect from the virtual machine

You have now set up the virtual machine, cloned all relevant repositories and installed required
packages and tools. You have not yet compiled the Fast Downward planner that is used for this
exercise, though. To do so, connect to the virtual machine (with vagrant ssh), then

1At the time of writing, Ubuntu 22.04 provides Vagrant 2.2.19 and VirtualBox 6.1.32, which are compatible.
However, Vagrant 2.2.19 is not compatible with VirtualBox 7. If you have such a newer version of VirtualBox
installed, we recommend installing Vagrant ≥ 2.3.2 manually via the Vagrant download page.

2There is some error output for compiling VAL, which you can ignore.

https://www.vagrantup.com
https://www.virtualbox.org

(a) change to the directory with the Fast Downward version used for this lab with

cd /vagrant/tddd48/lab1/fast-downward

(b) compile the planner with ./build.py.

(c) run the planner on an example task with

./fast-downward.py ../gripper/domain.pddl ../gripper/problem.pddl \

--heuristic "h=ff()" --search "eager_greedy([h])"

Congratulations, you have successfully set up your system for the labs!

Manual Installation An alternative (which we do not recommend) is to install everything that
is required manually. Start by cloning the following repositories:

• the repository of the course at https://github.com/mrlab-ai/tddd48-labs

• the plan validator VAL at https://github.com/KCL-Planning/VAL

You can find the individual steps that are required to install both plan validators in the Vagrantfile.
To give you an idea of what is happening in the Vagrantfile, please note that

• we are not using the latest version of VAL

• the VAL revision we use raises warnings during compilation that are treated as errors

• the produced binaries are moved to a folder on PATH (such that they can be executed from
anywhere without providing a path to the binary)

If you manage to successfully install the validator, you still need to compile the Fast Downward
planner that is used for this lab:

(a) Change to the directory with the Fast Downward version used for this lab. You can find it
in the directory lab1/fast-downward of the repository of the course.

(b) Follow the instructions on how to compile Fast Downward at https://github.com/aibasel/
downward/blob/main/BUILD.md.

When you have successfully compiled Fast Downward, run the planner on an example task with

./fast-downward.py ../gripper/domain.pddl ../gripper/problem.pddl \

--heuristic "h=ff()" --search "eager_greedy([h])"

Exercise 1.2 (Solving Tasks with Fast Downward, 2+1 points)

In this exercise, you’ll play around with the Fast Downward planner. The files required for this
exercise are in the directory lab1 of the course repository (/vagrant/tddd48 in your course VM).
Update your clone of the repository with git pull to see the files.
For this exercise, set a time limit of 1 minute and a memory limit of 2 GB. Using Linux, such
limits can be set with ulimit -t 60 and ulimit -v 2000000, respectively.
The directory lab1/tile contains four variants of the 15-Puzzle:

• original formulation (puzzle.pddl, puzzle01.pddl)

• variant with weighted tiles (weight.pddl, weight01.pddl)

• variant with glued tiles (glued.pddl, glued01.pddl)

• variant with cheating action (cheat.pddl, cheat01.pddl)

https://github.com/mrlab-ai/tddd48-labs
https://github.com/KCL-Planning/VAL
https://github.com/aibasel/downward/blob/main/BUILD.md
https://github.com/aibasel/downward/blob/main/BUILD.md

To run Fast Downward, use the script fast-downward.py with the corresponding domain and
problem files, specifying the search algorithm and the heuristic. Example for the original formu-
lation, greedy best-first search and the FF heuristic:

./fast-downward/fast-downward.py tile/puzzle.pddl tile/puzzle01.pddl \

--heuristic "h=ff()" --search "eager_greedy([h])"

(a) Run Fast Downward on the original formulation of the 15-puzzle, using greedy best-first
search and different heuristics:

• additive heuristic: add()

• blind heuristic: blind()

• causal graph heuristic: cg()

• FF heuristic: ff()

Summarize your results with respect to time (Planner time), number of expanded and
generated states (Expanded and Generated), and solution quality (Plan cost) in a table.

(b) Run Fast Downward again to solve the other variants of the domain. Discuss in 2–3 sentences
how the results differ from those for the original formulation.

Hint: You do not need to report explicit numbers as in part (a).

Exercise 1.3 (Modeling Package Delivery in PDDL, 4 points)

Consider the following package delivery problem:

• There is a set of cities, trucks, and packages.

• The cities are connected by a road network.

• A truck can move from one city to another along the roads.

• A package can be loaded into and unloaded from a truck.

• Every package has a target location where it should be delivered.

Model this domain in PDDL. Then model at least two different instances (e.g., different road
networks, different target locations, different number of trucks) and find plans for them with Fast
Downward. Submit both the PDDL files and the plans you found.
We recommend to use VS Code for this exercise with the PDDL extension (https://marketplace.
visualstudio.com/items?itemName=jan-dolejsi.pddl). It reports common modeling errors.
For an introduction to PDDL, see https://www.ida.liu.se/~TDDD48/labs/2023/pddl.en.shtml.
For the complete PDDL syntax, see https://helios.hud.ac.uk/scommv/IPC-14/repository/

kovacs-pddl-3.1-2011.pdf.

https://marketplace.visualstudio.com/items?itemName=jan-dolejsi.pddl
https://marketplace.visualstudio.com/items?itemName=jan-dolejsi.pddl
https://www.ida.liu.se/~TDDD48/labs/2023/pddl.en.shtml
https://helios.hud.ac.uk/scommv/IPC-14/repository/kovacs-pddl-3.1-2011.pdf
https://helios.hud.ac.uk/scommv/IPC-14/repository/kovacs-pddl-3.1-2011.pdf

Exercise 1.4 (2+2 points)

Consider the following transition system:

A B C

D E F G

H I

ℓ2

ℓ1 ℓ0
ℓ1

ℓ1

ℓ3

ℓ0

ℓ1

ℓ2

ℓ0
ℓ1ℓ2

ℓ1

c(ℓ0) = 0, c(ℓ1) = 1, c(ℓ2) = 2, c(ℓ3) = 3

(a) Formalize the depicted transition system as a 6-tuple T = ⟨S,L, c, T, s0, S⋆⟩.
Hint: When writing down something formally, always ask yourself what kind of mathematical
object you are using where, then use correct notation. For instance, a tuple such as T is
formalized using angle ⟨· · ·⟩ or round (· · ·) brackets; a set such as S needs braces {· · ·}; a
function such as c : L → R+

0 describes how objects in L are mapped to an object in R+
0 ; and

a single object such as s0 uses no brackets at all.

(b) Answer the following questions about the depicted transition system.

i) Is T deterministic? Justify your answer.

ii) Which states of T are unreachable from state H?

iii) What are the predecessors of state E in T ?

iv) What is the cheapest solution of T ?

Bonus Exercise 1.5 (1+1 bonus points)

Consider the following formula over propositions {X,Y, Z}:

φ = ((X ∧ ¬Y) ∨ (¬Z ∧ ¬(X ∨ Y)))

(a) Transform φ into an equivalent formula that is in conjunctive normal form (CNF). Provide
your transformation step by step so that it is easy to verify equivalence from one step to the
next.

Hint: If you need a reminder of equivalence rules, you may consider the first propositional
logic lecture from the TDDC17 course: https: // www. ida. liu. se/ ~ TDDC17/ ,

(b) Provide two interpretations I and J of propositions {X,Y, Z} such that I |= φ and J ̸|= φ.

https://www.ida.liu.se/~TDDC17/

Submission rules:

• Lab sheets must be submitted in groups of 2–3 students. Clone the labs repo (https:
//github.com/mrlab-ai/tddd48-labs) and push it to a repo at the University GitLab
instance https://gitlab.liu.se. Make sure the repo is private and give read access to
Mika Skjelnes (mika.skjelnes@liu.se).

• For non-programming exercises, create a single PDF file at the location labX/solution.pdf.
If you want to submit handwritten solutions, include their scans in the single PDF. Make
sure it is in a reasonable resolution so that it is readable. Put the names of all group members
on top of the first page. Either use page numbers on all pages or put your names on each
page. Make sure your PDF has size A4 (fits the page size if printed on A4).

• For programming exercises, directly edit the code in the cloned repository and only create
those code text file(s) required by the lab. Put your names in a comment on top of each file.
Make sure your code compiles and test it. Code that does not compile or which we cannot
successfully execute will not be graded.

https://github.com/mrlab-ai/tddd48-labs
https://github.com/mrlab-ai/tddd48-labs
https://gitlab.liu.se

