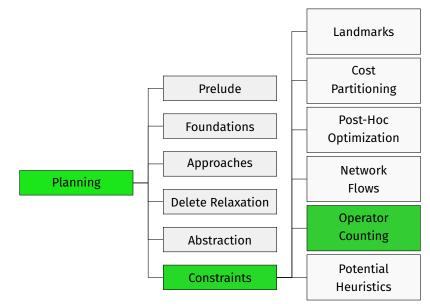
# Automated Planning F10. Operator Counting

Jendrik Seipp

Linköping University

based on slides from the AI group at the University of Basel

### **Content of this Course**



# Introduction

# Reminder: Flow Heuristic

In the previous chapter, we used flow constraints to describe how often operators must be used in each plan.

### Example (Flow Constraints)

Let  $\Pi$  be a planning problem with operators  $\{o_{red}, o_{green}, o_{blue}\}$ . The flow

constraint for some atom a is the constraint

$$1 + Count_{o_{green}} = Count_{o_{red}}$$
 if

- a is true in the initial state  $o_{\text{green}}$  produces a
- *a* is false in the goal

Ored consumes a

In natural language, the flow constraint expresses that

# Reminder: Flow Heuristic

In the previous chapter, we used flow constraints to describe how often operators must be used in each plan.

### Example (Flow Constraints)

Let  $\Pi$  be a planning problem with operators  $\{o_{red}, o_{green}, o_{blue}\}$ . The flow

constraint for some atom a is the constraint

$$1 + Count_{o_{green}} = Count_{o_{red}}$$
 if

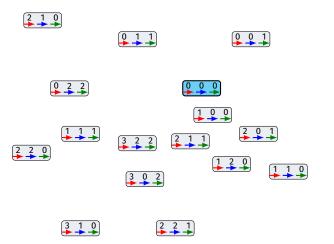
- a is true in the initial state  $o_{\text{green}}$  produces a
- *a* is false in the goal

- Ored consumes a
- In natural language, the flow constraint expresses that

every plan uses ored once more than ogreen.

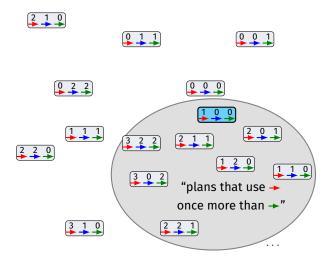
## **Reminder: Flow Heuristic**

Let us now observe how each flow constraint alters the operator count solution space.



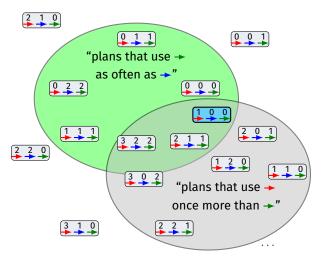
# **Reminder: Flow Heuristic**

Let us now observe how each flow constraint alters the operator count solution space.



## **Reminder: Flow Heuristic**

Let us now observe how each flow constraint alters the operator count solution space.



# **Operator-counting Framework**

### **Operator Counting**

#### Operator counting

- generalizes this idea to a framework that allows to admissibly combine different heuristics.
- uses linear constraints . . .
- ... that describe number of occurrences of an operator ...
- ... and must be satisfied by every plan.
- provides declarative way to describe knowledge about solutions.
- allows reasoning about solutions to derive heuristic estimates.

### **Operator-counting Constraint**

### Definition (Operator-counting Constraints)

Let  $\Pi$  be a planning task with operators O and let s be a state. Let  $\mathcal{V}$  be the set of integer variables  $Count_o$  for each  $o \in O$ .

A linear inequality over  $\mathcal{V}$  is called an operator-counting constraint for s if for every plan  $\pi$  for s setting each Count<sub>o</sub> to the number of occurrences of o in  $\pi$  is a feasible variable assignment.

# **Operator-counting Heuristics**

Definition (Operator-counting IP/LP Heuristic)

The operator-counting integer program IP<sub>C</sub> for a set C of operator-counting constraints for state s is

 $\begin{array}{ll} \text{Minimize} & \sum_{o \in O} cost(o) \cdot \text{Count}_o & \text{subject to} \\ \text{C and Count}_o \geq 0 \text{ for all } o \in O, \end{array}$ 

where O is the set of operators.

The IP heuristic  $h_C^{IP}$  is the objective value of IP<sub>C</sub>, the LP heuristic  $h_C^{LP}$  is the objective value of its LP-relaxation. If the IP/LP is infeasible, the heuristic estimate is  $\infty$ .

### **Operator-counting Constraints**

- Adding more constraints can only remove feasible solutions.
- Fewer feasible solutions can only increase the objective value.
- Higher objective value means better informed heuristic
- $\Rightarrow$  Have we already seen other operator-counting constraints?

# Reminder: Minimum Hitting Set for Landmarks

#### Variables

Non-negative variable Applied<sub>o</sub> for each operator o

#### Objective

Minimize  $\sum_{o} cost(o) \cdot Applied_{o}$ 

$$\sum_{o \in L} \mathsf{Applied}_o \geq 1 \text{ for all landmarks } L$$

# **Operator Counting with Disjunctive Action Landmarks**

#### Variables

Non-negative variable Counto for each operator o

#### Objective

Minimize  $\sum_{o} cost(o) \cdot Count_{o}$ 

$$\sum_{o \in L} Count_o \ge 1 \text{ for all landmarks } L$$

# Reminder: Post-hoc Optimization Heuristic

For set of abstractions  $\{\alpha_1, \ldots, \alpha_n\}$ :

#### Variables

Non-negative variables  $X_o$  for all operators  $o \in O$ 

 $X_o$  is cost incurred by operator o

### Objecti<u>ve</u>

Minimize  $\sum_{o \in O} X_o$ 

$$\sum_{o \in O:o \text{ relev. for } \alpha} X_o \ge h^{\alpha}(s) \quad \text{for } \alpha \in \{\alpha_1, \dots, \alpha_n\}$$
$$X_o \ge 0 \qquad \text{for all } o \in O$$

# **Operator Counting with Post-hoc Optimization Constraints**

For set of abstractions  $\{\alpha_1, \ldots, \alpha_n\}$ :

#### Variables

Non-negative variables  $Count_o$  for all operators  $o \in O$ 

 $Count_o \cdot cost(o)$  is cost incurred by operator o

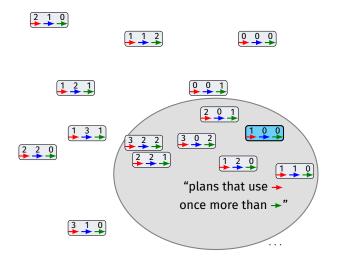
#### Objective

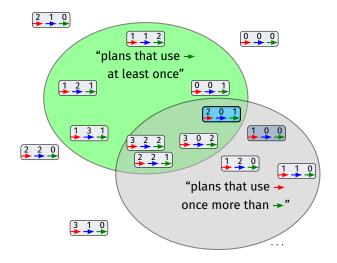
Minimize  $\sum_{o \in O} cost(o) \cdot Count_o$ 

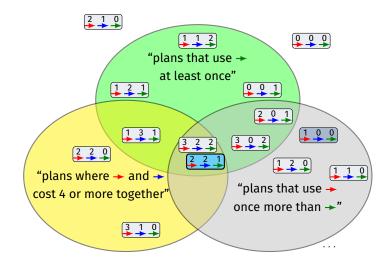
$$\sum_{o \in O:o \text{ relev. for } \alpha} \operatorname{cost}(o) \cdot \operatorname{Count}_{o} \ge h^{\alpha}(s) \quad \text{for } \alpha \in \{\alpha_{1}, \dots, \alpha_{n}\}$$
$$\operatorname{cost}(o) \cdot \operatorname{Count}_{o} \ge 0 \qquad \text{for all } o \in O$$

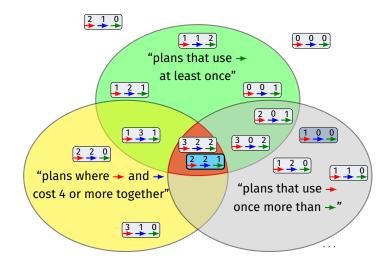
Operator-counting Framework

Propertie: 00000









### Further Examples?

- The definition of operator-counting constraints can be extended to groups of constraints and auxiliary variables.
- With this extended definition we could also cover more heuristics, e.g., the perfect relaxation heuristic h<sup>+</sup>.

### Properties

Theorem (Operator-counting Heuristics are Admissible)

The IP and the LP heuristic are admissible.

### Theorem (Dominance)

Let C and C' be sets of operator-counting constraints for s and let  $C \subseteq C'$ . Then  $IP_C \leq IP_{C'}$  and  $LP_C \leq LP_{C'}$ .

Adding more constraints can only improve the heuristic estimate.

# **Heuristic Combination**

Operator counting as heuristic combination

- Multiple operator-counting heuristics can be combined by computing h<sup>LP</sup><sub>C</sub>/h<sup>P</sup><sub>C</sub> for the union of their constraints.
- This is an admissible combination.
  - Never worse than maximum of individual heuristics
  - Sometimes even better than their sum
- We already know a way of admissibly combining heuristics: cost partitioning.
  - $\Rightarrow$  How are they related?

Operator-counting Framework

Properties

# **Connection to Cost Partitioning**

#### Theorem

Let  $C_1, \ldots, C_n$  be sets of operator-counting constraints for s and  $C = \bigcup_{i=1}^{n} C_i$ . Then  $h_C^{LP}$  is the optimal general cost partitioning over the heuristics  $h_{C_i}^{LP}$ .

# Comparison to Optimal Cost Partitioning

- some heuristics are more compact if expressed as operator counting
- some heuristics cannot be expressed as operator counting
- operator counting IP even better than optimal cost partitioning
- Cost partitioning maximizes, so heuristics must be encoded perfectly to guarantee admissibility.
  Operator counting minimizes, so missing information just makes the

heuristic weaker.

# Summary

### Summary

- Many heuristics can be formulated in terms of operator-counting constraints.
- The operator counting heuristic framework allows to combine the constraints and to reason on the entire encoded declarative knowledge.
- The heuristic estimate for the combined constraints can be better than the one of the best ingredient heuristic but never worse.
- Operator counting is equivalent to optimal general cost partitioning over individual constraints.