Automated Planning

F9. Network Flow Heuristics

Jendrik Seipp

Linkdping University

based on slides from the Al group at the University of Basel

Content of this Course

— Landmarks
Cost
— Prelude Partitioning
— Foundations - P?St:HOF
Optimization

— Approaches

—1 Delete Relaxation

Operator

— Abstraction Counting

| constraints o
Heuristics

2/30

Introduction
©0000000

Introduction

3/30

Introduction

[e] Jelelelele]e]

Reminder: SAS™ Planning Tasks

For a SAS* planning task I = {V, 1,0, y):

Vis a set of finite-domain state variables,
Each atom has the form v = d with v € V, d € dom(v).

Operator preconditions and the goal formula y
are satisfiable conjunctions of atoms.

Operator effects are conflict-free conjunctions of
atomic effects of the form v, ;= dy A --- Av, :==dp.

4/30

Introduction

[e]e] lelelele]e]

Example Task (1)

m One package, two trucks, two locations

m Variables:
m pos-p with dom(pos-p) = {locy, locy, ti, to }
m pos-t-i with dom(pos-t-i) = {locy, loc, } fori € {1,2}

m The package is at location 1 and the trucks at location 2.
m | = {pos-p — locy, pos-t-1 > loc,, pos-t-2 — loc, }

m The goal is to have the package at location 2 and

truck 1 at location 1.

m y = (pos-p = loc;) A (pos-t-1 = locy)

5/30

Introduction ormal Form

[e]ee] lelele]e]

Example Task (2)

m Operators: for i, j, k € {1,2}:

load(t;, loc;) = (pos-t-i = locj A pos-p = loc;,
pos-p :=t;, 1)
unload(t;, locj) = (pos-t-i = loc; A pos-p = tj,
pos-p := locj, 1)
drive(t;, log;, lock) = (pos-t-i = loc;,

pos-t-i := locg, 1)

6/30

Introduction
00008000

Example Task: Observations

Consider some atoms of the example task:

m pos-p = locy initially true and must be false in the goal
> at location 1 the package must be loaded
one time more often than unloaded.

B pos-p = loc, initially false and must be true in the goal
> at location 2 the package must be unloaded
one time more often than loaded.

m pos-p =t initially false and must be false in the goal
> same number of load and unload actions for truck 1.

Can we derive a heuristic from this kind of information?

7/30

Introduction

00000 e00

Example: Flow Constraints

Let - be some arbitrary plan for the example task and let
#o denote the number of occurrences of operator o in 7.
Then the following holds:

m pos-p = loc initially true and must be false in the goal
> at location 1 the package must be loaded

one time more often than unloaded.
#load(ty, locy) + #load(t,, locy) =
1+ #unload(tq, locy) + #unload(t,, locy)

m pos-p = ty initially false and must be false in the goal
> same number of load and unload actions for truck 1.
#unload(t,, locy) + #unload(t;, loc,) =
#load(ty, locy) + #load(t,, loc,)

8/30

Introduction

00000080

Network Flow Heuristics: General Idea

m Formulate flow constraints for each atom.
m These are satisfied by every plan of the task.
m The cost of a plan is Y ,¢o cost(o0)#o

m The objective value of an integer program that minimizes this cost
subject to the flow constraints is a lower bound on the plan cost
(i.e., an admissible heuristic estimate).

m As solving the IP is NP-hard, we solve the LP relaxation instead.

How do we get the flow constraints?

9/30

Introduction

O000000e

How to Derive Flow Constraints?

m The constraints formulate how often an atom can be produced or
consumed.

m “Produced” (resp. “consumed”) means that the atom is false (resp.
true) before an operator application and true (resp. false) in the
successor state.

m For general SAS* operators, this depends on the state where the
operator is applied: effect v := d only produces v = d
if the operator is applied in a state s with s(v) # d.

m For general SAS* tasks, the goal does not have to specify a value for
every variable.

m All this makes the definition of flow constraints somewhat involved
and in general such constraints are inequalitites.

Good news: easy for tasks in transition normal form

10/30

Transition Normal Form
©000000000

Transition Normal Form

11/30

Transition Normal Form

[e] lelelelelele]e]e]

Variables Occurring in Conditions and Effects

m Many algorithmic problems for SAS* planning tasks
become simpler when we can make two further restrictions.

m These are related to the variables that occur
in conditions and effects of the task.

Definition (vars(¢), vars(e))

For a logical formula ¢ over finite-domain variables V,
vars(¢) denotes the set of finite-domain variables occurring in ¢.

For an effect e over finite-domain variables V,
vars(e) denotes the set of finite-domain variables occurring in e.

12/30

Transition Normal Form

[e]e] lelelelele]e]e}

Transition Normal Form

Definition (Transition Normal Form)

A SAS* planning task I = (V, 1,0, y)
is in transition normal form (TNF) if

m forall o € O, vars(pre(o)) = vars(eff(o)), and
m vars(y) = V.

In words, an operator in TNF must mention the same variables
in the precondition and effect, and a goal in TNF must mention
all variables (= specify exactly one goal state).

13/30

Transition Normal Form

0008000000

Converting Operators to TNF: Violations

There are two ways in which an operator o can violate TNF:
m There exists a variable v € vars(pre(0)) \ vars(eff(o)).

B There exists a variable v € vars(eff(o)) \ vars(pre(o)).

The first case is easy to address: if v = d is a precondition
with no effect on v, just add the effect v := d.

The second case is more difficult: if we have the effectv := d
but no precondition on v, how can we add a precondition on v
without changing the meaning of the operator?

14/30

Transition Normal Form

[e]elele] Jelele]ele}

Converting Operators to TNF: Multiplying Out

Solution 1: multiplying out
@ While there exists an operator o and a variable v € vars(eff(0))
with v ¢ vars(pre(0)):
m For each d € dom(v), add a new operator that is like o
but with the additional precondition v = d.
m Remove the original operator.

© Repeat the previous step until no more such variables exist.

Problem:

m If an operator o has n such variables, each with k values
in its domain, this introduces k" variants of o.

m Hence, this is an exponential transformation.

15/30

Transition Normal Form

[e]elele]e] lelelele}

Converting Operators to TNF: Auxiliary Values

Solution 2: auxiliary values
@ For every variable v, add a new auxiliary value u to its domain.

@ For every variable v and value d € dom(v) \ {u},
add a new operator to change the value of v from d to u
atno cost: (v =d,v :=u,0).

© For all operators o and all variables v € vars(eff(o0)) \ vars(pre(0)),
add the precondition v = u to pre(o).

Properties:
m Transformation can be computed in linear time.

m Due to the auxiliary values, there are new states
and transitions in the induced transition system,
but all path costs between original states remain the same.

16/30

Transition Normal Form

0000008000

Converting Goals to TNF

m The auxiliary value idea can also be used
to convert the goal y to TNF.

m For every variable v ¢ vars(y), add the conditionv = uto y.

With these ideas, every SAS™ planning task can be
converted into transition normal form in linear time.

17/30

Introductior Transition Normal Form

) (YOO 0000000800

TNF for Example Task (1)

The example task is not in transition normal form:

m Load and unload operators have preconditions on the position of
some truck but no effect on this variable.

m The goal does not specify a value for variable pos-t-2.

18/30

Transition Normal Form

0000000080

TNF for Example Task (2)

Operators in transition normal form: for i, j, k € {1,2}:

load(t;, locj;) = (pos-t-i = locj A pos-p = loc;,
pos-p := t; A pos-t-i := loc;j, 1)
unload(t;, locj) = (pos-t-i = loc; A pos-p = t;,
pos-p := locj A pos-t-i := locj, 1)
drive(t;, log;, loc,) = (pos-t-i = loc;,

pos-t-i := locg, 1)

19/30

Transition Normal Form

O00000000e

TNF for Example Task (3)

To bring the goal in normal form,
m add an additional value u to dom(pos-t-2)

®m add zero-cost operators
0, = {(pos-t2 = loc,, pos-t-2 := u, 0) and
0, = {pos-t-2 = loc,, pos-t-2 := u, 0)
® Add pos-t-2 = u to the goal:
Y = (pos-p = locy) A (pos-t-1 = locy) A (pos-t-2 = u)

20/30

Flow Heuristic
©0000000

Flow Heuristic

21/30

rmal Form Flow Heuristic

[e] Jelelelele]e]

Notation

m In SAS? tasks, states are variable assignments,
conditions are conjunctions over atoms, and
effects are conjunctions of atomic effects.

m In the following, we use a unifying notation to express
that an atom is true in a state/entailed by a condition/
made true by an effect.

m For state s, we write (v = d) € s to express that s(v) = d.

m For a conjunction of atoms ¢, we write (v = d) € ¢ to express that
¢ has a conjunct v = d (or alternatively ¢ |= v = d).

m For effect e, we write (v = d) € e to express that e contains the
atomic effect v := d.

22/30

rmal Form

Flow Heuristic
00@00000

Flow Constraints (1)

A flow constraint for an atom relates how often it can be produced to
how often it can be consumed.

Let o be an operator in transition normal form. Then:
m o produces atom a iff a € eff(o) and a ¢ pre(o).
m o consumes atom a iff a € pre(o) and a ¢ eff(o).
m Otherwise o is neutral wrt. atom a.

~» State-independent

23/30

Flow Heuristic

[e]e]e] lelele]e]

Flow Constraints (2)

A flow constraint for an atom relates how often it can be produced to
how often it can be consumed.

The constraint depends on the current state s and the goal y.
If ¥ mentions all variables (as in TNF), the following holds:

m Ifa € sand a € y then atom a must be equally often produced and
consumed.

m Analogouslyfora ¢ sanda ¢ y.

m Ifa € sand a ¢ y then a must be consumed one time more often
than it is produced.

m Ifa ¢ sand a € y then a must be produced one time more often
than it is consumed.

24/30

mal Form Flow Heuristic

[e]ee]e] Jelele]

Iverson Bracket

The dependency on the current state and the goal can concisely be
expressed with Iverson brackets:

Definition (lverson Bracket)

Let P be a logical proposition (= some statement that can be evaluated to
true or false). Then

1 if Pistrue
0 if Pisfalse.

Example: [2 # 3] =1

25/30

Flow Heuristic

O00000e00

Flow Constraints (3)

Definition (Flow Constraint)

Let M = (V, 1,0, y) be a task in transition normal form.
The flow constraint for atom a in state s is

acs|+ Count, = ae Count
[aes]+ > count, yl+ > count,

0€0:aceff(o) 0€0:aepre(o)

m Count,: LP variable for the number of occurrences of operator o.

m Neutral operators either appear on both sides or on none.

Example for pos-p = locy:

[pos-p = loc; € s] + Countynioad(ty,loc;) + COUNtynioad(ty,loc;) =
[pos-p = locy € y] + Countioadt, loc,) + Countyoad(ty,loc,) <
1+ Countunload(t%locﬂ + Countunload(tz,loa) =

Countload(t1,loc1) + Countload(tz,loq)

26/30

mal Form Flow Heuristic

00000080

Flow Heuristic

Definition (Flow Heuristic)

Let MM = (V, 1,0, y) be a SAS* task in transition normal form and let
A={(v=d)|veV,dedom(v)} bethe set of atoms of .

The flow heuristic hf®"(s) is the objective value of the following LP or co
if the LP is infeasible:

minimize },cq cost(o) - Count, subject to

[aes]+ > Count,=[aey]+ > Count,forallaeA
o€0:aceff(o) 0€0:acpre(o)

Count, > 0 forallo€ O

27/30

Flow Heuristic
0000000e

Flow Heuristic: Properties

The flow heuristic W°" js goal-aware, safe, consistent and admissible.
g

28/30

Summary
[1)

Summary

29/30

e Summary
>00 00 > oce

Summary

m A flow constraint for an atom describes how the number of
producing operator applications is linked to the number of
consuming operator applications.

m The flow heuristic computes a lower bound on the cost of each
operator sequence that satisfies these constraints for all atoms.

m The flow heuristic only considers the number of occurrences of each
operator, but ignores their order.

30/30

	Introduction
	

	Transition Normal Form
	

	Flow Heuristic
	

	Summary
	

