
Automated Planning
F9. Network Flow Heuristics

Jendrik Seipp

Linköping University

based on slides from the AI group at the University of Basel



Introduction Transition Normal Form Flow Heuristic Summary

Content of this Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Abstraction

Constraints

Landmarks

Cost
Partitioning

Post-Hoc
Optimization

Network
Flows

Operator
Counting

Potential
Heuristics

2/30



Introduction Transition Normal Form Flow Heuristic Summary

Introduction

3/30



Introduction Transition Normal Form Flow Heuristic Summary

Reminder: SAS+ Planning Tasks

For a SAS+ planning task Π = ⟨V, I, O, γ⟩:
V is a set of finite-domain state variables,

Each atom has the form v = d with v ∈ V, d ∈ dom(v).
Operator preconditions and the goal formula γ
are satisfiable conjunctions of atoms.

Operator effects are conflict-free conjunctions of
atomic effects of the form v1 := d1 ∧ · · · ∧ vn := dn.

4/30



Introduction Transition Normal Form Flow Heuristic Summary

Example Task (1)

One package, two trucks, two locations
Variables:

pos-p with dom(pos-p) = {loc1, loc2, t1, t2}
pos-t-i with dom(pos-t-i) = {loc1, loc2} for i ∈ {1, 2}

The package is at location 1 and the trucks at location 2.
I = {pos-p ↦→ loc1, pos-t-1 ↦→ loc2, pos-t-2 ↦→ loc2}

The goal is to have the package at location 2 and
truck 1 at location 1.

γ = (pos-p = loc2) ∧ (pos-t-1 = loc1)

5/30



Introduction Transition Normal Form Flow Heuristic Summary

Example Task (2)

Operators: for i, j, k ∈ {1, 2}:

load(ti, locj) = ⟨pos-t-i = locj ∧ pos-p = locj,

pos-p := ti, 1⟩
unload(ti, locj) = ⟨pos-t-i = locj ∧ pos-p = ti,

pos-p := locj, 1⟩
drive(ti, locj, lock) = ⟨pos-t-i = locj,

pos-t-i := lock, 1⟩

6/30



Introduction Transition Normal Form Flow Heuristic Summary

Example Task: Observations

Consider some atoms of the example task:

pos-p = loc1 initially true and must be false in the goal
▷ at location 1 the package must be loaded
▷ one time more often than unloaded.

pos-p = loc2 initially false and must be true in the goal
▷ at location 2 the package must be unloaded
▷ one time more often than loaded.

pos-p = t1 initially false and must be false in the goal
▷ same number of load and unload actions for truck 1.

Can we derive a heuristic from this kind of information?

7/30



Introduction Transition Normal Form Flow Heuristic Summary

Example: Flow Constraints

Let π be some arbitrary plan for the example task and let
#o denote the number of occurrences of operator o in π .
Then the following holds:

pos-p = loc1 initially true and must be false in the goal
▷ at location 1 the package must be loaded
▷ one time more often than unloaded.
#load(t1, loc1) +#load(t2, loc1) =
1 +#unload(t1, loc1) +#unload(t2, loc1)
pos-p = t1 initially false and must be false in the goal
▷ same number of load and unload actions for truck 1.
#unload(t1, loc1) +#unload(t1, loc2) =
#load(t1, loc1) +#load(t1, loc2)

8/30



Introduction Transition Normal Form Flow Heuristic Summary

Network Flow Heuristics: General Idea

Formulate flow constraints for each atom.

These are satisfied by every plan of the task.

The cost of a plan is
∑

o∈O cost(o)#o

The objective value of an integer program that minimizes this cost
subject to the flow constraints is a lower bound on the plan cost
(i.e., an admissible heuristic estimate).

As solving the IP is NP-hard, we solve the LP relaxation instead.

How do we get the flow constraints?

9/30



Introduction Transition Normal Form Flow Heuristic Summary

How to Derive Flow Constraints?

The constraints formulate how often an atom can be produced or
consumed.

“Produced” (resp. “consumed”) means that the atom is false (resp.
true) before an operator application and true (resp. false) in the
successor state.

For general SAS+ operators, this depends on the state where the
operator is applied: effect v := d only produces v = d
if the operator is applied in a state s with s(v) , d.

For general SAS+ tasks, the goal does not have to specify a value for
every variable.

All this makes the definition of flow constraints somewhat involved
and in general such constraints are inequalitites.

Good news: easy for tasks in transition normal form

10/30



Introduction Transition Normal Form Flow Heuristic Summary

Transition Normal Form

11/30



Introduction Transition Normal Form Flow Heuristic Summary

Variables Occurring in Conditions and Effects

Many algorithmic problems for SAS+ planning tasks
become simpler when we can make two further restrictions.

These are related to the variables that occur
in conditions and effects of the task.

Definition (vars(ϕ), vars(e))
For a logical formula ϕ over finite-domain variables V,
vars(ϕ) denotes the set of finite-domain variables occurring in ϕ.

For an effect e over finite-domain variables V,
vars(e) denotes the set of finite-domain variables occurring in e.

12/30



Introduction Transition Normal Form Flow Heuristic Summary

Transition Normal Form

Definition (Transition Normal Form)
A SAS+ planning task Π = ⟨V, I, O, γ⟩
is in transition normal form (TNF) if

for all o ∈ O, vars(pre(o)) = vars(eff(o)), and

vars(γ) = V.

In words, an operator in TNF must mention the same variables
in the precondition and effect, and a goal in TNF must mention
all variables (= specify exactly one goal state).

13/30



Introduction Transition Normal Form Flow Heuristic Summary

Converting Operators to TNF: Violations

There are two ways in which an operator o can violate TNF:

There exists a variable v ∈ vars(pre(o)) \ vars(eff(o)).
There exists a variable v ∈ vars(eff(o)) \ vars(pre(o)).

The first case is easy to address: if v = d is a precondition
with no effect on v, just add the effect v := d.

The second case is more difficult: if we have the effect v := d
but no precondition on v, how can we add a precondition on v
without changing the meaning of the operator?

14/30



Introduction Transition Normal Form Flow Heuristic Summary

Converting Operators to TNF: Multiplying Out

Solution 1: multiplying out
1 While there exists an operator o and a variable v ∈ vars(eff(o))

with v < vars(pre(o)):
For each d ∈ dom(v), add a new operator that is like o
but with the additional precondition v = d.
Remove the original operator.

2 Repeat the previous step until no more such variables exist.

Problem:

If an operator o has n such variables, each with k values
in its domain, this introduces kn variants of o.

Hence, this is an exponential transformation.

15/30



Introduction Transition Normal Form Flow Heuristic Summary

Converting Operators to TNF: Auxiliary Values

Solution 2: auxiliary values
1 For every variable v, add a new auxiliary value u to its domain.
2 For every variable v and value d ∈ dom(v) \ {u},

add a new operator to change the value of v from d to u
at no cost: ⟨v = d, v := u, 0⟩.

3 For all operators o and all variables v ∈ vars(eff(o)) \ vars(pre(o)),
add the precondition v = u to pre(o).

Properties:

Transformation can be computed in linear time.

Due to the auxiliary values, there are new states
and transitions in the induced transition system,
but all path costs between original states remain the same.

16/30



Introduction Transition Normal Form Flow Heuristic Summary

Converting Goals to TNF

The auxiliary value idea can also be used
to convert the goal γ to TNF.

For every variable v < vars(γ), add the condition v = u to γ.

With these ideas, every SAS+ planning task can be
converted into transition normal form in linear time.

17/30



Introduction Transition Normal Form Flow Heuristic Summary

TNF for Example Task (1)

The example task is not in transition normal form:

Load and unload operators have preconditions on the position of
some truck but no effect on this variable.

The goal does not specify a value for variable pos-t-2.

18/30



Introduction Transition Normal Form Flow Heuristic Summary

TNF for Example Task (2)

Operators in transition normal form: for i, j, k ∈ {1, 2}:

load(ti, locj) = ⟨pos-t-i = locj ∧ pos-p = locj,

pos-p := ti ∧ pos-t-i := locj, 1⟩
unload(ti, locj) = ⟨pos-t-i = locj ∧ pos-p = ti,

pos-p := locj ∧ pos-t-i := locj, 1⟩
drive(ti, locj, lock) = ⟨pos-t-i = locj,

pos-t-i := lock, 1⟩

19/30



Introduction Transition Normal Form Flow Heuristic Summary

TNF for Example Task (3)

To bring the goal in normal form,

add an additional value u to dom(pos-t-2)
add zero-cost operators
o1 = ⟨pos-t-2 = loc1, pos-t-2 := u, 0⟩ and
o2 = ⟨pos-t-2 = loc2, pos-t-2 := u, 0⟩
Add pos-t-2 = u to the goal:
γ = (pos-p = loc2) ∧ (pos-t-1 = loc1) ∧ (pos-t-2 = u)

20/30



Introduction Transition Normal Form Flow Heuristic Summary

Flow Heuristic

21/30



Introduction Transition Normal Form Flow Heuristic Summary

Notation

In SAS+ tasks, states are variable assignments,
conditions are conjunctions over atoms, and
effects are conjunctions of atomic effects.

In the following, we use a unifying notation to express
that an atom is true in a state/entailed by a condition/
made true by an effect.

For state s, we write (v = d) ∈ s to express that s(v) = d.

For a conjunction of atoms ϕ, we write (v = d) ∈ ϕ to express that
ϕ has a conjunct v = d (or alternatively ϕ |= v = d).

For effect e, we write (v = d) ∈ e to express that e contains the
atomic effect v := d.

22/30



Introduction Transition Normal Form Flow Heuristic Summary

Flow Constraints (1)

A flow constraint for an atom relates how often it can be produced to
how often it can be consumed.

Let o be an operator in transition normal form. Then:

o produces atom a iff a ∈ eff(o) and a < pre(o).
o consumes atom a iff a ∈ pre(o) and a < eff(o).
Otherwise o is neutral wrt. atom a.

{ State-independent

23/30



Introduction Transition Normal Form Flow Heuristic Summary

Flow Constraints (2)

A flow constraint for an atom relates how often it can be produced to
how often it can be consumed.

The constraint depends on the current state s and the goal γ.
If γ mentions all variables (as in TNF), the following holds:

If a ∈ s and a ∈ γ then atom a must be equally often produced and
consumed.

Analogously for a < s and a < γ.

If a ∈ s and a < γ then a must be consumed one time more often
than it is produced.

If a < s and a ∈ γ then a must be produced one time more often
than it is consumed.

24/30



Introduction Transition Normal Form Flow Heuristic Summary

Iverson Bracket

The dependency on the current state and the goal can concisely be
expressed with Iverson brackets:

Definition (Iverson Bracket)
Let P be a logical proposition (= some statement that can be evaluated to
true or false). Then

[P] =
{

1 if P is true

0 if P is false.

Example: [2 , 3] = 1

25/30



Introduction Transition Normal Form Flow Heuristic Summary

Flow Constraints (3)

Definition (Flow Constraint)
Let Π = ⟨V, I, O, γ⟩ be a task in transition normal form.
The flow constraint for atom a in state s is

[a ∈ s] +
∑

o∈O:a∈eff(o)
Counto = [a ∈ γ] +

∑
o∈O:a∈pre(o)

Counto

Counto: LP variable for the number of occurrences of operator o.

Neutral operators either appear on both sides or on none.

Example for pos-p = loc1:
[pos-p = loc1 ∈ s] + Countunload(t1,loc1 ) + Countunload(t2,loc1 ) =
[pos-p = loc1 ∈ γ] + Countload(t1,loc1 ) + Countload(t2,loc1 ) ⇔
1 + Countunload(t1,loc1 ) + Countunload(t2,loc1 ) =
Countload(t1,loc1 ) + Countload(t2,loc1 )

26/30



Introduction Transition Normal Form Flow Heuristic Summary

Flow Heuristic

Definition (Flow Heuristic)
Let Π = ⟨V, I, O, γ⟩ be a SAS+ task in transition normal form and let
A = {(v = d) | v ∈ V, d ∈ dom(v)} be the set of atoms of Π.

The flow heuristic hflow(s) is the objective value of the following LP or ∞
if the LP is infeasible:

minimize
∑

o∈O cost(o) · Counto subject to

[a ∈ s] + ∑
o∈O:a∈eff(o)

Counto = [a ∈ γ] + ∑
o∈O:a∈pre(o)

Counto for all a ∈ A

Counto ≥ 0 for all o ∈ O

27/30



Introduction Transition Normal Form Flow Heuristic Summary

Flow Heuristic: Properties

Theorem

The flow heuristic hflow is goal-aware, safe, consistent and admissible.

28/30



Introduction Transition Normal Form Flow Heuristic Summary

Summary

29/30



Introduction Transition Normal Form Flow Heuristic Summary

Summary

A flow constraint for an atom describes how the number of
producing operator applications is linked to the number of
consuming operator applications.

The flow heuristic computes a lower bound on the cost of each
operator sequence that satisfies these constraints for all atoms.

The flow heuristic only considers the number of occurrences of each
operator, but ignores their order.

30/30


	Introduction
	

	Transition Normal Form
	

	Flow Heuristic
	

	Summary
	


