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Example Task (1)

Example (Example Task)

SAS+ task Π = ⟨V, I, O, γ⟩ with

V = {A, B, C} with dom(v) = {0, 1, 2, 3, 4} for all v ∈ V

I = {A ↦→ 0, B ↦→ 0, C ↦→ 0}
O = {incv

x | v ∈ V, x ∈ {0, 1, 2}} ∪ {jumpv | v ∈ V}
incv

x = ⟨v = x, v := x + 1, 1⟩
jumpv = ⟨∧v′∈V:v′,v v′ = 4, v := 3, 1⟩

γ = A = 3 ∧ B = 3 ∧ C = 3

Each optimal plan consists of three increment operators for each
variable{ h∗(I) = 9

Each operator affects only one variable.

4/28



Introduction Post-hoc Optimization PhO vs. OCP Canonical Heuristic PhO vs. Canonical Heuristic Summary

Example Task (2)

In projections to single variables we can reach the goal with a jump
operator: h{A} (I) = h{B} (I) = h{C} (I) = 1.

In projections to more variables, we need for each variable three
applications of increment operators to reach the abstract goal from
the abstract initial state: h{A,B} (I) = h{A,C} (I) = h{B,C} (I) = 6

Example (Canonical Heuristic, using orthogonality)
C = {{A}, {B}, {C}, {A, B}, {A, C}, {B, C}}

hC (s) = max{h{A} (s) + h{B} (s) + h{C} (s), h{A} (s) + h{B,C} (s),
h{B} (s) + h{A,C} (s), h{C} (s) + h{A,B} (s)}

hC (I) = 7
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Post-hoc Optimization Heuristic: Idea

Consider the example task:

type-v operator: operator modifying variable v

h{A,B} = 6
⇒ in any plan operators of type A or B incur at least cost 6.

h{A,C} = 6
⇒ in any plan operators of type A or C incur at least cost 6.

h{B,C} = 6
⇒ in any plan operators of type B or C incur at least cost 6.

⇒ any plan has at least cost ???.

(let’s use linear programming. . . )

⇒ any plan has at least cost 9.

Can we generalize this kind of reasoning?
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Post-hoc Optimization
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Post-hoc Optimization

The heuristic that generalizes this kind of reasoning
is the Post-hoc Optimization Heuristic (PhO)

can be computed for any kind of heuristic . . .

. . . as long as we are able to determine relevance of operators

if in doubt, it’s always safe to assume
an operator is relevant for a heuristic

but for PhO to work well, it’s important that the set of relevant
operators is as small as possible
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Operator Relevance in Abstractions

Definition (Reminder: Affecting Transition Labels)
Let T be a transition system, and let ℓ be one of its labels.

We say that ℓ affects T if T has a transition s
ℓ−→ t with s , t.

Definition (Operator Relevance in Abstractions)
An operator o is relevant for an abstraction α if o affects T α .

We can efficiently determine operator relevance for abstractions.
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Linear Program (1)

For a given set of abstractions {α1, . . . , αn}, we construct
a linear program:

variable Xo for each operator o ∈ O

intuitively, Xo is cost incurred by operator o

abstraction heuristics are admissible∑
o∈O

Xo ≥ hα (s) for α ∈ {α1, . . . , αn}

can tighten these constraints to∑
o∈O:o relevant for α

Xo ≥ hα (s) for α ∈ {α1, . . . , αn}
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Linear Program (2)

For set of abstractions {α1, . . . , αn}:

Variables
Non-negative variables Xo for all operators o ∈ O

Objective
Minimize

∑
o∈O Xo

Subject to∑
o∈O:o relevant for α

Xo ≥ hα (s) for α ∈ {α1, . . . , αn}

Xo ≥ 0 for all o ∈ O
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PhO Heuristic

Definition (Post-hoc Optimization Heuristic)

The post-hoc optimization heuristic hPhO
{α1,...,αn} for abstractions

α1, . . . , αn is the objective value of the following linear program:

Minimize
∑
o∈O

Xo subject to∑
o∈O:o relevant for α

Xo ≥ hα (s) for all α ∈ {α1, . . . , αn}

Xo ≥ 0 for all o ∈ O
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PhO Heuristic

hPhO

1 Precompute all abstraction heuristics hα1, . . . , hαn .
2 Create LP for initial state s0.
3 For each new state s:

Look up hα (s) for all α ∈ {α1, . . . , αn}.
Adjust LP by replacing bounds with the hα (s) values.

Theorem (Admissibility)
The post-hoc optimization heuristic is admissible.
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Combining Estimates from Abstraction Heuristics

Post-Hoc optimization combines multiple admissible heuristic
estimates into one.
We have already heard of two other such approaches for
abstraction heuristics,

optimal cost partitioning and
the canonical heuristic for PDBs (both not covered in detail).

How does PhO compare to these?
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PhO vs. OCP
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What about Optimal Cost Partitioning for Abstractions?

Optimal cost partitioning for abstractions. . .

. . . uses a state-specific LP to find the best possible cost
partitioning, and sums up the heuristic estimates.

. . . dominates the canonical heuristic, i.e., for the same pattern
collection, it never gives lower estimates than hC .

. . . is very expensive to compute
(recomputing all abstract goal distances in every state).
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PhO: Linear Program

For set of abstractions {α1, . . . , αn}:

Variables
Xo for all equivalence classes o ∈ O

Objective
Minimize

∑
o∈O Xo

Subject to∑
o∈O:o relevant for α

Xo ≥ hα (s) for all α ∈ {α1, . . . , αn}

Xo ≥ 0 for all o ∈ O

We compute a state-specific cost partitioning that can only scale the
operator costs within each heuristic by a factor Yi.

17/28



Introduction Post-hoc Optimization PhO vs. OCP Canonical Heuristic PhO vs. Canonical Heuristic Summary

PhO: Dual Linear Program

For set of abstractions {α1, . . . , αn}:

Variables
Yα for each abstraction α ∈ {α1, . . . , αn}

Objective
Maximize

∑
α∈{α1,...,αn} hα (s)Yα

Subject to∑
α∈{α1,...,αn}:o relevant for α

Yα ≤ 1 for all o ∈ O

Yα ≥ 0 for all α ∈ {α1, . . . , αn}

We compute a state-specific cost partitioning that can only scale the
operator costs within each heuristic by a factor 0 ≤ Yα ≤ 1.
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Relation to Optimal Cost Partitioning

Theorem
Optimal cost partitioning dominates post-hoc optimization.

Proof Sketch.
Consider a feasible assignment ⟨Yα1, . . . , Yαn⟩ for the variables of the
dual LP for PhO.

Its objective value is equivalent to the cost-partitioning heuristic for the
same abstractions with cost partitioning ⟨Yα1 cost, . . . , Yαn cost⟩.
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Canonical Heuristic
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Canonical Heuristic: Finding Additive Pattern Sets

Theorem (Additive Pattern Sets)
Let P1, . . . , Pk be disjoint patterns for an FDR planning task Π.

If there exists no operator that has an effect
on a variable vi ∈ Pi and on a variable vj ∈ Pj for some i , j,
then

∑k
i=1 hPi is an admissible and consistent heuristic for Π.

This theorem gives us a simple criterion to decide which pattern
heuristics can be admissibly added.
Given a pattern collection C (i.e., a set of patterns),
we can use this information as follows:

1 Build the compatibility graph for C.
Vertices correspond to patterns P ∈ C.
There is an edge between two vertices iff
no operator affects both incident patterns.

2 Compute all maximal cliques of the graph.
These correspond to maximal additive subsets of C.
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The Canonical Heuristic Function

Definition (Canonical Heuristic Function)
Let C be a pattern collection for an FDR planning task.

The canonical heuristic hC for pattern collection C is defined as

hC (s) = max
D∈cliques(C)

∑
P∈D

hP(s),

where cliques(C) is the set of all maximal cliques
in the compatibility graph for C.

For all choices of C, heuristic hC is admissible and consistent. It is also
the best possible admissible heuristic not using cost partitioning.
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Canonical Heuristic: Example

Example
Consider a planning task with state variables V = {v1, . . . , v5}
and the pattern collection C = {P1, . . . , P5} with P1 = {v1, v2, v3},
P2 = {v1, v2}, P3 = {v3}, P4 = {v4} and P5 = {v5}.

There are operators affecting each individual variable,
variables v1 and v2, variables v3 and v4 and variables v3 and v5.

What is the compatibility graph for C? Answer:

P1 P2 P3

P4P5

What are the maximal cliques in the compatibility graph for C?
Answer: {P1}, {P2, P3}, {P2, P4, P5}

What is the canonical heuristic function hC?
Answer: hC = max {hP1, hP2 + hP3, hP2 + hP4 + hP5}
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PhO vs. Canonical Heuristic
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Relation to Canonical Heuristic

Theorem
Consider the dual D of the LP solved by the post-hoc optimization
heuristic in state s for a given set of abstractions. If we restrict the
variables in D to integers, the objective value is the canonical heuristic
value hC (s).

Corollary
The post-hoc optimization heuristic dominates the canonical heuristic for
the same set of abstractions.
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hPhO vs hC

For the canonical heuristic, we need to find all maximal cliques,
which is an NP-hard problem.

The post-hoc optimization heuristic dominates the canonical
heuristic and can be computed in polynomial time.

The post-hoc optimization heuristic solves an LP in each state.

With post-hoc optimization, a large number of small patterns works
well.
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Summary
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Summary

Post-hoc optimization heuristic constraints express admissibility of
heuristics

exploits (ir-)relevance of operators for heuristics

explores the middle ground between canonical heuristic and
optimal cost partitioning.

For the same set of abstractions, the post-hoc optimization
heuristic dominates the canonical heuristic.

The computation can be done in polynomial time.
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