Automated Planning F8. Post-hoc Optimization

Jendrik Seipp

Linköping University

based on slides from the AI group at the University of Basel

Canonical Heuristic 0000 PhO vs. Canonical Heuristi 000

Content of this Course

Introduction	
0000	

Canonical Heuristic

PhO vs. Canonical Heurist

Summary 00

Introduction

Introduction ○○○○	Post-hoc Optimization	PhO vs. OCP 00000	Canonical Heuristic 0000	PhO vs. Canonical Heuristic	Summary 00
_					

Example Task (1)

Example (Example Task)

SAS⁺ task $\Pi = \langle V, I, O, \gamma \rangle$ with **u** $V = \{A, B, C\}$ with dom $(v) = \{0, 1, 2, 3, 4\}$ for all $v \in V$ **u** $I = \{A \mapsto 0, B \mapsto 0, C \mapsto 0\}$ **u** $O = \{inc_x^v \mid v \in V, x \in \{0, 1, 2\}\} \cup \{jump^v \mid v \in V\}$ **u** $inc_x^v = \langle v = x, v := x + 1, 1 \rangle$ **u** $jump^v = \langle \bigwedge_{v' \in V: v' \neq v} v' = 4, v := 3, 1 \rangle$ **u** $\gamma = A = 3 \land B = 3 \land C = 3$

- Each optimal plan consists of three increment operators for each variable ~> h*(I) = 9
- Each operator affects only one variable.

Introduction 00●0	Post-hoc Optimization	PhO vs. OCP 00000	Canonical Heuristic 0000	PhO vs. Canonical Heuristic	Summary 00
Evample	o Tack (2)				

- Example Task (2)
 - In projections to single variables we can reach the goal with a jump operator: h^{A}(I) = h^{B}(I) = h^{C}(I) = 1.
 - In projections to more variables, we need for each variable three applications of increment operators to reach the abstract goal from the abstract initial state: $h^{\{A,B\}}(I) = h^{\{A,C\}}(I) = h^{\{B,C\}}(I) = 6$

Example (Canonical Heuristic, using orthogonality)

$$C = \{\{A\}, \{B\}, \{C\}, \{A, B\}, \{A, C\}, \{B, C\}\}$$

$$h^{C}(s) = \max\{h^{\{A\}}(s) + h^{\{B\}}(s) + h^{\{C\}}(s), h^{\{A\}}(s) + h^{\{B,C\}}(s), h^{\{B\}}(s) + h^{\{A,C\}}(s), h^{\{C\}}(s) + h^{\{A,B\}}(s)\}$$

 $h^C(I)=7$

Consider the example task:

■ *type-v* operator: operator modifying variable *v*

Consider the example task:

- type-v operator: operator modifying variable v
- $\bullet h^{\{A,B\}} = 6$
 - \Rightarrow in any plan operators of type A or B incur at least cost 6.

Consider the example task:

- type-v operator: operator modifying variable v
- $h^{\{A,B\}} = 6$

 \Rightarrow in any plan operators of type A or B incur at least cost 6.

- $\bullet h^{\{A,C\}} = 6$
- ⇒ in any plan operators of type A or C incur at least cost 6.
 h^{B,C} = 6
 - \Rightarrow in any plan operators of type B or C incur at least cost 6.

Consider the example task:

- type-v operator: operator modifying variable v
- $\bullet h^{\{A,B\}} = 6$
 - \Rightarrow in any plan operators of type A or B incur at least cost 6.
- $\bullet h^{\{A,C\}} = 6$
- ⇒ in any plan operators of type A or C incur at least cost 6.
 h^{B,C} = 6
 - \Rightarrow in any plan operators of type B or C incur at least cost 6.
- $\blacksquare \Rightarrow$ any plan has at least cost ???.

Consider the example task:

- type-v operator: operator modifying variable v
- $\bullet h^{\{A,B\}} = 6$
 - \Rightarrow in any plan operators of type A or B incur at least cost 6.
- $\bullet h^{\{A,C\}} = 6$
- ⇒ in any plan operators of type A or C incur at least cost 6.
 h^{B,C} = 6
 - \Rightarrow in any plan operators of type B or C incur at least cost 6.
- $\blacksquare \Rightarrow$ any plan has at least cost ???.
- (let's use linear programming...)

Consider the example task:

- type-v operator: operator modifying variable v
- $h^{\{A,B\}} = 6$

 \Rightarrow in any plan operators of type A or B incur at least cost 6.

 $\bullet h^{\{A,C\}} = 6$

⇒ in any plan operators of type A or C incur at least cost 6.
 h^{B,C} = 6

 \Rightarrow in any plan operators of type B or C incur at least cost 6.

- $\blacksquare \Rightarrow$ any plan has at least cost ???.
- (let's use linear programming...)
- $\blacksquare \Rightarrow$ any plan has at least cost 9.

Consider the example task:

- type-v operator: operator modifying variable v
- $\bullet h^{\{A,B\}} = 6$

 \Rightarrow in any plan operators of type A or B incur at least cost 6.

 $\bullet h^{\{A,C\}} = 6$

⇒ in any plan operators of type A or C incur at least cost 6.
 h^{B,C} = 6

 \Rightarrow in any plan operators of type B or C incur at least cost 6.

- $\blacksquare \Rightarrow$ any plan has at least cost ???.
- (let's use linear programming...)
- $\blacksquare \Rightarrow any plan has at least cost 9.$

Can we generalize this kind of reasoning?

Post-hoc Optimization	PhO vs. OCP
0000000	
0000000	

Post-hoc Optimization

Post-hoc Optimization

The heuristic that generalizes this kind of reasoning is the Post-hoc Optimization Heuristic (PhO)

- can be computed for any kind of heuristic . . .
- . . . as long as we are able to determine relevance of operators
- if in doubt, it's always safe to assume an operator is relevant for a heuristic
- but for PhO to work well, it's important that the set of relevant operators is as small as possible

Operator Relevance in Abstractions

Definition (Reminder: Affecting Transition Labels)

Let ${\mathcal T}$ be a transition system, and let ℓ be one of its labels.

We say that ℓ affects \mathcal{T} if \mathcal{T} has a transition $s \xrightarrow{\ell} t$ with $s \neq t$.

Definition (Operator Relevance in Abstractions)

An operator *o* is relevant for an abstraction α if *o* affects \mathcal{T}^{α} .

We can efficiently determine operator relevance for abstractions.

Linear Program (1)

For a given set of abstractions $\{\alpha_1, \ldots, \alpha_n\}$, we construct a linear program:

- variable X_o for each operator $o \in O$
- intuitively, X_o is cost incurred by operator o
- abstraction heuristics are admissible

$$\sum_{o \in O} X_o \ge h^{\alpha}(s) \quad \text{for } \alpha \in \{\alpha_1, \dots, \alpha_n\}$$

can tighten these constraints to

$$\sum_{o \in 0: o \text{ relevant for } \alpha} X_o \geq h^{\alpha}(s) \quad \text{ for } \alpha \in \{\alpha_1, \dots, \alpha_n\}$$

Linear Program (2)

For set of abstractions $\{\alpha_1, \ldots, \alpha_n\}$:

Variables Non-negative variables X_o for all operators $o \in O$

Objective

Minimize $\sum_{o \in O} X_o$

Subject to

$$\sum_{o \in 0: \text{ or elevant for } \alpha} X_o \ge h^{\alpha}(s) \quad \text{for } \alpha \in \{\alpha_1, \dots, \alpha_n\}$$
$$X_o \ge 0 \qquad \qquad \text{for all } o \in O$$

Introduction	Post-hoc Optimization	PhO vs. OCP	Canonical Heuristic	PhO vs. Canonical Heuristic	Summary
0000	00000●00	00000	0000		00

PhO Heuristic

Definition (Post-hoc Optimization Heuristic)

The post-hoc optimization heuristic $h_{\{\alpha_1,\ldots,\alpha_n\}}^{\text{PhO}}$ for abstractions α_1,\ldots,α_n is the objective value of the following linear program:

$$\begin{array}{l} \text{Minimize } \sum_{o \in O} X_o \text{ subject to} \\ \\ \sum_{o \in O:o \text{ relevant for } \alpha} X_o \geq h^{\alpha}(s) \quad \text{for all } \alpha \in \{\alpha_1, \ldots, \alpha_n\} \\ \\ \\ X_o \geq 0 \qquad \qquad \text{for all } o \in O \end{array}$$

Introduction	Post-hoc Optimization	PhO vs. OCP 00000	Canonical Heuristic 0000	PhO vs. Canonical Heuristic	Summary 00

PhO Heuristic

Theorem (Admissibility)

The post-hoc optimization heuristic is admissible.

Combining Estimates from Abstraction Heuristics

 Post-Hoc optimization combines multiple admissible heuristic estimates into one.

Combining Estimates from Abstraction Heuristics

- Post-Hoc optimization combines multiple admissible heuristic estimates into one.
- We have already heard of two other such approaches for abstraction heuristics,
 - optimal cost partitioning and
 - the canonical heuristic for PDBs (both not covered in detail).

Combining Estimates from Abstraction Heuristics

- Post-Hoc optimization combines multiple admissible heuristic estimates into one.
- We have already heard of two other such approaches for abstraction heuristics,
 - optimal cost partitioning and
 - the canonical heuristic for PDBs (both not covered in detail).
- How does PhO compare to these?

Introduction 0000	Post-hoc Optimization	PhO vs. OCP ●0000	Canonical Heuristic 0000	PhO vs. Canonical Heuristic	Summai 00

What about Optimal Cost Partitioning for Abstractions?

Optimal cost partitioning for abstractions...

- ... uses a state-specific LP to find the best possible cost partitioning, and sums up the heuristic estimates.
- ...dominates the canonical heuristic, i.e., for the same pattern collection, it never gives lower estimates than h^C.
- ... is very expensive to compute (recomputing all abstract goal distances in every state).

PhO: Linear Program

For set of abstractions $\{\alpha_1, \ldots, \alpha_n\}$:

Variables

 X_o for all equivalence classes $o \in O$

Objective

Minimize $\sum_{o \in O} X_o$

Subject to

$$\sum_{o \in 0: o \text{ relevant for } \alpha} X_o \ge h^{\alpha}(s) \quad \text{for all } \alpha \in \{\alpha_1, \dots, \alpha_n\}$$
$$X_o \ge 0 \qquad \text{for all } o \in O$$

PhO: Dual Linear Program

For set of abstractions $\{\alpha_1, \ldots, \alpha_n\}$:

Variables

 Y_{α} for each abstraction $\alpha \in \{\alpha_1, \ldots, \alpha_n\}$

Objective

Maximize
$$\sum_{\alpha \in \{\alpha_1,...,\alpha_n\}} h^{\alpha}(s) Y_{\alpha}$$

Subject to

$$\sum_{\alpha \in \{\alpha_1, \dots, \alpha_n\}: \text{o relevant for } \alpha} Y_{\alpha} \leq 1 \quad \text{for all } o \in O$$
$$Y_{\alpha} \geq 0 \quad \text{for all } \alpha \in \{\alpha_1, \dots, \alpha_n\}$$

PhO: Dual Linear Program

For set of abstractions $\{\alpha_1, \ldots, \alpha_n\}$:

Variables

 Y_{α} for each abstraction $\alpha \in \{\alpha_1, \ldots, \alpha_n\}$

Objective

Maximize
$$\sum_{\alpha \in \{\alpha_1,...,\alpha_n\}} h^{\alpha}(s) Y_{\alpha}$$

Subject to

$$\sum_{\alpha \in \{\alpha_1, \dots, \alpha_n\}: \text{ or relevant for } \alpha} Y_{\alpha} \leq 1 \quad \text{for all } o \in O$$
$$Y_{\alpha} \geq 0 \quad \text{for all } \alpha \in \{\alpha_1, \dots, \alpha_n\}$$

We compute a state-specific cost partitioning that can only scale the operator costs within each heuristic by a factor $0 \le Y_{\alpha} \le 1$.

Relation to Optimal Cost Partitioning

Theorem

Optimal cost partitioning dominates post-hoc optimization.

Proof Sketch.

Consider a feasible assignment $\langle Y_{\alpha_1}, \ldots, Y_{\alpha_n} \rangle$ for the variables of the dual LP for PhO.

Its objective value is equivalent to the cost-partitioning heuristic for the same abstractions with cost partitioning $\langle Y_{\alpha_1} cost, \ldots, Y_{\alpha_n} cost \rangle$.

	PhO vs. OCP

Canonical Heuristic

Canonical Heuristic: Finding Additive Pattern Sets

Theorem (Additive Pattern Sets)

Let P_1, \ldots, P_k be disjoint patterns for an FDR planning task Π .

If there exists no operator that has an effect on a variable $v_i \in P_i$ and on a variable $v_j \in P_j$ for some $i \neq j$, then $\sum_{i=1}^{k} h^{P_i}$ is an admissible and consistent heuristic for Π .

This theorem gives us a simple criterion to decide which pattern heuristics can be admissibly added.

Given a pattern collection C (i.e., a set of patterns), we can use this information as follows:

- Build the compatibility graph for C.
 - Vertices correspond to patterns $P \in C$.
 - There is an edge between two vertices iff no operator affects both incident patterns.
- Ompute all maximal cliques of the graph.

These correspond to maximal additive subsets of \mathcal{C} .

Canonical Heuristic

PhO vs. Canonical Heuris

Summary 00

The Canonical Heuristic Function

Definition (Canonical Heuristic Function)

Let C be a pattern collection for an FDR planning task.

The canonical heuristic h^C for pattern collection C is defined as

$$h^{C}(s) = \max_{\mathcal{D} \in cliques(C)} \sum_{P \in \mathcal{D}} h^{P}(s),$$

where cliques(C) is the set of all maximal cliques in the compatibility graph for C.

For all choices of C, heuristic h^C is admissible and consistent. It is also the best possible admissible heuristic not using cost partitioning.

Canonical Heuristic

PhO vs. Canonical Heur

Summa 00

Canonical Heuristic: Example

Example

Consider a planning task with state variables $V = \{v_1, ..., v_5\}$ and the pattern collection $C = \{P_1, ..., P_5\}$ with $P_1 = \{v_1, v_2, v_3\}$, $P_2 = \{v_1, v_2\}, P_3 = \{v_3\}, P_4 = \{v_4\}$ and $P_5 = \{v_5\}$.

There are operators affecting each individual variable, variables v_1 and v_2 , variables v_3 and v_4 and variables v_3 and v_5 .

What is the compatibility graph for C?

Example

Consider a planning task with state variables $V = \{v_1, ..., v_5\}$ and the pattern collection $C = \{P_1, ..., P_5\}$ with $P_1 = \{v_1, v_2, v_3\}$, $P_2 = \{v_1, v_2\}, P_3 = \{v_3\}, P_4 = \{v_4\}$ and $P_5 = \{v_5\}$.

There are operators affecting each individual variable, variables v_1 and v_2 , variables v_3 and v_4 and variables v_3 and v_5 .

 $(P_1) \quad (P_2) - (P_3) \\ P_5 - P_4)$

What is the compatibility graph for C? Answer:

Example

Consider a planning task with state variables $V = \{v_1, ..., v_5\}$ and the pattern collection $C = \{P_1, ..., P_5\}$ with $P_1 = \{v_1, v_2, v_3\}$, $P_2 = \{v_1, v_2\}, P_3 = \{v_3\}, P_4 = \{v_4\}$ and $P_5 = \{v_5\}$.

There are operators affecting each individual variable, variables v_1 and v_2 , variables v_3 and v_4 and variables v_3 and v_5 .

What is the compatibility graph for C? Answer:

What are the maximal cliques in the compatibility graph for C?

Example

Consider a planning task with state variables $V = \{v_1, ..., v_5\}$ and the pattern collection $C = \{P_1, ..., P_5\}$ with $P_1 = \{v_1, v_2, v_3\}$, $P_2 = \{v_1, v_2\}, P_3 = \{v_3\}, P_4 = \{v_4\}$ and $P_5 = \{v_5\}$.

There are operators affecting each individual variable, variables v_1 and v_2 , variables v_3 and v_4 and variables v_3 and v_5 .

What is the compatibility graph for C? Answer:

What are the maximal cliques in the compatibility graph for C? Answer: $\{P_1\}, \{P_2, P_3\}, \{P_2, P_4, P_5\}$

What is the canonical heuristic function h^C ?

Example

Consider a planning task with state variables $V = \{v_1, ..., v_5\}$ and the pattern collection $C = \{P_1, ..., P_5\}$ with $P_1 = \{v_1, v_2, v_3\}$, $P_2 = \{v_1, v_2\}, P_3 = \{v_3\}, P_4 = \{v_4\}$ and $P_5 = \{v_5\}$.

There are operators affecting each individual variable, variables v_1 and v_2 , variables v_3 and v_4 and variables v_3 and v_5 .

What is the compatibility graph for C? Answer:

What are the maximal cliques in the compatibility graph for C? Answer: $\{P_1\}, \{P_2, P_3\}, \{P_2, P_4, P_5\}$

What is the canonical heuristic function h^C ? Answer: $h^C = \max \{h^{P_1}, h^{P_2} + h^{P_3}, h^{P_2} + h^{P_4} + h^{P_5}\}$

Canonical Heuristic

PhO vs. Canonical Heuristic

Summary 00

PhO vs. Canonical Heuristic

anonical Heuristi

PhO vs. Canonical Heuristic ○●○

Relation to Canonical Heuristic

Theorem

Consider the dual D of the LP solved by the post-hoc optimization heuristic in state s for a given set of abstractions. If we restrict the variables in D to integers, the objective value is the canonical heuristic value $h^{C}(s)$.

anonical Heuristi

PhO vs. Canonical Heuristic

Relation to Canonical Heuristic

Theorem

Consider the dual D of the LP solved by the post-hoc optimization heuristic in state s for a given set of abstractions. If we restrict the variables in D to integers, the objective value is the canonical heuristic value $h^{C}(s)$.

Corollary

The post-hoc optimization heuristic dominates the canonical heuristic for the same set of abstractions.

Introduction	Post-hoc Optimization	PhO vs. OCP	Canonical Heuristic	PhO vs. Canonical Heuristic	Summary
0000		00000	0000	○○●	00
h ^{PhO} vs	h ^C				

- For the canonical heuristic, we need to find all maximal cliques, which is an NP-hard problem.
- The post-hoc optimization heuristic dominates the canonical heuristic and can be computed in polynomial time.
- The post-hoc optimization heuristic solves an LP in each state.
- With post-hoc optimization, a large number of small patterns works well.

Post-hoc Optimization	PhO vs. OCP	

Summary

Introduction 0000	Post-hoc Optimization	PhO vs. OCP 00000	Canonical Heuristic	PhO vs. Canonical Heuristic	Summary ○●

Summary

- Post-hoc optimization heuristic constraints express admissibility of heuristics
- exploits (ir-)relevance of operators for heuristics
- explores the middle ground between canonical heuristic and optimal cost partitioning.
- For the same set of abstractions, the post-hoc optimization heuristic dominates the canonical heuristic.
- The computation can be done in polynomial time.