Automated Planning F7. Optimal and General Cost Partitioning

Jendrik Seipp

Linköping University

based on slides from the AI group at the University of Basel

Optimal Cost Partitioning

Content of this Course

Optimal Cost Partitioning: General Approach

- Can we find a better cost partitioning than with the uniform or saturation strategy? Even an optimal one?
- Idea: exploit linear programming
 - Use variables for cost of each operator in each task copy
 - Express heuristic values with linear constraints
 - Maximize sum of heuristic values subject to these constraints

Optimal Cost Partitioning: General Approach

- Can we find a better cost partitioning than with the uniform or saturation strategy? Even an optimal one?
- Idea: exploit linear programming
 - Use variables for cost of each operator in each task copy
 - Express heuristic values with linear constraints
 - Maximize sum of heuristic values subject to these constraints

LPs known for

- abstraction heuristics (not covered in this course)
- disjunctive action landmarks (now)

Optimal Cost Partitioning for Landmarks: Basic Version

- Use an LP that covers the heuristic computation and the cost partitioning.
- LP variable C_{L,o} for cost of operator o in induced task for disjunctive action landmark L (cost partitioning)
- LP variable Cost_L for cost of disjunctive action landmark L in induced task (value of individual heuristics)

Optimal Cost Partitioning for Landmarks: Basic LP

Variables

Non-negative variable $Cost_L$ for each disj. action landmark $L \in \mathcal{L}$ Non-negative variable $C_{L,o}$ for each $L \in \mathcal{L}$ and operator o

Objective

Maximize $\sum_{L \in \mathcal{L}} \mathsf{Cost}_L$

Subject to

$$\sum_{L \in \mathcal{L}} C_{L,o} \le cost(o) \quad \text{for all operators } o$$
$$Cost_{L} \le C_{L,o} \qquad \text{for all } L \in \mathcal{L} \text{ and } o \in L$$

Optimal Cost Partitioning for Landmarks: Improved

Observation: Explicit variables for cost partitioning not necessary.
Use implicitly cost_L(o) = Cost_L for all o ∈ L and 0 otherwise.

Optimal Cost Partitioning for Landmarks: Improved LP

Variables

Non-negative variable $Cost_L$ for each disj. action landmark $L \in \mathcal{L}$

Objective

Maximize $\sum_{L \in \mathcal{L}} \text{Cost}_L$

Subject to

$$\sum_{L \in \mathcal{L}: o \in L} \operatorname{Cost}_{L} \leq \operatorname{cost}(o) \quad \text{for all operators } o$$

Example (1)

Example

Let Π be a planning task with operators o_1, \ldots, o_4 and $cost(o_1) = 3$, $cost(o_2) = 4$, $cost(o_3) = 5$ and $cost(o_4) = 0$. Let the following be disjunctive action landmarks for Π :

$$\mathcal{L}_{1} = \{o_{4}\}$$
$$\mathcal{L}_{2} = \{o_{1}, o_{2}\}$$
$$\mathcal{L}_{3} = \{o_{1}, o_{3}\}$$
$$\mathcal{L}_{4} = \{o_{2}, o_{3}\}$$

Example (2)

Example				
N	$Maximize\ Cost_{\mathcal{L}_1} + Cost_{\mathcal{L}_2} + Cost_{\mathcal{L}_3} + Cost_{\mathcal{L}_4}\ subject\ to$			
	[o ₁]	$\operatorname{Cost}_{\mathcal{L}_2} + \operatorname{Cost}_{\mathcal{L}_3} \leq 3$		
	[o ₂]	$\operatorname{Cost}_{\mathcal{L}_2} + \operatorname{Cost}_{\mathcal{L}_4} \le 4$		
	[o ₃]	$\operatorname{Cost}_{\mathcal{L}_3} + \operatorname{Cost}_{\mathcal{L}_4} \leq 5$		
I	[04]	$\text{Cost}_{\mathcal{L}_1} \leq 0$		
		$Cost_{\mathcal{L}_i} \geq 0$	for $i \in \{1, 2, 3, 4\}$	

Optimal Cost Partitioning for Landmarks (Dual view)

Variables

Non-negative variable Applied_o for each operator o

Objective

Minimize $\sum_{o} \text{Applied}_{o} \cdot cost(o)$

Subject to

$$\sum_{o \in L} \mathsf{Applied}_o \geq 1 \text{ for all landmarks } L$$

Minimize "plan cost" with all landmarks satisfied.

Example: Dual View

Example: Dual View

This is equal to the LP relaxation of the MHS heuristic

Reminder: LP Relaxation of MHS heuristic

Example (Minimum Hitting Set)

minimize $3X_{o_1} + 4X_{o_2} + 5X_{o_3}$ subject to $X_{o_4} \ge 1$ $X_{o_1} + X_{o_2} \ge 1$ $X_{o_1} + X_{o_3} \ge 1$ $X_{o_2} + X_{o_3} \ge 1$ $X_{o_1} \ge 0, \quad X_{o_2} \ge 0, \quad X_{o_4} \ge 0$

 \rightarrow optimal solution of LP relaxation:

 $X_{o_4} = 1$ and $X_{o_1} = X_{o_2} = X_{o_3} = 0.5$ with objective value 6

 → LP relaxation of MHS heuristic is admissible and can be computed in polynomial time

General Cost Partitioning

Content of this Course

General Cost Partitioning

Cost functions are usually non-negative.

- We tacitly also required this for task copies
- Makes sense intuitively: original costs are non-negative
- But: not necessary for cost-partitioning!

General Cost Partitioning

Definition (General Cost Partitioning)

Let Π be a planning task with operators O.

A general cost partitioning for Π is a tuple $(cost_1, \ldots, cost_n)$, where

• $cost_i : O \rightarrow \mathbb{R}$ for $1 \le i \le n$ and

$$\sum_{i=1}^{n} \operatorname{cost}_{i}(o) \leq \operatorname{cost}(o) \text{ for all } o \in O.$$

General Cost Partitionings are Admissible

Theorem (Sum of Admissible Estimates is Admissible)

Let Π be a planning task and let $\langle \Pi_1, \ldots, \Pi_n \rangle$ be induced by a general cost partitioning.

For admissible heuristics h_1, \ldots, h_n , the sum $h(s) = \sum_{i=1}^n h_{i,\Pi_i}(s)$ is an admissible estimate for s in Π .

Heuristic value: 2 + 2 = 4

Heuristic value: 4 + 2 = 6

Heuristic value: $-\infty + 5 = -\infty$

Summary

Summary

- For abstraction heuristics and disjunctive action landmarks, we know how to determine an optimal cost partitioning, using linear programming.
- Although solving a linear program is possible in polynomial time, the better heuristic guidance often does not outweigh the overhead (in particular for abstraction heuristics).
- In constrast to standard (non-negative) cost partitioning, general cost partitioning allows negative operators costs.
- General cost partitioning has the same relevant properties as non-negative cost partitioning but is more powerful.