Automated Planning

F6. Cost Partitioning

Jendrik Seipp

Linköping University

based on slides from the AI group at the University of Basel

Content of this Course

[Introduction](#page-2-0)

Exploiting Additivity

- \blacksquare Additivity allows to add up heuristic estimates admissibly. This gives better heuristic estimates than the maximum.
- For example, the canonical heuristic for PDBs sums up where addition is admissible (by an additivity criterion) and takes the maximum otherwise.
- Cost partitioning provides a more general additivity criterion, based on an adaption of the operator costs.

Combining Heuristics (In)admissibly: Example

Combining Heuristics (In)admissibly: Example

 $\langle o_2, o_3, o_4 \rangle$ is a plan for $s = \langle B, A, A \rangle$ but $h(s) = 4$. Heuristics h_2 and h_3 both account for the single application of o_2 .

Solution: Cost Partitioning

The reason that h_2 and h_3 are not additive is because the cost of $o₂$ is considered in both.

Solution: Cost Partitioning

The reason that h_2 and h_3 are not additive is because the cost of $o₂$ is considered in both.

Solution 1: We can ignore the cost of $o₂$ in all but one heuristic by setting its cost to 0 (e.g., $cost_3$ (o_2) = 0). This is a Zero-One cost partitioning.

6/36

[Introduction](#page-2-0) [Cost Partitioning](#page-14-0) [Uniform Cost Partitioning](#page-25-0) [Saturated Cost Partitioning](#page-30-0) [Summary](#page-64-0)

Combining Heuristics Admissibly: Example

Let $h' = h_1 + h_2 + h'_3$, where $h'_3 = h^{v_3}$ assuming $cost_3(o_2) = 0$.

 $\langle o_2, o_3, o_4 \rangle$ is an optimal plan for $s = \langle B, A, A \rangle$ and $h'(s) = 3$ an admissible estimate.

Solution: Cost Partitioning

The reason that h_2 and h_3 are not additive is because the cost of $o₂$ is considered in both.

Solution 1: We can ignore the cost of $o₂$ in all but one heuristic by setting its cost to 0 (e.g., $cost_3$ (o_2) = 0). This is a Zero-One cost partitioning.

Solution: Cost Partitioning

The reason that h_2 and h_3 are not additive is because the cost of $o₂$ is considered in both.

Solution 1: We can ignore the cost of $o₂$ in all but one heuristic by setting its cost to 0 (e.g., $cost_3$ (o_2) = 0). This is a Zero-One cost partitioning.

Solution 2: We can equally distribute the cost of o_2 between the abstractions that use it (i.e. $cost_1(o_2) = 0$, $cost_2(o_2) = cost_3(o_2) = 0.5$). This is a uniform cost partitioning.

Combining Heuristics Admissibly: Example

Let $h' = h'_1 + h'_2 + h'_3$, where $h'_i = h^{v_i}$ assuming $cost_1(o_2) = 0$, $cost_2(o_2) = cost_3(o_2) = 0.5$.

 $\langle o_2, o_3, o_4 \rangle$ is an optimal plan for $s = \langle B, A, A \rangle$ and *h* ′ (*s*) ⁼ ⁰ ⁺ ¹.⁵ ⁺ ¹.⁵ ⁼ 3 an admissible estimate.

Solution: Cost Partitioning

The reason that h_2 and h_3 are not additive is because the cost of $o₂$ is considered in both.

Solution 1: We can ignore the cost of $o₂$ in all but one heuristic by setting its cost to 0 (e.g., $cost_3$ (o_2) = 0). This is a Zero-One cost partitioning.

Solution 2: We can equally distribute the cost of $o₂$ between the abstractions that use it (i.e. $cost_1(o_2) = 0$, $cost_2(o_2) = cost_3(o_2) = 0.5$). This is a uniform cost partitioning.

General solution: satisfy cost partitioning constraint

$$
\sum_{i=1}^n \text{cost}_i(o) \leq \text{cost}(o) \text{ for all } o \in O
$$

Solution: Cost Partitioning

The reason that h_2 and h_3 are not additive is because the cost of $o₂$ is considered in both.

Solution 1: We can ignore the cost of $o₂$ in all but one heuristic by setting its cost to 0 (e.g., $cost_3$ (o_2) = 0). This is a Zero-One cost partitioning.

Solution 2: We can equally distribute the cost of $o₂$ between the abstractions that use it (i.e. $cost_1(o_2) = 0$, $cost_2(o_2) = cost_3(o_2) = 0.5$). This is a uniform cost partitioning.

General solution: satisfy cost partitioning constraint

$$
\sum_{i=1}^n \text{cost}_i(o) \leq \text{cost}(o) \text{ for all } o \in O
$$

What about *o*¹ , *o*³ and *o*4?

[Cost Partitioning](#page-14-0)

Content of this Course

Cost Partitioning

Definition (Cost Partitioning)

Let Π be a planning task with operators *O*.

A cost partitioning for Π is a tuple $\langle cost_1, \ldots, cost_n \rangle$, where

•
$$
\text{cost}_i : 0 \rightarrow \mathbb{R}_0^+
$$
 for $1 \leq i \leq n$ and

$$
\sum_{i=1}^n \text{cost}_i(o) \leq \text{cost}(o) \text{ for all } o \in O.
$$

The cost partitioning induces a tuple $\langle \Pi_1, \ldots, \Pi_n \rangle$ of planning tasks,
where each Π is identical to Π excent that the cost where each Π_i is identical to Π except that the cost of each operator *o* is *costi*(*o*).

Cost Partitioning Preserves Admissibility

In the rest of the chapter, we write h_{Π} to denote heuristic *h* evaluated on task Π.

Corollary (Sum of Admissible Estimates is Admissible)

Let Π *be a planning task and let* ⟨Π¹ , . . . , ^Π*n*⟩ *be induced by a cost partitioning.*

For admissible heuristics h_1, \ldots, h_n , the sum $h(s) = \sum_{i=1}^n h_{i,\Pi_i}(s)$ is an admissible estimate for s in Π *admissible estimate for s in* Π*.*

Example

Example

Example (No Cost Partitioning)

Heuristic value: $max{2, 2} = 2$

Example (Cost Partitioning 1)

Heuristic value: $1 + 1 = 2$

Example (Cost Partitioning 2)

Heuristic value: $2 + 2 = 4$

Example (Cost Partitioning 3)

Heuristic value: $0 + 0 = 0$

Cost Partitioning: Quality

$$
h(s) = h_{1,\Pi_1}(s) + \cdots + h_{n,\Pi_n}(s)
$$

can be better or worse than any $h_{i,\Pi}(s)$
 \rightarrow depending on sect partitioning

 \rightarrow depending on cost partitioning

- strategies for defining cost-functions
	- uniform (now) $\mathcal{L}_{\mathcal{A}}$
	- zero-one
	- saturated (afterwards) \Box
	- optimal (next chapter) $\mathcal{L}_{\mathcal{A}}$

[Uniform Cost Partitioning](#page-25-0)

Content of this Course

[Introduction](#page-2-0) [Cost Partitioning](#page-14-0) [Uniform Cost Partitioning](#page-25-0) [Saturated Cost Partitioning](#page-30-0) [Summary](#page-64-0) Idea

- **Principal idea: Distribute the cost of each operator equally** (= uniformly) among all heuristics.
- But: Some heuristics do only account for the cost of certain operators and the cost of other operators does not affect the heuristic estimate. For example:
	- a disjunctive action landmark accounts for the contained operators,
	- a PDB heuristic accounts for all operators affecting the variables in the pattern.

[Introduction](#page-2-0) [Cost Partitioning](#page-14-0) [Uniform Cost Partitioning](#page-25-0) [Saturated Cost Partitioning](#page-30-0) [Summary](#page-64-0) Idea

- **Principal idea: Distribute the cost of each operator equally** (= uniformly) among all heuristics.
	- But: Some heuristics do only account for the cost of certain operators and the cost of other operators does not affect the heuristic estimate. For example:
		- a disjunctive action landmark accounts for the contained operators,
		- a PDB heuristic accounts for all operators affecting the variables in the pattern.
- \Rightarrow Distribute the cost of each operator uniformly among all heuristics that account for this operator.

Example: Uniform Cost Partitioning for Landmarks

Definition (Uniform Cost Partitioning Heuristic for Landmarks)

Let $\mathcal L$ be a set of disjunctive action landmarks.

The uniform cost partitioning heuristic $h^{\sf UCP}(\mathcal{L})$ is defined as

$$
h^{UCP}(\mathcal{L}) = \sum_{L \in \mathcal{L}} \min_{o \in L} c'(o) \text{ with }
$$

c ′ (*o*) ⁼ *cost*(*o*)/|{*^L* ∈ L | *^o* [∈] *^L*}|.

[Saturated Cost Partitioning](#page-30-0)

Content of this Course

Saturated Cost Function Example

Saturated Cost Function Example

Idea

Heuristics do not always "need" all operator costs

- \blacksquare Pick a heuristic and use minimum costs preserving all estimates
- Continue with remaining cost until all heuristics were picked

Saturated cost partitioning (SCP) currently offers the best tradeoff between computation time and heuristic guidance in practice.

Saturated Cost Function

Definition (Saturated Cost Function)

Let Π be a planning task and *h* be a heuristic. A cost function scf is saturated for *h* and *cost* if

- \bullet scf(o) \leq cost(o) for all operators o and
- **2** $h_{\Pi_{\text{cif}}}(s) = h_{\Pi}(s)$ for all states *s*, where Π_{scf} is Π with cost function scf.

Minimal Saturated Cost Function

For abstractions, there exists a unique minimal saturated cost function (MSCF).

Definition (MSCF for Abstractions)

Let Π be a planning task and α be an abstraction heuristic. The minimal saturated cost function for α is

$$
\mathsf{mscf}(o) = \mathsf{max}(\max_{\substack{\alpha \\ \alpha(s) \xrightarrow{\delta} \alpha(t)}} h^{\alpha}(s) - h^{\alpha}(t), 0)
$$

Algorithm

Saturated Cost Partitioning: Seipp & Helmert (2014)

Iterate:

- **1** Pick a heuristic *h_i* that hasn't been picked before. Terminate if none is left.
- ² Compute *hⁱ* given current *cost*
- ³ Compute an (ideally minimal) saturated cost function scf*ⁱ* for *hⁱ*
- ⁴ Decrease *cost*(*o*) by scf*i*(*o*) for all operators *o*

 $\langle \mathsf{scf}_1, \ldots, \mathsf{scf}_n \rangle$ is saturated cost partitioning (SCP)
for $\langle h, h \rangle$ (in pick order) for $\langle h_1, \ldots, h_n \rangle$ (in pick order)

Consider the abstraction heuristics h_1 and h_2

Consider the abstraction heuristics h_1 and h_2

¹ Pick a heuristic *hⁱ*

Consider the abstraction heuristics h_1 and h_2

Consider the abstraction heuristics h_1 and h_2

³ Compute minimal saturated cost function mscf*ⁱ* for *hⁱ*

Consider the abstraction heuristics h_1 and h_2

⁴ Decrease *cost*(*o*) by mscf*ⁱ* (*o*) for all operators *o*

Consider the abstraction heuristics h_1 and h_2

¹ Pick a heuristic *hⁱ*

Consider the abstraction heuristics h_1 and h_2

Consider the abstraction heuristics h_1 and h_2

³ Compute minimal saturated cost function mscf*ⁱ* for *hⁱ*

Consider the abstraction heuristics h_1 and h_2

⁴ Decrease *cost*(*o*) by mscf*ⁱ* (*o*) for all operators *o*

Consider the abstraction heuristics h_1 and h_2

¹ Pick a heuristic *hⁱ* . Terminate if none is left.

Influence of Selected Order

- quality highly susceptible to selected order
- there are almost always orders where SCP performs much better than uniform or zero-one cost partitioning
- **Deptember 1** but there are also often orders where SCP performs worse

Consider the abstraction heuristics h_1 and h_2

Consider the abstraction heuristics h_1 and h_2

¹ Pick a heuristic *hⁱ*

Consider the abstraction heuristics h_1 and h_2

Consider the abstraction heuristics h_1 and h_2

³ Compute minimal saturated cost function mscf*ⁱ* for *hⁱ*

Consider the abstraction heuristics h_1 and h_2

⁴ Decrease *cost*(*o*) by mscf*ⁱ* (*o*) for all operators *o*

Consider the abstraction heuristics h_1 and h_2

¹ Pick a heuristic *hⁱ*

Consider the abstraction heuristics h_1 and h_2

Consider the abstraction heuristics h_1 and h_2

³ Compute minimal saturated cost function mscf*ⁱ* for *hⁱ*

Consider the abstraction heuristics h_1 and h_2

⁴ Decrease *cost*(*o*) by mscf*ⁱ* (*o*) for all operators *o*

Consider the abstraction heuristics h_1 and h_2

¹ Pick a heuristic *hⁱ* . Terminate if none is left.

Influence of Selected Order

- quality highly susceptible to selected order
- there are almost always orders where SCP performs much better than uniform or zero-one cost partitioning
- **but there are also often orders where SCP performs worse**

Maximizing over multiple orders good solution in practice

SCP for Disjunctive Action Landmarks

For disjunctive action landmarks we also know how to compute a minimal saturated cost function:

Definition (MSCF for Disjunctive Action Landmark)

Let Π be a planning task and $\mathcal L$ be a disjunctive action landmark. The minimal saturated cost function for $\mathcal L$ is

$$
mscf(o) = \begin{cases} min_{o \in \mathcal{L}} cost(o) & \text{if } o \in \mathcal{L} \\ 0 & \text{otherwise} \end{cases}
$$

SCP for Disjunctive Action Landmarks

For disjunctive action landmarks we also know how to compute a minimal saturated cost function:

Definition (MSCF for Disjunctive Action Landmark)

Let Π be a planning task and $\mathcal L$ be a disjunctive action landmark. The minimal saturated cost function for $\mathcal L$ is

$$
mscf(o) = \begin{cases} min_{o \in \mathcal{L}} cost(o) & \text{if } o \in \mathcal{L} \\ 0 & \text{otherwise} \end{cases}
$$

Does this look familiar?

Reminder: LM-Cut

SCP for Disjunctive Action Landmarks

Same algorithm can be used for disjunctive action landmarks, where we also have a minimal saturated cost function.

Definition (MSCF for Disjunctive Action Landmark)

Let Π be a planning task and $\mathcal L$ be a disjunctive action landmark. The minimal saturated cost function for $\mathcal L$ is

$$
mscf(o) = \begin{cases} min_{o' \in \mathcal{L}} cost(o') & \text{if } o \in \mathcal{L} \\ 0 & \text{otherwise} \end{cases}
$$

Does this look familiar?

LM-Cut computes SCP over disjunctive action landmarks

[Summary](#page-64-0)

Summary

- Cost partitioning allows to admissibly add up estimates of several heuristics.
- \blacksquare This can be better or worse than the best individual heuristic on the original problem, depending on the cost partitioning.
- Uniform cost partitioning distributes the cost of each operator uniformly among all heuristics that account for it.
- Saturated cost partitioning offers a good tradeoff between computation time and heuristic guidance.
- LM-Cut computes a SCP over disjunctive action landmarks.