Automated Planning F6. Cost Partitioning

Jendrik Seipp

Linköping University

Content of this Course

Introduction •0000000

Introduction

Exploiting Additivity

Introduction

- Additivity allows to add up heuristic estimates admissibly. This gives better heuristic estimates than the maximum.
- For example, the canonical heuristic for PDBs sums up where addition is admissible (by an additivity criterion) and takes the maximum otherwise.
- Cost partitioning provides a more general additivity criterion, based on an adaption of the operator costs.

Introduction 00000000

Combining Heuristics (In)admissibly: Example

5/36

Introduction 00000000

Combining Heuristics (In)admissibly: Example

 $\langle o_2, o_3, o_4 \rangle$ is a plan for $s = \langle B, A, A \rangle$ but h(s) = 4. Heuristics h_2 and h_3 both account for the single application of o_2 .

Solution: Cost Partitioning

Introduction

The reason that h_2 and h_3 are not additive is because the cost of o_2 is considered in both.

Solution: Cost Partitioning

Introduction

The reason that h_2 and h_3 are not additive is because the cost of o_2 is considered in both.

Solution 1: We can ignore the cost of o_2 in all but one heuristic by setting its cost to 0 (e.g., $cost_3(o_2) = 0$).

This is a Zero-One cost partitioning.

Introduction 00000000

Combining Heuristics Admissibly: Example

Let $h' = h_1 + h_2 + h'_3$, where $h'_3 = h^{v_3}$ assuming $cost_3(o_2) = 0$.

 $\langle o_2, o_3, o_4 \rangle$ is an optimal plan for $s = \langle B, A, A \rangle$ and h'(s) = 3 an admissible estimate.

Solution: Cost Partitioning

Introduction

The reason that h_2 and h_3 are not additive is because the cost of o_2 is considered in both.

Solution 1: We can ignore the cost of o_2 in all but one heuristic by setting its cost to 0 (e.g., $cost_3(o_2) = 0$).

This is a Zero-One cost partitioning.

Solution: Cost Partitioning

Introduction

The reason that h_2 and h_3 are not additive is because the cost of o_2 is considered in both.

Solution 1: We can ignore the cost of o_2 in all but one heuristic by setting its cost to 0 (e.g., $cost_3(o_2) = 0$).

This is a Zero-One cost partitioning.

Solution 2: We can equally distribute the cost of o_2 between the abstractions that use it (i.e. $cost_1(o_2) = 0$, $cost_2(o_2) = cost_3(o_2) = 0.5$). This is a uniform cost partitioning.

Introduction 00000000

Combining Heuristics Admissibly: Example

Let $h' = h'_1 + h'_2 + h'_3$, where $h'_i = h^{v_i}$ assuming $cost_1(o_2) = 0$, $cost_2(o_2) = cost_3(o_2) = 0.5$.

 $\langle o_2, o_3, o_4 \rangle$ is an optimal plan for $s = \langle B, A, A \rangle$ and h'(s) = 0 + 1.5 + 1.5 = 3 an admissible estimate.

Solution: Cost Partitioning

Introduction

The reason that h_2 and h_3 are not additive is because the cost of o_2 is considered in both.

Solution 1: We can ignore the cost of o_2 in all but one heuristic by setting its cost to 0 (e.g., $cost_3(o_2) = 0$).

This is a Zero-One cost partitioning.

Solution 2: We can equally distribute the cost of o_2 between the abstractions that use it (i.e. $cost_1(o_2) = 0$, $cost_2(o_2) = cost_3(o_2) = 0.5$). This is a uniform cost partitioning.

General solution: satisfy cost partitioning constraint

$$\sum_{i=1}^{n} cost_{i}(o) \le cost(o) \text{ for all } o \in O$$

Solution: Cost Partitioning

Introduction

The reason that h_2 and h_3 are not additive is because the cost of o_2 is considered in both.

Solution 1: We can ignore the cost of o_2 in all but one heuristic by setting its cost to 0 (e.g., $cost_3(o_2) = 0$).

This is a Zero-One cost partitioning.

Solution 2: We can equally distribute the cost of o_2 between the abstractions that use it (i.e. $cost_1(o_2) = 0$, $cost_2(o_2) = cost_3(o_2) = 0.5$). This is a uniform cost partitioning.

General solution: satisfy cost partitioning constraint

$$\sum_{i=1}^{n} cost_{i}(o) \le cost(o) \text{ for all } o \in O$$

What about o_1 , o_3 and o_4 ?

Cost Partitioning

Content of this Course

Cost Partitioning

Definition (Cost Partitioning)

Let Π be a planning task with operators O.

A cost partitioning for Π is a tuple $\langle cost_1, \ldots, cost_n \rangle$, where

- $cost_i : O \rightarrow \mathbb{R}_0^+$ for $1 \le i \le n$ and

The cost partitioning induces a tuple $\langle \Pi_1, \ldots, \Pi_n \rangle$ of planning tasks, where each Π_i is identical to Π except that the cost of each operator o is $cost_i(o)$.

Cost Partitioning Preserves Admissibility

In the rest of the chapter, we write h_{Π} to denote heuristic h evaluated on task Π .

Corollary (Sum of Admissible Estimates is Admissible)

Let Π be a planning task and let $\langle \Pi_1, \ldots, \Pi_n \rangle$ be induced by a cost partitioning.

For admissible heuristics h_1, \ldots, h_n , the sum $h(s) = \sum_{i=1}^n h_{i,\Pi_i}(s)$ is an admissible estimate for s in Π .

Example (Cost Partitioning 1) 10 Heuristic value: 1 + 1 = 2

Cost Partitioning: Quality

- $h(s) = h_{1,\Pi_1}(s) + \cdots + h_{n,\Pi_n}(s)$ can be better or worse than any $h_{i,\Pi}(s)$ \rightarrow depending on cost partitioning
- strategies for defining cost-functions
 - uniform (now)
 - zero-one
 - saturated (afterwards)
 - optimal (next chapter)

Uniform Cost Partitioning

Content of this Course

Uniform Cost Partitioning

0000

Idea

Principal idea: Distribute the cost of each operator equally (= uniformly) among all heuristics.

Uniform Cost Partitioning

- But: Some heuristics do only account for the cost of certain operators and the cost of other operators does not affect the heuristic estimate. For example:
 - a disjunctive action landmark accounts for the contained operators,
 - a PDB heuristic accounts for all operators affecting the variables in the pattern.

Idea

- Principal idea: Distribute the cost of each operator equally (= uniformly) among all heuristics.
- But: Some heuristics do only account for the cost of certain operators and the cost of other operators does not affect the heuristic estimate. For example:
 - a disjunctive action landmark accounts for the contained operators,
 - a PDB heuristic accounts for all operators affecting the variables in the pattern.
- ⇒ Distribute the cost of each operator uniformly among all heuristics that account for this operator.

Example: Uniform Cost Partitioning for Landmarks

Definition (Uniform Cost Partitioning Heuristic for Landmarks)

Let \mathcal{L} be a set of disjunctive action landmarks.

The uniform cost partitioning heuristic $h^{UCP}(\mathcal{L})$ is defined as

$$h^{UCP}(\mathcal{L}) = \sum_{I \in \mathcal{I}} \min_{o \in L} c'(o)$$
 with

$$c'(o) = cost(o)/|\{L \in \mathcal{L} \mid o \in L\}|.$$

Saturated Cost Partitioning

Saturated Cost Function Example

Saturated Cost Function Example

Idea

Heuristics do not always "need" all operator costs

- Pick a heuristic and use minimum costs preserving all estimates
- Continue with remaining cost until all heuristics were picked

Saturated cost partitioning (SCP) currently offers the best tradeoff between computation time and heuristic guidance in practice.

Saturated Cost Function

Definition (Saturated Cost Function)

Let Π be a planning task and h be a heuristic. A cost function scf is saturated for h and cost if

- $h_{\Pi_{\text{sef}}}(s) = h_{\Pi}(s)$ for all states s, where Π_{scf} is Π with cost function scf.

Minimal Saturated Cost Function

For abstractions, there exists a unique minimal saturated cost function (MSCF).

Definition (MSCF for Abstractions)

Let Π be a planning task and α be an abstraction heuristic.

The minimal saturated cost function for α is

$$mscf(o) = max(\max_{\alpha(s) \xrightarrow{o} \alpha(t)} h^{\alpha}(s) - h^{\alpha}(t), 0)$$

Saturated Cost Partitioning: Seipp & Helmert (2014)

Iterate:

- Pick a heuristic h; that hasn't been picked before. Terminate if none is left.
- Compute h_i given current cost
- Compute an (ideally minimal) saturated cost function scf; for h;
- Decrease cost(o) by $scf_i(o)$ for all operators o

 $\langle scf_1, \ldots, scf_n \rangle$ is saturated cost partitioning (SCP) for $\langle h_1, \ldots, h_n \rangle$ (in pick order)

Consider the abstraction heuristics h_1 and h_2

Consider the abstraction heuristics h_1 and h_2

Pick a heuristic h;

Consider the abstraction heuristics h_1 and h_2

Compute hi

Consider the abstraction heuristics h_1 and h_2

Compute minimal saturated cost function $mscf_i$ for h_i

Consider the abstraction heuristics h_1 and h_2

Decrease cost(o) by $mscf_i(o)$ for all operators o

Consider the abstraction heuristics h_1 and h_2

Pick a heuristic h;

Consider the abstraction heuristics h_1 and h_2

Consider the abstraction heuristics h_1 and h_2

Compute minimal saturated cost function $mscf_i$ for h_i

Consider the abstraction heuristics h_1 and h_2

Decrease cost(o) by $mscf_i(o)$ for all operators o

Consider the abstraction heuristics h_1 and h_2

Pick a heuristic h_i . Terminate if none is left.

Influence of Selected Order

- quality highly susceptible to selected order
- there are almost always orders where SCP performs much better than uniform or zero-one cost partitioning
- but there are also often orders where SCP performs worse

Consider the abstraction heuristics h_1 and h_2

Consider the abstraction heuristics h_1 and h_2

Pick a heuristic h;

Consider the abstraction heuristics h_1 and h_2

Compute hi

Consider the abstraction heuristics h_1 and h_2

Compute minimal saturated cost function mscf_i for h_i

Consider the abstraction heuristics h_1 and h_2

Decrease cost(o) by $mscf_i(o)$ for all operators o

Consider the abstraction heuristics h_1 and h_2

Pick a heuristic h;

Consider the abstraction heuristics h_1 and h_2

h ₂	O _F S ₃	0
	2	

	01	02	03	04
cost	0	0	0	1
mscf ₂	1	1	1	0

Consider the abstraction heuristics h_1 and h_2

Compute minimal saturated cost function mscf_i for h_i

Consider the abstraction heuristics h_1 and h_2

Operators o Decrease cost(o) by $mscf_i(o)$ for all operators o

Consider the abstraction heuristics h_1 and h_2

Pick a heuristic h_i . Terminate if none is left.

Influence of Selected Order

- quality highly susceptible to selected order
- there are almost always orders where SCP performs much better than uniform or zero-one cost partitioning
- but there are also often orders where SCP performs worse

Maximizing over multiple orders good solution in practice

SCP for Disjunctive Action Landmarks

For disjunctive action landmarks we also know how to compute a minimal saturated cost function:

Definition (MSCF for Disjunctive Action Landmark)

Let Π be a planning task and \mathcal{L} be a disjunctive action landmark. The minimal saturated cost function for ${\cal L}$ is

$$\mathsf{mscf}(o) = \begin{cases} \mathsf{min}_{o \in \mathcal{L}} \, \mathsf{cost}(o) & \text{if } o \in \mathcal{L} \\ 0 & \text{otherwise} \end{cases}$$

SCP for Disjunctive Action Landmarks

For disjunctive action landmarks we also know how to compute a minimal saturated cost function:

Definition (MSCF for Disjunctive Action Landmark)

Let Π be a planning task and \mathcal{L} be a disjunctive action landmark. The minimal saturated cost function for ${\cal L}$ is

$$\mathsf{mscf}(o) = \begin{cases} \mathsf{min}_{o \in \mathcal{L}} \, \mathsf{cost}(o) & \text{if } o \in \mathcal{L} \\ 0 & \text{otherwise} \end{cases}$$

Does this look familiar?

Reminder: LM-Cut

$$\begin{aligned} & o_{\text{blue}} = \langle \{i\}, \{a, b\}, \{\}, 4 \rangle \\ & o_{\text{green}} = \langle \{i\}, \{a, c\}, \{\}, 5 \rangle \\ & o_{\text{black}} = \langle \{i\}, \{b, c\}, \{\}, 3 \rangle \\ & o_{\text{red}} = \langle \{b, c\}, \{d\}, \{\}, 2 \rangle \\ & o_{\text{orange}} = \langle \{a, d\}, \{g\}, \{\}, 0 \rangle \end{aligned}$$

round	P(o _{orange})	$P(o_{red})$	landmark	cost
1	d	b	{o _{red} }	2
2	a	b	{o _{green} , o _{blue} }	4
3	d	С	{ogreen, oblack}	1
			h ^{LM-cut} (I)	7

SCP for Disjunctive Action Landmarks

Same algorithm can be used for disjunctive action landmarks, where we also have a minimal saturated cost function.

Definition (MSCF for Disjunctive Action Landmark)

Let Π be a planning task and \mathcal{L} be a disjunctive action landmark. The minimal saturated cost function for ${\cal L}$ is

$$\mathsf{mscf}(o) = \begin{cases} \mathsf{min}_{o' \in \mathcal{L}} \mathsf{cost}(o') & \text{if } o \in \mathcal{L} \\ 0 & \text{otherwise} \end{cases}$$

Does this look familiar?

LM-Cut computes SCP over disjunctive action landmarks

Summary

Summary

- Cost partitioning allows to admissibly add up estimates of several heuristics.
- This can be better or worse than the best individual heuristic on the original problem, depending on the cost partitioning.
- Uniform cost partitioning distributes the cost of each operator uniformly among all heuristics that account for it.
- Saturated cost partitioning offers a good tradeoff between computation time and heuristic guidance.
- LM-Cut computes a SCP over disjunctive action landmarks.