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The remaining landmark topics focus on
disjunctive action landmarks.
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Exploiting Disjunctive Action Landmarks

The cost cost(L) of a disjunctive action landmark L is an admissible
heuristic, but it is usually not very informative.

Landmark heuristics typically aim to combine multiple disjunctive
action landmarks.

How can we exploit a given set L of disjunctive action landmarks?

Sum of costs
∑
L∈L cost(L)?

{ not admissible!

Maximize costs maxL∈L cost(L)?
{ usually very weak heuristic

better: Hitting sets
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Hitting Sets

Definition (Hitting Set)

Let X be a set, F = {F1, . . . , Fn} ⊆ 2X be a family of subsets of X and
c : X → Ò+

0 be a cost function for X.

A hitting set is a subset H ⊆ X that “hits” all subsets in F , i.e., H ∩ F , ∅
for all F ∈ F . The cost of H is

∑
x∈H c(x).

A minimum hitting set (MHS) is a hitting set with minimal cost.

MHS is a “classical” NP-complete problem (Karp, 1972)
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Example: Hitting Sets

Example
X = {o1, o2, o3, o4}

F = {{o4}, {o1, o2}, {o1, o3}, {o2, o3}}

c(o1) = 3, c(o2) = 4, c(o3) = 5, c(o4) = 0

Specify a minimum hitting set.

Solution: {o1, o2, o4} with cost 3 + 4 + 0 = 7
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Hitting Sets for Disjunctive Action Landmarks

Idea: disjunctive action landmarks are interpreted as
Idea: instance of minimum hitting set

Definition (Hitting Set Heuristic)
Let L be a set of disjunctive action landmarks. The hitting set heuristic
hMHS(L) is defined as the cost of a minimum hitting set for L with
c(o) = cost(o).

Proposition (Hitting Set Heuristic is Admissible)
Let L be a set of disjunctive action landmarks for state s.
Then hMHS(L) is an admissible estimate for s.
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Hitting Set Heuristic: Discussion

The hitting set heuristic is the best possible heuristic
that only uses the given information. . .

. . . but is NP-hard to compute.

{ Use approximations that can be efficiently computed.
⇒ LP-relaxation, cost partitioning (both discussed later)
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Summary

Hitting sets yield the most accurate heuristic for a given set of
disjunctive action landmarks.

The computation of a minimal hitting set is NP-hard.
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