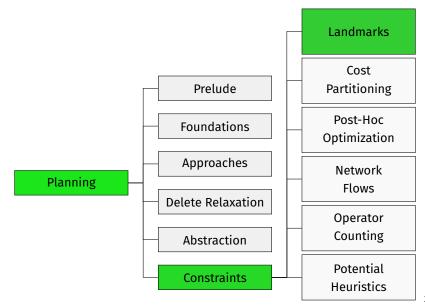
Automated Planning

F2. Landmarks: RTG Landmarks

Jendrik Seipp

Linköping University

Content of this Course



Landmarks

Landmarks

Basic Idea: Something that must happen in every solution

For example

- some operator must be applied (action landmark)
- some atomic proposition must hold (fact landmark)
- some formula must be true (formula landmark)
- → Derive heuristic estimate from this kind of information.

Landmarks

Basic Idea: Something that must happen in every solution

For example

- some operator must be applied (action landmark)
- some atomic proposition must hold (fact landmark)
- some formula must be true (formula landmark)
- → Derive heuristic estimate from this kind of information.

We mostly consider fact and disjunctive action landmarks.

Terminology

Consider sequence of transitions $s^0 \xrightarrow{\ell_1} s^1, \dots, s^{n-1} \xrightarrow{\ell_n} s^n$ such that $s^0 = s$ and $s^n = s'$.

- \bullet s^0, \ldots, s^n is called (state) path from s to s'
- \bullet ℓ_1, \ldots, ℓ_n is called (label) path from s to s'

Disjunctive Action Landmarks

Definition (Disjunctive Action Landmark)

Let s be a state of a propositional or FDR planning task $\Pi = \langle V, I, O, \gamma \rangle$.

A disjunctive action landmark for s is a set of operators $L \subseteq O$ such that every label path from s to a goal state contains an operator from L. The cost of landmark L is $cost(L) = min_{Q \in L} cost(Q)$.

If we talk about landmarks for the initial state, we omit "for I".

Fact and Formula Landmarks

Definition (Formula and Fact Landmark)

Let s be a state of a propositional or FDR planning task $\Pi = \langle V, I, O, \gamma \rangle$.

A formula landmark for s is a formula λ over V such that every state path from s to a goal state contains a state s' with $s' \models \lambda$.

If λ is an atomic proposition then λ is a fact landmark.

If we talk about landmarks for the initial state, we omit "for I".

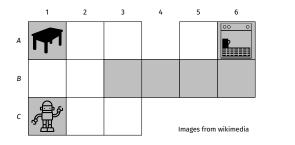
Landmarks: Example

Example

Consider a FDR planning task $\langle V, I, O, \gamma \rangle$ with

- V = {robot-at, dishes-at} with
 - \blacksquare dom(robot-at) = {A1, ..., C3, B4, A5, ..., B6}
 - dom(dishes-at) = {Table, Robot, Dishwasher}
- $I = \{ robot at \mapsto C1, dishes at \mapsto Table \}$
- operators
 - move-x-y to move from cell x to adjacent cell y
 - pickup dishes, and
 - load dishes into the dishwasher.
- $\mathbf{v} = (robot-at = B6) \land (dishes-at = Dishwasher)$

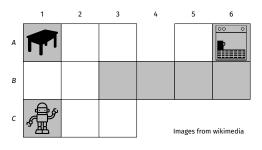
Fact and Formula Landmarks: Example

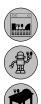


Each fact in gray is a fact landmark:

- robot-at = x for $x \in \{A1, A6, B3, B4, B5, B6, C1\}$
- dishes-at = x for $x \in \{Dishwasher, Robot, Table\}$

Fact and Formula Landmarks: Example



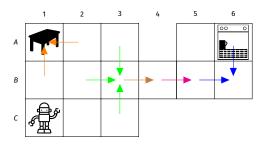


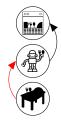
- robot-at = x for $x \in \{A1, A6, B3, B4, B5, B6, C1\}$
- dishes-at = x for $x \in \{Dishwasher, Robot, Table\}$

Formula landmarks:

- \blacksquare dishes-at = Robot \land robot-at = B4
- \blacksquare robot-at = B1 \lor robot-at = A2

Disjunctive Action Landmarks: Example





Actions of same color form disjunctive action landmark:

{pickup}

■ {move-A6-B6, move-B5-B6}

■ {load}

{move-A3-B3, move-B2-B3, move-C3-B3}

■ {move-B3-B4}

■ {move-B1-A1, move-A2-A1}

■ {move-B4-B5}

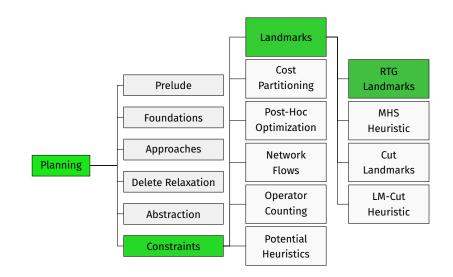
..

Remarks

- Not every landmark is informative. Some examples:
 - The set of all operators is a disjunctive action landmark unless the initial state is already a goal state.
 - Every variable that is initially true is a fact landmark.
 - The goal formula is a formula landmark.
- Deciding whether a given atomic proposition is a fact landmark is as hard as the plan existence problem.
- Deciding whether a given operator set is a disjunctive action landmark is as hard as the plan existence problem.
- Every fact landmark v that is initially false induces a disjunctive action landmark consisting of all operators that possibly make v true.

Landmarks from RTGs

Content of this Course



Computing Landmarks

How can we come up with landmarks?

Most landmarks are derived from the relaxed task graph:

- RHW landmarks: Richter, Helmert & Westphal. Landmarks Revisited. (AAAI 2008)
- LM-Cut: Helmert & Domshlak. Landmarks, Critical Paths and Abstractions: What's the Difference Anyway? (ICAPS 2009)
- h^m landmarks: Keyder, Richter & Helmert: Sound and Complete Landmarks for And/Or Graphs (ECAI 2010)

We will now discuss h^m landmarks restricted to to STRIPS planning tasks, for m = 1.

Incidental Landmarks: Example

Example (Incidental Landmarks)

Consider a STRIPS planning task $\langle V, I, \{o_1, o_2\}, G \rangle$ with

$$V = \{a, b, c, d, e, f\},$$

$$I = \{a \mapsto \mathbf{T}, b \mapsto \mathbf{T}, c \mapsto \mathbf{F}, d \mapsto \mathbf{F}, e \mapsto \mathbf{T}, f \mapsto \mathbf{F}\},$$

$$o_1 = \langle \{a\}, \{c, d, e\}, \{b\}\rangle,$$

$$o_2 = \langle \{d, e\}, \{f\}, \{a\}\rangle, \text{ and }$$

$$G = \{e, f\}.$$

Single solution: $\langle o_1, o_2 \rangle$

- All variables are fact landmarks.
- Variable *b* is initially true but irrelevant for the plan.
- Variable c gets true as "side effect" of o_1 but it is not necessary for the goal or to make an operator applicable.

Causal Landmarks (1)

Definition (Causal Formula Landmark)

Let $\Pi = \langle V, I, O, \gamma \rangle$ be a propositional or FDR planning task.

A formula λ over V is a causal formula landmark for I if $\gamma \models \lambda$ or if for all plans $\pi = \langle o_1, \ldots, o_n \rangle$ there is an o_i with $pre(o_i) \models \lambda$.

Causal Landmarks (2)

Special case: Fact Landmark for STRIPS task

Definition (Causal Fact Landmark)

Let $\Pi = \langle V, I, O, G \rangle$ be a STRIPS planning task (in set representation).

A variable $v \in V$ is a causal fact landmark for I

- if $v \in G$ or
- if for all plans $\pi = \langle o_1, \ldots, o_n \rangle$ there is an o_i with $v \in pre(o_i)$.

Causal Landmarks: Example

Example (Causal Landmarks)

Consider a STRIPS planning task $\langle V, I, \{o_1, o_2\}, G \rangle$ with

$$V = \{a, b, c, d, e, f\},$$

$$I = \{a \mapsto \mathbf{T}, b \mapsto \mathbf{T}, c \mapsto \mathbf{F}, d \mapsto \mathbf{F}, e \mapsto \mathbf{T}, f \mapsto \mathbf{F}\},$$

$$o_1 = \langle \{a\}, \{c, d, e\}, \{b\}\rangle,$$

$$o_2 = \langle \{d, e\}, \{f\}, \{a\}\rangle, \text{ and }$$

$$G = \{e, f\}.$$

Single solution: $\langle o_1, o_2 \rangle$

- All variables are fact landmarks for the initial state.
- \blacksquare Only a, d, e and f are causal landmarks.

What We Are Doing Next

- Causal landmarks are the desirable landmarks.
- We can use the simplified version of RTGs for STRIPS to compute causal landmarks for STRIPS planning tasks.
- We will define landmarks of AND/OR graphs, ...
- and show how they can be computed.
- Afterwards we establish that these are landmarks of the planning task.

Simplified Relaxed Task Graph

Definition

For a STRIPS planning task $\Pi = \langle V, I, O, G \rangle$ (in set representation), the simplified relaxed task graph $sRTG(\Pi^+)$ is the AND/OR graph

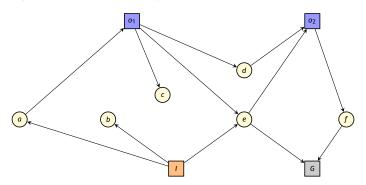
 $\langle N_{\rm and} \cup N_{\rm or}, A, type \rangle$ with

- $N_{\text{and}} = \{n_o \mid o \in O\} \cup \{v_I, v_G\}$ with $type(n) = \land \text{ for all } n \in N_{\text{and}}$,
- $N_{or} = \{n_v \mid v \in V\}$ with type(n) = V for all $n \in N_{or}$, and
- A = $\{n_o \rightarrow n_a \mid o \in O, a \in add(o)\} \cup$ $\{n_p \rightarrow n_o \mid o \in O, p \in pre(o)\} \cup$ $\{n_l \rightarrow n_v \mid v \in l\} \cup$ $\{n_v \rightarrow n_G \mid v \in G\}$

Like RTG but without extra nodes to support arbitrary conditions.

Simplified RTG: Example

The simplified RTG for our example task is:



Characterizing Equation System

Theorem

Let $G = \langle N, A, type \rangle$ be an AND/OR graph. Consider the following system of equations:

$$LM(n) = \{n\} \cup \bigcap_{n' \to n \in A} LM(n') \quad type(n) = \lor$$

$$LM(n) = \{n\} \cup \bigcup_{n' \to n \in A} LM(n') \quad type(n) = \land$$

The equation system has a unique maximal solution (maximal with regard to set inclusion), and for this solution it holds that

 $n' \in LM(n)$ iff n' is a landmark for reaching n in G.

Computation of Maximal Solution

Theorem

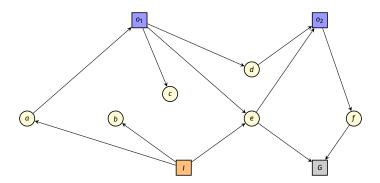
Let $G = \langle N, A, type \rangle$ be an AND/OR graph. Consider the following system of equations:

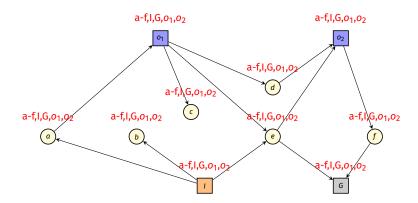
$$LM(n) = \{n\} \cup \bigcap_{n' \to n \in A} LM(n') \quad type(n) = \lor$$

$$LM(n) = \{n\} \cup \bigcup_{n' \to n \in A} LM(n') \quad type(n) = \land$$

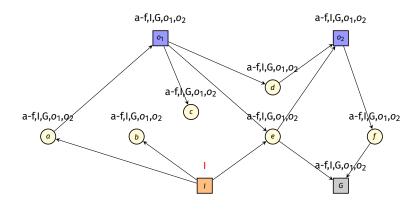
The equation system has a unique maximal solution (maximal with regard to set inclusion).

Computation: Initialize landmark sets as LM(n) = N and apply equations as update rules until fixpoint.

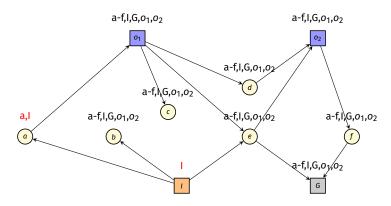




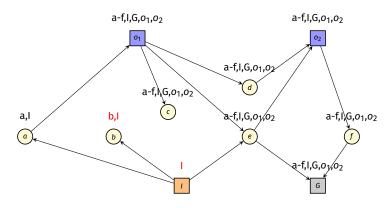
Initialize with all nodes



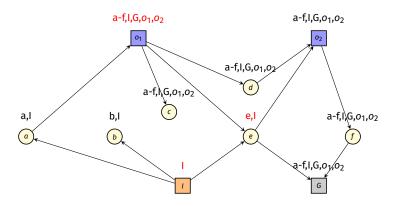
$$LM(I) = \{I\}$$



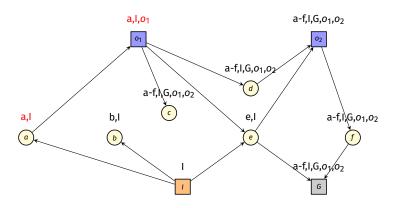
$$LM(a) = \{a\} \cup LM(I)$$



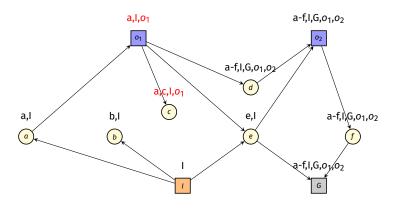
$$LM(b) = \{b\} \cup LM(I)$$



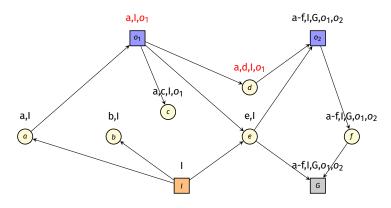
$$LM(e) = \{e\} \cup (LM(I) \cap LM(o_1))$$



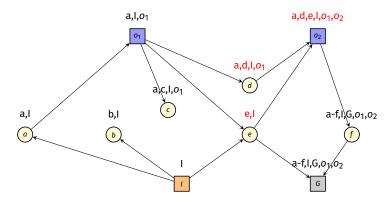
$$LM(o_1) = \{o_1\} \cup LM(a)$$



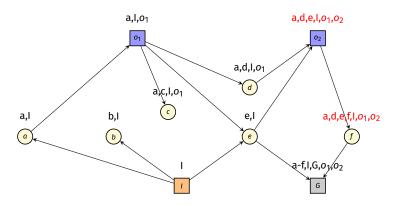
$$LM(c) = \{c\} \cup LM(o_1)$$



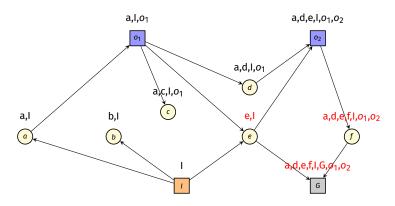
$$LM(d) = \{d\} \cup LM(o_1)$$



$$LM(o_2) = \{o_2\} \cup LM(d) \cup LM(e)$$



$$LM(f) = \{f\} \cup LM(o_2)$$



$$LM(G) = \{G\} \cup LM(e) \cup LM(f)$$

Relation to Planning Task Landmarks

Theorem

Let $\Pi = \langle V, I, O, \gamma \rangle$ be a STRIPS planning task and let \mathcal{L} be the set of landmarks for reaching n_G in sRTG(Π^+).

The set $\{v \in V \mid n_v \in \mathcal{L}\}$ is exactly the set of causal fact landmarks in Π^+ .

For operators $o \in O$, if $n_o \in \mathcal{L}$ then $\{o\}$ is a disjunctive action landmark in Π^+ .

There are no other disjunctive action landmarks of size 1.

Computed RTG Landmarks: Example

Example (Computed RTG Landmarks)

Consider a STRIPS planning task $\langle V, I, \{o_1, o_2\}, G \rangle$ with

$$V = \{a, b, c, d, e, f\},$$

$$I = \{a \mapsto \mathbf{T}, b \mapsto \mathbf{T}, c \mapsto \mathbf{F}, d \mapsto \mathbf{F}, e \mapsto \mathbf{T}, f \mapsto \mathbf{F}\},$$

$$o_1 = \langle \{a\}, \{c, d, e\}, \{b\} \rangle,$$

$$o_2 = \langle \{d, e\}, \{f\}, \{a\} \rangle, \text{ and }$$

$$G = \{e, f\}.$$

- \blacksquare LM(n_G) = {a, d, e, f, I, G, o₁, o₂}
- \blacksquare a, d, e, and f are causal fact landmarks of Π^+ .
- \bullet { o_1 } and { o_2 } are disjunctive action landmarks of Π^+ .

(Some) Landmarks of Π^+ Are Landmarks of Π

Theorem

Let Π be a STRIPS planning task.

All fact landmarks of Π^+ are fact landmarks of Π and all disjunctive action landmarks of Π^+ are disjunctive action landmarks of Π .

Not All Landmarks of Π^+ are Landmarks of Π

Example

Consider STRIPS task $\langle \{a, b, c\}, \varnothing, \{o_1, o_2\}, \{c\} \rangle$ with $o_1 = \langle \{\}, \{a\}, \{\}, 1\rangle$ and $o_2 = \langle \{a\}, \{c\}, \{a\}, 1\rangle$.

 $a \wedge c$ is a formula landmark of Π^+ but not of Π .

Summary

Summary

- Fact landmark: atomic proposition that is true in each state path to a goal
- Disjunctive action landmark: set L of operators such that every plan uses some operator from L
- We can efficiently compute all causal fact landmarks of a delete-free STRIPS task from the (simplified) RTG.
- Fact landmarks of the delete relaxed task are also landmarks of the original task.