Automated Planning

E9. Merge-and-Shrink: Merge Strategies and Label Reduction

Jendrik Seipp

Linköping University

based on slides from the AI group at the University of Basel

Content of this Course

Properties of Merge-and-Shrink Heuristics

Merge-and-shrink heuristics for SAS⁺ tasks are admissible, consistent, safe and goal-aware.

Reminder: Generic Algorithm Template

```
F := F(\Pi)while |F| > 1:
select type ∈ {merge, shrink}
if type = merge:
             select T_1, T_2 \in F<br>F − (F \setminus T, T_2)F := (F \setminus \{ \mathcal{T}_1, \mathcal{T}_2 \}) \cup \{ \mathcal{T}_1 \otimes \mathcal{T}_2 \}<br>- shrink:
if type = shrink:
            select T \in Fchoose an abstraction mapping \beta on \mathcal T\mathsf{F} := (\mathsf{F} \setminus \{\mathcal{T}\}) \cup \{\mathcal{T}^\beta\}return the remaining factor \mathcal{T}^{\alpha} in F
```
Remaining Questions:

- Which abstractions to select for merging? \rightarrow merge strategy
- How to shrink an abstraction? \rightarrow shrink strategy

Merge-and-Shrink

[Merge Strategies](#page-5-0)

Linear vs. Non-linear Merge Strategies

Linear Merge Strategy

In each iteration after the first, choose the abstraction computed in the previous iteration as \mathcal{T}_1 .

Rationale: only maintains one "complex" abstraction at a time

- Fully defined by an ordering of atomic projections/variables.
- Each merge-and-shrink heuristic computed with a non-linear merge strategy can also be computed with a linear merge strategy.
- However, linear merging can require a super-polynomial blow-up of the final representation size.
- Recent research turned from linear to non-linear strategies, also because better label reduction techniques (later in this chapter) enabled a more efficient computation.

Classes of Merge Strategies

We can distinguish two major types of merge strategies:

- **precomputed merge strategies fix a unique merge order up-front.** One-time effort but cannot react to other transformations applied to the factors.
- stateless merge strategies only consider the current FTS and decide what factors to merge.

Typically computing a score for each pair of factors and naturally non-linear; easy to implement but cannot capture dependencies between more than two factors.

Hybrid strategies combine ideas from precomputed and stateless strategies.

Example Linear Precomputed Merge Strategy

Idea: Use similar causal graph criteria as for growing patterns.

Example: Strategy of h _{HHH}

*h*_{HHH}: Ordering of atomic projections

- Start with a goal variable.
- Add variables that appear in preconditions of operators affecting previous variables.
- If that is not possible, add a goal variable.

Rationale: increases *h* quickly

Example Non-linear Stateless Merge Strategy

Idea: Preferrably merge transition systems that must synchronize on labels that occur close to a goal state.

Example: DFP (named after Dräger, Finkbeiner and Podelski)

DFP strategy

- $labelrank(\ell, \mathcal{T}) = \min\{h^*(t) \mid \langle s, \ell, t \rangle \text{ transition in } \mathcal{T}\}\$
- $score(\mathcal{T}, \mathcal{T}') = min\{max\{labelrank(\ell, \mathcal{T}), labelrank(\ell, \mathcal{T}')\} \mid$
 ℓ label in \mathcal{T} and \mathcal{T}' ℓ label in $\mathcal T$ and $\mathcal T'\}$

 \blacksquare Select two transition systems with minimum score.

Rationale: abstraction fine-grained in the goal region, which is likely to be searched by *A* ∗ .

Example Hybrid Merge Strategy

Idea: first combine the variables within each strongly connected component of the causal graph.

Example: SCC framework

SCC strategy

■ Compute strongly connected components of causal graph

- Secondary strategies for order in which
	- \blacksquare the SCCs are considered (e.g., topologic order),
	- the factors within an SCC are merged, and
	- the resulting product systems are merged.

Rationale: reflect strong interactions of variables well

State of the art: SCC+DFP

[Merge Strategies](#page-5-0) Show Strategies [Shrink Strategies](#page-11-0) Share [Summary](#page-23-0) Summary Summary Summary Summary Summary Summary

[Shrink Strategies](#page-11-0)

f -preserving Shrink Strategy

f -preserving Shrink Strategy

Repeatedly combine two abstract states with identical abstract goal distances (*h* values) and identical abstract initial state distances (*g* values).

Rationale: preserves heuristic value and overall graph shape

Tie-breaking Criterion

Prefer combining states where *g* + *h* is high.

In case of ties, combine states where *h* is high.

Rationale: states with high *g* + *h* values are less likely to be explored by A ∗ , so inaccuracies there matter less

[Label Reduction](#page-13-0)

Merge-and-Shrink

Label Reduction: Motivation (1)

Whenever there is a transition with label o^\prime there is also a transition with label *o*. If *o* ′ is not cheaper than *o*, we can always use the transition with *o*.

Idea: Replace *o* and *o* ′ with label *o* ′′ with cost of *o*

Label Reduction: Motivation (2)

In \mathcal{T}' labels p and p' label the same (parallel) transitions. If p and p' have the same cost, in such a situation there is no need for distinguishing them.

Idea: Replace *p* and *p* ′ with label *p* ′′ with same cost.

Label Reduction: Motivation (3)

Label reductions reduce the time and memory requirement for merge and shrink steps.

Label Reduction: Definition

Definition (Label Reduction)

Let *F* be a factored transition system with label set *L* and label cost function *c*. A label reduction $\langle \lambda, c' \rangle$ for *F* is given by a function $\lambda : I \to I'$ where I' is an arbitrary set of labels, and a label co $\lambda: L \rightarrow L'$, where L' is an arbitrary set of labels, and a label cost function *c'* on *L'* such that for all $\ell \in L$, $c'(\lambda(\ell)) \leq c(\ell)$.

For $\mathcal{T} = \langle S, L, c, T, s_0, S_{\star} \rangle \in F$ the label-reduced transition system is $\mathcal{T}^{\langle \lambda, c' \rangle} = \langle S, L', c', \{\langle s, \lambda(\ell), t \rangle \mid \langle s, \ell, t \rangle \in \mathcal{T}\}, s_0, S_\star \rangle.$

The label-reduced FTS is $F^{\langle \lambda,c'\rangle}=\{\mathcal{T}^{\langle \lambda,c'\rangle}\mid \mathcal{T}\in\mathsf{F}\}.$

 $L' \cap L \neq \emptyset$ and $L' = L$ are allowed.

More Terminology

Let *F* be a factored transition systems with labels *L*. Let $\ell, \ell' \in L$ be labels and let $\mathcal{T} \in \mathcal{F}$ labels and let $\mathcal{T} \in F$.

- Label ℓ is alive in F if all $\mathcal{T}' \in F$ have some transition labelled with ℓ . Otherwise, ℓ is dead.
- Label ℓ locally subsumes label ℓ' in $\mathcal T$ if for all transitions $\langle s, \ell', t \rangle$
of $\mathcal T$ there is also a transition $\langle s, \ell' \rangle$ in $\mathcal T$ of $\mathcal T$ there is also a transition $\langle s, \ell, t \rangle$ in $\mathcal T$.
- ℓ globally subsumes ℓ' if it locally subsumes ℓ' in all $\mathcal{T}' \in F$.
- ℓ and ℓ' are locally equivalent in $\mathcal T$ if they label the same transitions in $\mathcal T$, i.e., ℓ locally subsumes ℓ' in $\mathcal T$ and vice versa.
- ℓ and ℓ' are $\mathcal T$ -combinable if they are locally equivalent in all transition systems $\mathcal{T}' \in F \setminus \{ \mathcal{T} \}.$

Exact Label Reduction

Theorem (Criteria for Exact Label Reduction)

Let F be a factored transition systems with cost function c and label set L that contains no dead labels.

Let $\langle \lambda, c' \rangle$ *be a label-reduction for F such that* λ *combines labels* ℓ_1 *and*
 ℓ_2 and legyes other labels unchanged. The transformation from E to ℓ² *and leaves other labels unchanged. The transformation from F to* $F^{(\lambda,c')}$ is exact iff $c(\ell_1) = c(\ell_2)$, $c'(\lambda(\ell)) = c(\ell)$ for all $\ell \in L$, and

- ℓ¹ *globally subsumes* ℓ2*, or*
- ℓ² *globally subsumes* ℓ¹ *, or*
- ℓ_1 and ℓ_2 are \mathcal{T} -combinable for some $\mathcal{T} \in F$.

Back to Example (1)

Label *o* globally subsumes label *o* ′ .

Back to Example (2)

Labels p and p' are $\mathcal T$ -combinable.

[Summary](#page-23-0)

Summary

- \blacksquare There is a wide range of merge and shrink strategies. We only covered some important ones.
- Label reduction is crucial for the performance of the merge-and-shrink algorithm.