Automated Planning

E9. Merge-and-Shrink: Merge Strategies and Label Reduction

Jendrik Seipp

Linköping University

based on slides from the AI group at the University of Basel

Content of this Course

Properties of Merge-and-Shrink Heuristics

Merge-and-shrink heuristics for SAS⁺ tasks are admissible, consistent, safe and goal-aware.

Reminder: Generic Algorithm Template

```
F := F(\Pi)
while |F| > 1:
           select type \in {merge, shrink}
           if type = merge:
                       select \mathcal{T}_1, \mathcal{T}_2 \in F
                       F := (F \setminus \{\mathcal{T}_1, \mathcal{T}_2\}) \cup \{\mathcal{T}_1 \otimes \mathcal{T}_2\}
           if type = shrink:
                       select \mathcal{T} \in F
                       choose an abstraction mapping \beta on \mathcal{T}
                       F := (F \setminus \{\mathcal{T}\}) \cup \{\mathcal{T}^{\beta}\}
return the remaining factor \mathcal{T}^{\alpha} in F
```

Remaining Questions:

- Which abstractions to select for merging? ~> merge strategy
- How to shrink an abstraction? ~> shrink strategy

Merge Strategies

Merge-and-Shrink

Merge Strategies

Linear vs. Non-linear Merge Strategies

Linear Merge Strategy

In each iteration after the first, choose the abstraction computed in the previous iteration as \mathcal{T}_1 .

Rationale: only maintains one "complex" abstraction at a time

- Fully defined by an ordering of atomic projections/variables.
- Each merge-and-shrink heuristic computed with a non-linear merge strategy can also be computed with a linear merge strategy.
- However, linear merging can require a super-polynomial blow-up of the final representation size.
- Recent research turned from linear to non-linear strategies, also because better label reduction techniques (later in this chapter) enabled a more efficient computation.

Classes of Merge Strategies

We can distinguish two major types of merge strategies:

- precomputed merge strategies fix a unique merge order up-front. One-time effort but cannot react to other transformations applied to the factors.
- stateless merge strategies only consider the current FTS and decide what factors to merge.

Typically computing a score for each pair of factors and naturally non-linear; easy to implement but cannot capture dependencies between more than two factors.

Hybrid strategies combine ideas from precomputed and stateless strategies.

Example Linear Precomputed Merge Strategy

Idea: Use similar causal graph criteria as for growing patterns.

Example: Strategy of $h_{\rm HHH}$

$h_{\rm HHH}$: Ordering of atomic projections

- Start with a goal variable.
- Add variables that appear in preconditions of operators affecting previous variables.
- If that is not possible, add a goal variable.

Rationale: increases h quickly

Example Non-linear Stateless Merge Strategy

Idea: Preferrably merge transition systems that must synchronize on labels that occur close to a goal state.

Example: DFP (named after Dräger, Finkbeiner and Podelski)

DFP strategy

- $labelrank(\ell, T) = min\{h^*(t) \mid \langle s, \ell, t \rangle \text{ transition in } T\}$
- score($\mathcal{T}, \mathcal{T}'$) = min{max{labelrank(ℓ, \mathcal{T}), labelrank(ℓ, \mathcal{T}')} | ℓ label in \mathcal{T} and \mathcal{T}' }

Select two transition systems with minimum score.

Rationale: abstraction fine-grained in the goal region, which is likely to be searched by A*.

Example Hybrid Merge Strategy

Idea: first combine the variables within each strongly connected component of the causal graph.

Example: SCC framework

SCC strategy

Compute strongly connected components of causal graph

- Secondary strategies for order in which
 - the SCCs are considered (e.g., topologic order),
 - the factors within an SCC are merged, and
 - the resulting product systems are merged.

Rationale: reflect strong interactions of variables well

State of the art: SCC+DFP

Shrink Strategies

f-preserving Shrink Strategy

f-preserving Shrink Strategy

Repeatedly combine two abstract states with identical abstract goal distances (*h* values) and identical abstract initial state distances (*g* values).

Rationale: preserves heuristic value and overall graph shape

Tie-breaking Criterion

Prefer combining states where *g* + *h* is high. In case of ties, combine states where *h* is high.

Rationale: states with high g + h values are less likely to be explored by A^{*}, so inaccuracies there matter less

Merge Strategies

Merge-and-Shrink

Shrink Strategies

Label Reduction

Label Reduction: Motivation (1)

Whenever there is a transition with label o' there is also a transition with label o. If o' is not cheaper than o, we can always use the transition with o.

Idea: Replace o and o' with label o'' with cost of o

Label Reduction: Motivation (2)

In \mathcal{T}' labels p and p' label the same (parallel) transitions. If p and p' have the same cost, in such a situation there is no need for distinguishing them.

Idea: Replace p and p' with label p'' with same cost.

Shrink Strategies

Label Reduction

Label Reduction: Motivation (3)

Label reductions reduce the time and memory requirement for merge and shrink steps.

Label Reduction: Definition

Definition (Label Reduction)

Let *F* be a factored transition system with label set *L* and label cost function *c*. A label reduction $\langle \lambda, c' \rangle$ for *F* is given by a function $\lambda : L \to L'$, where *L'* is an arbitrary set of labels, and a label cost function *c'* on *L'* such that for all $\ell \in L$, $c'(\lambda(\ell)) \leq c(\ell)$.

For $\mathcal{T} = \langle S, L, c, T, s_0, S_{\star} \rangle \in F$ the label-reduced transition system is $\mathcal{T}^{\langle \lambda, c' \rangle} = \langle S, L', c', \{ \langle s, \lambda(\ell), t \rangle \mid \langle s, \ell, t \rangle \in T \}, s_0, S_{\star} \rangle.$

The label-reduced FTS is $F^{\langle \lambda, c' \rangle} = \{ \mathcal{T}^{\langle \lambda, c' \rangle} \mid \mathcal{T} \in F \}.$

 $L' \cap L \neq \emptyset$ and L' = L are allowed.

More Terminology

Let F be a factored transition systems with labels L. Let $\ell, \ell' \in L$ be labels and let $\mathcal{T} \in F$.

- Label ℓ is alive in *F* if all $\mathcal{T}' \in F$ have some transition labelled with ℓ . Otherwise, ℓ is dead.
- Label ℓ locally subsumes label ℓ' in \mathcal{T} if for all transitions $\langle s, \ell', t \rangle$ of \mathcal{T} there is also a transition $\langle s, \ell, t \rangle$ in \mathcal{T} .
- **\ell** globally subsumes ℓ' if it locally subsumes ℓ' in all $\mathcal{T}' \in F$.
- *l* and *l'* are locally equivalent in *T* if they label the same transitions in *T*, i.e., *l* locally subsumes *l'* in *T* and vice versa.
- ℓ and ℓ' are \mathcal{T} -combinable if they are locally equivalent in all transition systems $\mathcal{T}' \in F \setminus \{\mathcal{T}\}$.

Exact Label Reduction

Theorem (Criteria for Exact Label Reduction)

Let F be a factored transition systems with cost function c and label set L that contains no dead labels.

Let $\langle \lambda, c' \rangle$ be a label-reduction for F such that λ combines labels ℓ_1 and ℓ_2 and leaves other labels unchanged. The transformation from F to $F^{\langle \lambda, c' \rangle}$ is exact iff $c(\ell_1) = c(\ell_2), c'(\lambda(\ell)) = c(\ell)$ for all $\ell \in L$, and

- \bullet ℓ_1 globally subsumes ℓ_2 , or
- \boldsymbol{I}_2 globally subsumes $\boldsymbol{\ell}_1$, or
- ℓ_1 and ℓ_2 are \mathcal{T} -combinable for some $\mathcal{T} \in F$.

Back to Example (1)

Label o globally subsumes label o'.

Back to Example (2)

Labels p and p' are \mathcal{T} -combinable.

Shrink Strategies

Label Reduction

Summary •0

Summary

Summary

- There is a wide range of merge and shrink strategies. We only covered some important ones.
- Label reduction is crucial for the performance of the merge-and-shrink algorithm.