Automated Planning

E8. Merge-and-Shrink: Algorithm

Jendrik Seipp

Linköping University

Generic Algorithm

Merge-and-Shrink

Using the results of the previous chapter, we can develop a generic abstraction computation procedure that takes all state variables into account.

- Initialization: Compute the FTS consisting of all atomic projections.
- Loop: Repeatedly apply a transformation to the FTS.
 - Merging: Combine two factors by replacing them with their synchronized product.
 - Shrinking: If the factors are too large, make one of them smaller by abstracting it further (applying an arbitrary abstraction to it).
- Termination: Stop when only one factor is left.

The final factor is then used for an abstraction heuristic.

Generic Merge & Shrink Algorithm for planning task Π

```
F := F(\Pi)
while |F| > 1:
           select type \in {merge, shrink}
           if type = merge:
                       select \mathcal{T}_1, \mathcal{T}_2 \in F
                       F := (F \setminus \{\mathcal{T}_1, \mathcal{T}_2\}) \cup \{\mathcal{T}_1 \otimes \mathcal{T}_2\}
           if type = shrink:
                       select \mathcal{T} \in F
                       choose an abstraction mapping \beta on \mathcal{T}
                       F := (F \setminus \{\mathcal{T}\}) \cup \{\mathcal{T}^{\beta}\}
return the remaining factor \mathcal{T}^{\alpha} in F
```

Later, we will include another transformation type: label reduction.

Merge-and-Shrink Strategies

Choices to resolve to instantiate the template:

- When to merge, when to shrink?
 - → general strategy
- Which abstractions to merge?
 - → merge strategy
- Which abstraction to shrink, and how to shrink it (which β)?
 - → shrink strategy

General Strategy

A typical general strategy:

- define a limit N on the number of states allowed in each factor
- in each iteration, select two factors we would like to merge
- merge them if this does not exhaust the state number limit
- otherwise shrink one or both factors just enough to make a subsequent merge possible

Example

Back to the Running Example

Logistics problem with one package, two trucks, two locations:

- state variable package: {L, R, A, B}
- state variable truck A: {L, R}
- state variable truck B: {L, R}

 $\mathcal{T}^{\pi_{\{\text{package}\}}}$

Initialization Step: Atomic Projection for Truck A

 $\mathcal{T}^{\pi_{\{\text{truck A}\}}}$

Initialization Step: Atomic Projection for Truck B

 $\mathcal{T}^{\pi_{\{\text{truck B}\}}}$

current FTS: $\{\mathcal{T}^{\pi_{\{\text{package}\}}}, \mathcal{T}^{\pi_{\{\text{truck A}\}}}, \mathcal{T}^{\pi_{\{\text{truck B}\}}}\}$

First Merge Step

$$\mathcal{T}_1 := \mathcal{T}^{\pi_{\{\text{package}\}}} \otimes \mathcal{T}^{\pi_{\{\text{truck A}\}}}$$
:

current FTS: $\{\mathcal{T}_1, \mathcal{T}^{\pi_{\{\text{truck B}\}}}\}$

- With sufficient memory, we could now compute $\mathcal{T}_1 \otimes \mathcal{T}^{\pi_{\{\text{truck B}\}}}$ and recover the full transition system of the task.
- However, to illustrate the general idea, we assume that memory is too restricted: we may never create a factor with more than 8 states.
- To make the product fit the bound, we shrink \mathcal{T}_1 to 4 states. We can decide freely how exactly to abstract \mathcal{T}_1 .
- In this example, we manually choose an abstraction that leads to a good result in the end. Making good shrinking decisions algorithmically is the job of the shrink strategy.

 \mathcal{T}_2 := some abstraction of \mathcal{T}_1

current FTS: $\{\mathcal{T}_2, \mathcal{T}^{\pi_{\{\text{truck B}\}}}\}$

$$\mathcal{T}_3 := \mathcal{T}_2 \otimes \mathcal{T}^{\pi_{\{\text{truck B}\}}}$$
:

current FTS: $\{\mathcal{T}_3\}$

- At this point, merge-and-shrink construction stops.
 The distances in the final factor define the heuristic function.
- If there were further state variables to integrate, we would shrink again, e.g., leading to the following abstraction (again with four states):

- We get a heuristic value of 3 for the initial state, better than any PDB heuristic that is a proper abstraction.
- The example generalizes to arbitrarily many trucks, even if we stick to the fixed size limit of 8.

Maintaining the Abstraction

Generic Algorithm Template

Generic Merge & Shrink Algorithm for planning task Π

```
F := F(\Pi)
while |F| > 1:
           select type \in {merge, shrink}
           if type = merge:
                       select \mathcal{T}_1, \mathcal{T}_2 \in F
                       F := (F \setminus \{\mathcal{T}_1, \mathcal{T}_2\}) \cup \{\mathcal{T}_1 \otimes \mathcal{T}_2\}
           if type = shrink:
                       select \mathcal{T} \in F
                       choose an abstraction mapping \beta on \mathcal T
                       F := (F \setminus \{\mathcal{T}\}) \cup \{\mathcal{T}^{\beta}\}
return the remaining factor \mathcal{T}^{\alpha} in F
```

- The algorithm computes an abstract transition system.
- For the heuristic evaluation, we need an abstraction.
- How to maintain and represent the corresponding abstraction?

One major difficulty for non-PDB abstraction heuristics is to succinctly represent the abstraction.

- For pattern databases, this is easy because the abstractions projections - are very structured.
- For less rigidly structured abstractions, we need another idea.

Idea: the computation of the abstraction follows the sequence of product computations

For the atomic abstractions $\pi_{\{y\}}$, we generate a one-dimensional table that denotes which value in dom(v) corresponds to which abstract state in $\mathcal{T}^{\pi_{\{v\}}}$.

- During the merge (product) step $\mathcal{A} := \mathcal{A}_1 \otimes \mathcal{A}_2$, we generate a two-dimensional table that denotes which pair of states of \mathcal{A}_1 and \mathcal{A}_2 corresponds to which state of \mathcal{A} .
- During the shrink (abstraction) steps, we make sure to keep the table in sync with the abstraction choices.

Idea: the computation of the abstraction mapping follows the sequence of product computations

Maintaining the Abstraction

- Once we have computed the final abstract transition system, we compute all abstract goal distances and store them in a one-dimensional table.
- At this point, we can throw away all the abstract transition systems - we just need to keep the tables.
- During search, we do a sequence of table lookups to navigate from the atomic abstraction states to the final abstract state and heuristic value
 - \sim 2|V| lookups, O(|V|) time

Again, we illustrate the process with our running example.

Computing abstractions for the transition systems of atomic abstractions is simple. Just number the states (domain values) consecutively and generate a table of references to the states:

Computing abstractions for the transition systems of atomic abstractions is simple. Just number the states (domain values) consecutively and generate a table of references to the states:

For product transition systems $\mathcal{A}_1 \otimes \mathcal{A}_2$, we again number the product states consecutively and generate a table that links state pairs of \mathcal{A}_1 and \mathcal{A}_2 to states of \mathcal{A} :

For product transition systems $\mathcal{A}_1 \otimes \mathcal{A}_2$, we again number the product states consecutively and generate a table that links state pairs of \mathcal{A}_1 and \mathcal{A}_2 to states of \mathcal{A} :

For product transition systems $\mathcal{A}_1 \otimes \mathcal{A}_2$, we again number the product states consecutively and generate a table that links state pairs of \mathcal{A}_1 and \mathcal{A}_2 to states of \mathcal{A} :

	$s_2 = 0$	s ₂ = 1
$s_1 = 0$	0	1
$s_1 = 1$	2	3
$s_1 = 2$	4	5
$s_1 = 3$	6	7

Maintaining the Abstraction when Shrinking

- The hard part in representing the abstraction is to keep it consistent when shrinking.
- In theory, this is easy to do:
 - When combining states i and j, arbitrarily use one of them (say i) as the number of the new state.

- Find all table entries in the table for this abstraction which map to the other state *i* and change them to *i*.
- However, doing a table scan each time two states are combined is very inefficient.
- Fortunately, there also is an efficient implementation which takes constant time per combination.

Maintaining the Abstraction Efficiently

- Associate each abstract state with a linked list, representing all table entries that map to this state.
- Before starting the shrink operation, initialize the lists by scanning through the table, then discard the table.
- While shrinking, when combining i and j, splice the list elements of j into the list elements of i.
 - For linked lists, this is a constant-time operation.
- Once shrinking is completed, renumber all abstract states so that there are no gaps in the numbering.
- Finally, regenerate the mapping table from the linked list information.

Representation before shrinking:

	$s_2 = 0$	$s_2 = 1$
$s_1 = 0$	0	1
$s_1 = 1$	2	3
$s_1 = 2$	4	5
$s_1 = 3$	6	7

Maintaining the Abstraction ○○○○○○○○○○

1. Convert table to linked lists and discard it.

$$\begin{split} & list_0 = \{(0,0)\} \\ & list_1 = \{(0,1)\} \\ & list_2 = \{(1,0)\} \\ & list_3 = \{(1,1)\} \\ & list_4 = \{(2,0)\} \\ & list_5 = \{(2,1)\} \\ & list_6 = \{(3,0)\} \\ & list_7 = \{(3,1)\} \end{split}$$

	$s_2 = 0$	$s_2 = 1$
$s_1 = 0$	0	1
$s_1 = 1$	2	3
$s_1 = 2$	4	5
$s_1 = 3$	6	7

2. When combining i and j, splice list; into list;.

$$list_0 = \{(0,0)\}\$$

$$list_1 = \{(0,1)\}\$$

$$list_2 = \{(1,0)\}\$$

$$list_3 = \{(1,1)\}\$$

$$list_4 = \{(2,0)\}\$$

$$list_5 = \{(2,1)\}\$$

$$list_6 = \{(3,0)\}\$$

$$list_7 = \{(3,1)\}\$$

2. When combining i and j, splice list; into list;.

$$\begin{aligned} & list_0 = \{(0,0)\} \\ & list_1 = \{(0,1)\} \\ & list_2 = \{(1,0),(1,1)\} \\ & list_3 = \emptyset \\ & list_4 = \{(2,0)\} \\ & list_5 = \{(2,1)\} \\ & list_6 = \{(3,0)\} \\ & list_7 = \{(3,1)\} \end{aligned}$$

2. When combining i and j, splice list; into list;.

$$\begin{array}{l} list_0 = \{(0,0)\} \\ list_1 = \{(0,1)\} \\ list_2 = \{(1,0),(1,1)\} \\ list_3 = \varnothing \\ list_4 = \{(2,0)\} \\ list_5 = \{(2,1)\} \\ list_6 = \{(3,0)\} \\ list_7 = \{(3,1)\} \end{array}$$

2. When combining *i* and *j*, splice list_i into list_i.

$$\begin{aligned} & list_0 = \{(0,0)\} \\ & list_1 = \{(0,1)\} \\ & list_2 = \{(1,0),(1,1)\} \\ & list_3 = \varnothing \\ & list_4 = \{(2,0),(2,1)\} \\ & list_5 = \varnothing \\ & list_6 = \{(3,0)\} \\ & list_7 = \{(3,1)\} \end{aligned}$$

2. When combining *i* and *j*, splice list_i into list_i.

$$\begin{aligned} & list_0 = \{(0,0)\} \\ & list_1 = \{(0,1)\} \\ & list_2 = \{(1,0),(1,1)\} \\ & list_3 = \varnothing \\ & list_4 = \{(2,0),(2,1)\} \\ & list_5 = \varnothing \\ & list_6 = \{(3,0)\} \\ & list_7 = \{(3,1)\} \end{aligned}$$

2. When combining *i* and *j*, splice *list_i* into *list_i*.

$$\begin{split} & list_0 = \{(0,0)\} \\ & list_1 = \{(0,1)\} \\ & list_2 = \{(1,0),(1,1)\} \\ & list_3 = \varnothing \\ & list_4 = \{(2,0),(2,1)\} \\ & list_5 = \varnothing \\ & list_6 = \{(3,0),(3,1)\} \\ & list_7 = \varnothing \end{split}$$

2. When combining *i* and *j*, splice *list_i* into *list_i*.

$$\begin{array}{l} list_0 = \{(0,0)\} \\ list_1 = \{(0,1)\} \\ list_2 = \{(1,0), (1,1)\} \\ list_3 = \varnothing \\ list_4 = \{(2,0), (2,1)\} \\ list_5 = \varnothing \\ list_6 = \{(3,0), (3,1)\} \\ list_7 = \varnothing \end{array}$$

2. When combining i and j, splice list; into list;.

$$\begin{split} & list_0 = \{(0,0)\} \\ & list_1 = \{(0,1)\} \\ & list_2 = \{(1,0),(1,1)\} \\ & list_3 = \varnothing \\ & list_4 = \{(2,0),(2,1),\\ & (3,0),(3,1)\} \\ & list_5 = \varnothing \\ & list_6 = \varnothing \\ & list_7 = \varnothing \end{split}$$

2. When combining i and j, splice list; into list;.

$$\begin{split} & list_0 = \{(0,0)\} \\ & list_1 = \{(0,1)\} \\ & list_2 = \{(1,0),(1,1)\} \\ & list_3 = \varnothing \\ & list_4 = \{(2,0),(2,1),\\ & (3,0),(3,1)\} \\ & list_5 = \varnothing \\ & list_6 = \varnothing \\ & list_7 = \varnothing \end{split}$$

3. Renumber abstract states consecutively.

$$\begin{split} & list_0 = \{(0,0)\} \\ & list_1 = \{(0,1)\} \\ & list_2 = \{(1,0),(1,1)\} \\ & list_3 = \varnothing \\ & list_4 = \{(2,0),(2,1),\\ & (3,0),(3,1)\} \\ & list_5 = \varnothing \\ & list_6 = \varnothing \\ & list_7 = \varnothing \end{split}$$

3. Renumber abstract states consecutively.


```
list_0 = \{(0,0)\}
list_1 = \{(0,1)\}
list_2 = \{(1,0), (1,1)\}
list_3 = \{(2,0), (2,1),
           (3,0),(3,1)
list_4 = \emptyset
list_5 = \emptyset
list_6 = \emptyset
list_7 = \emptyset
```

4. Regenerate the mapping table from the linked lists.

$$\begin{aligned} & list_0 = \{(0,0)\} \\ & list_1 = \{(0,1)\} \\ & list_2 = \{(1,0),(1,1)\} \\ & list_3 = \{(2,0),(2,1),\\ & (3,0),(3,1)\} \\ & list_4 = \varnothing \\ & list_5 = \varnothing \\ & list_6 = \varnothing \\ & list_7 = \varnothing \end{aligned}$$

4. Regenerate the mapping table from the linked lists.

$$\begin{aligned} & list_0 = \{(0,0)\} \\ & list_1 = \{(0,1)\} \\ & list_2 = \{(1,0),(1,1)\} \\ & list_3 = \{(2,0),(2,1),\\ & (3,0),(3,1)\} \\ & list_4 = \varnothing \\ & list_5 = \varnothing \\ & list_6 = \varnothing \\ & list_7 = \varnothing \end{aligned}$$

	$s_2 = 0$	$s_2 = 1$
$s_1 = 0$	0	1
$s_1 = 1$	2	2
$s_1 = 2$	3	3
$s_1 = 3$	3	3

The Final Heuristic Representation

At the end, our heuristic is represented by six tables:

three one-dimensional tables for the atomic abstractions:

Maintaining the Abstraction

T _{package}	L	R	Α	В	T _{truck A}	L	R	T _{truck B}	L	R
	0	1	2	3		0	1		0	1

two tables for the two merge and subsequent shrink steps:

one table with goal distances for the final transition system:

$$T_h$$
 | s = 0 | s = 1 | s = 2 | s = 3 | $h(s)$ | 3 | 2 | 0 | 1

Given a state $s = \{package \mapsto L, truck A \mapsto L, truck B \mapsto R\}$, its heuristic value is then looked up as:

$$h(s) = T_h[T_{m\&s}^2[T_{m\&s}^1[T_{package}[L], T_{truck A}[L]], T_{truck B}[R]]]$$

Summary

Summary (1)

- Merge-and-shrink abstractions are constructed by iteratively transforming the factored transition system of a planning task.
- Merge transformations combine two factors into their synchronized product.
- Shrink transformations reduce the size of a factor by abstracting it.

Summary (1)

- Merge-and-shrink abstractions are constructed by iteratively transforming the factored transition system of a planning task.
- Merge transformations combine two factors into their synchronized product.
- Shrink transformations reduce the size of a factor by abstracting it.
- Merge-and-shrink abstractions are represented by a set of reference tables, one for each atomic abstraction and one for each merge-and-shrink step.
- The heuristic representation uses an additional table for the goal distances in the final abstract transition system.

Summary (2)

- Projections of SAS⁺ tasks correspond to merges of atomic factors.
- By also including shrinking, merge-and-shrink abstractions generalize projections: they can reflect all state variables, but in a potentially lossy way.