Automated Planning
E8. Merge-and-Shrink: Algorithm

Jendrik Seipp

Linkdping University

based on slides from the Al group at the University of Basel

Content of this Course

— Prelude

— Foundations

— Approaches :
) in General
—1 Delete Relaxation

Databases
— Constraints

2/33

Generic Algorithm
©00000

Generic Algorithm

3/33

Generic Algorithm

[e] lelelele]

Merge-and-Shrink

_{

Synchronized Product ‘

—{ Factored Transition Systems ‘

_{

Merge & Shrink Algorithm ‘

_{

Heuristic Representation ‘

_{

Strategies ‘

_{

Label Reduction |

4/33

Generic Algorithm Mz traction

[e]e] lelele]

Generic Merge-and-shrink Abstractions: Qutline

Using the results of the previous chapter, we can develop
a generic abstraction computation procedure
that takes all state variables into account.
m Initialization: Compute the FTS
consisting of all atomic projections.
m Loop: Repeatedly apply a transformation to the FTS.

m Merging: Combine two factors by replacing them
with their synchronized product.

m Shrinking: If the factors are too large,
make one of them smaller by abstracting it further
(applying an arbitrary abstraction to it).

m Termination: Stop when only one factor is left.

The final factor is then used for an abstraction heuristic.

5/33

Generic Algorithm

[e]e]e] Jele]

Generic Algorithm Template

Generic Merge & Shrink Algorithm for planning task Il

F:=F(M)
while |F| > 1:
select type € {merge, shrink}
if type = merge:
select 71,7, € F
F:=(F\{7,%}) V{7 & T}
if type = shrink:
select7 € F
choose an abstraction mapping 8 on 7~
Fi=(F\{T}H U{T?}
return the remaining factor 7% in F

Later, we will include another transformation type: label reduction.

6/33

Generic Algorithm

[e]e]e]e] Je]

Merge-and-Shrink Strategies

Choices to resolve to instantiate the template:

m When to merge, when to shrink?
~» general strategy

® Which abstractions to merge?
~> merge strategy

m Which abstraction to shrink, and how to shrink it (which 8)?
~> shrink strategy

7/33

Generic Algorithm Mz traction

[e]e]elele]]

General Strategy

A typical general strategy:
m define a limit N on the number of states allowed in each factor
® in each iteration, select two factors we would like to merge
m merge them if this does not exhaust the state number limit
|

otherwise shrink one or both factors just enough
to make a subsequent merge possible

8/33

Example
©000000000

Example

9/33

Example

O800000000

Back to the Running Example

@

Logistics problem with one package, two trucks, two locations:
m state variable package: {L, R, A, B}
m state variable truck A: {L, R}
m state variable truck B: {L, R}

96

BRR

=
o

9

10/33

Example

[e]e] lelelelele]e]e}

Initialization Step: Atomic Projection for Package

Tﬂ{package} :

11/33

Example
0008000000

Initialization Step: Atomic Projection for Truck A

T”{truck A} .

PAL,DAL,MB*, PAR,DAR,MBx*,
PB*,DB% PBx,DB%

12/33

Example

0000800000

Initialization Step: Atomic Projection for Truck B

T”{truck B} .

PBL,DBL,MA%*, PBR,DBR,MA*,
PA%, DA PA%,DAX

current FTS: {T”{package} , T”{truck A} , T”{truck B} }

13/33

Example

0000080000

First Merge Step

71~ = T”{package) ® T”{truckA}:

current FTS: {7, T ™trucke} }
14/33

Example Mz traction

0000008000

Need to Shrink?

m With sufficient memory, we could now compute 77 ® 7 ™{uuckel and
recover the full transition system of the task.

m However, to illustrate the general idea,
we assume that memory is too restricted:
we may never create a factor with more than 8 states.

m To make the product fit the bound, we shrink 77 to 4 states. We can
decide freely how exactly to abstract 77.

m In this example, we manually choose an abstraction
that leads to a good result in the end. Making good shrinking
decisions algorithmically is the job of the shrink strategy.

15/33

Example

0000000800

First Shrink Step

7, := some abstraction of 77

16/33

Example

0000000800

First Shrink Step

7, := some abstraction of 77

16/33

Example

0000000800

First Shrink Step

7, := some abstraction of 77

16/33

Example

0000000800

First Shrink Step

7, := some abstraction of 77

16/33

Example

0000000800

First Shrink Step

7, := some abstraction of 77

16/33

Example

0000000800

First Shrink Step

7, := some abstraction of 77

16/33

Example

0000000800

First Shrink Step

7, := some abstraction of 77

Mk x

16/33

Example

0000000800

First Shrink Step

7, := some abstraction of 77

Mk x

16/33

Example

0000000800

First Shrink Step

7, := some abstraction of 77

16/33

Example

0000000800

First Shrink Step

7, := some abstraction of 77

current FTS: {7, 7 ™ucksr }

16/33

Example

0000000080

Second Merge Step

7; = 7;@ T"{truckB}:

current FTS: {73}

17/33

Example Mz traction

000000000 e

Another Shrink Step?

m At this point, merge-and-shrink construction stops.
The distances in the final factor define the heuristic function.

m If there were further state variables to integrate,
we would shrink again, e.g., leading to the following abstraction
(again with four states):

m We get a heuristic value of 3 for the initial state,
better than any PDB heuristic that is a proper abstraction.

m The example generalizes to arbitrarily many trucks,
even if we stick to the fixed size limit of 8.

18/33

Maintaining the Abstraction

Maintaining the Abstraction

19/33

Maintaining the Abstraction

Merge-and-Shrink

080000000000

Synchronized Product ‘

Factored Transition Systems ‘

Merge & Shrink Algorithm ‘

Heuristic Representation ‘

Strategies ‘

I N R I A

Label Reduction |

20/33

Maintaining the Abstraction

008000000000

Generic Algorithm Template

Generic Merge & Shrink Algorithm for planning task I1

F:=F(M)
while |F| > 1:
select type € {merge, shrink}
if type = merge:
select 77,7, € F
F:=(F\ {7, T2}) U{T1 ® T}
if type = shrink:
select7 € F
choose an abstraction mapping 8 on 7~
Fi=(F\{T}) U{T?}

return the remaining factor 7% in F
V.

m The algorithm computes an abstract transition system.

m For the heuristic evaluation, we need an abstraction.

m How to maintain and represent the corresponding abstraction? 21/33

Maintaining the Abstraction

000800000000

The Need for Succinct Abstractions

m One major difficulty for non-PDB abstraction heuristics is to
succinctly represent the abstraction.

m For pattern databases, this is easy because the abstractions -
projections - are very structured.

m For less rigidly structured abstractions, we need another idea.

22/33

Maintaining the Abstraction

000080000000

How to Represent the Abstraction? (1)

Idea: the computation of the abstraction follows the sequence of
product computations
m For the atomic abstractions sy, we generate a one-dimensional
table that denotes which value in dom(v) corresponds to which
abstract state in 77},
m During the merge (product) step A := A; ® A,, we generate a
two-dimensional table that denotes which pair of states of ‘A, and
A, corresponds to which state of ‘A.
m During the shrink (abstraction) steps, we make sure to keep the
table in sync with the abstraction choices.

23/33

Maintaining the Abstraction

000008000000

How to Represent the Abstraction? (2)

Idea: the computation of the abstraction mapping follows the sequence
of product computations

m Once we have computed the final abstract transition system, we
compute all abstract goal distances and store themin a
one-dimensional table.

m At this point, we can throw away all the abstract transition systems
- we just need to keep the tables.

m During search, we do a sequence of table lookups to navigate from
the atomic abstraction states to the final abstract state and
heuristic value
~>» 2|V| lookups, O(|V]) time

Again, we illustrate the process with our running example.

24(33

Maintaining the Abstraction

000000800000

Abstraction Example: Atomic Abstractions

Computing abstractions for the transition systems of atomic abstractions
is simple. Just number the states (domain values) consecutively and
generate a table of references to the states:

Mikk

25/33

Maintaining the Abstraction

000000800000

Abstraction Example: Atomic Abstractions

Computing abstractions for the transition systems of atomic abstractions
is simple. Just number the states (domain values) consecutively and
generate a table of references to the states:

Mikk

25/33

Maintaining the Abstraction

[e]e]e]e]e]ele] lelelele]

Abstraction Example: Merge Step

For product transition systems A; ® A,, we again number the product
states consecutively and generate a table that links state pairs of A, and
A, to states of A:

26/33

Maintaining the Abstraction

[e]e]e]e]e]ele] lelelele]

Abstraction Example: Merge Step

For product transition systems A; ® A,, we again number the product
states consecutively and generate a table that links state pairs of A, and
A, to states of A:

26/33

Maintaining the Abstraction

[e]e]e]e]e]ele] lelelele]

Abstraction Example: Merge Step

For product transition systems A; ® A,, we again number the product
states consecutively and generate a table that links state pairs of A, and

A, to states of A:

S$5=0 s;=1
s1=0 0 1
s1=1 2 3
S =2 4 5
s1=3 6 7

26/33

Maintaining the Abstraction

000000008000

Maintaining the Abstraction when Shrinking

m The hard part in representing the abstraction is to keep it
consistent when shrinking.
m In theory, this is easy to do:
m When combining states i and j, arbitrarily use one of them (say i) as
the number of the new state.
m Find all table entries in the table for this abstraction which map to
the other state j and change them to i.
m However, doing a table scan each time two states are combined is
very inefficient.

m Fortunately, there also is an efficient implementation which takes
constant time per combination.

27/33

Maintaining the Abstraction

000000000800

Maintaining the Abstraction Efficiently

m Associate each abstract state with a linked list, representing all
table entries that map to this state.

m Before starting the shrink operation, initialize the lists by scanning
through the table, then discard the table.

m While shrinking, when combining i and j, splice the list elements of j
into the list elements of i.

m For linked lists, this is a constant-time operation.

m Once shrinking is completed, renumber all abstract states so that
there are no gaps in the numbering.

m Finally, regenerate the mapping table from the linked list
information.

28/33

Maintaining the Abstraction

000000000 0e0

Abstraction Example: Shrink Step

Representation before shrinking:

S5=0 s;=1
s1=0 0 1
S1 = 2 3
s1=2 4 5
S1 = 6 7

29/33

Maintaining the Abstraction

000000000 0e0

Abstraction Example: Shrink Step

1. Convert table to linked lists and discard it.

listo = {(0,0)}
listy = {(0,1)}
list, = {(1,0)}
list3 = {(1,1)}
list, = {(2,0)}
lists = {(2,1)}
lists = {(3,0)}
list; = {(3,1)}

| =0 s;=1
s1=0 0 1
s1=1 2 3
S1=2 4 5
s1=3 6 7

29/33

Maintaining the Abstraction

000000000 0e0

Abstraction Example: Shrink Step

2. When combining i and j, splice list; into list;.

listo = {(0,0)}
listy = {(0,1)}
list, = {(1,0)}
list = {(1,1)}
list, = {(2,0)}
lists = {(2,1)}
lists = {(3,0)}
list; = {(3,1)}

29/33

Example Maintaining the Abstraction

000000000 0e0

Abstraction Example: Shrink Step

2. When combining i and j, splice list; into list;.

listo = {(0,0)}

listy = {(0,1)}

list, = {(1,0), (1,1)}
list = @

list, = {(2,0)}

lists = {(2,1)}

lists = {(3,0)}

list; = {(3,1)}

29/33

Example Maintaining the Abstraction

000000000 0e0

Abstraction Example: Shrink Step

2. When combining i and j, splice list; into list;.

listo = {(0,0)}

listy = {(0,1)}

list, = {(1,0), (1,1)}
lists = @

list, = {(2,0)}

lists = {(2,1)}

lists = {(3,0)}

list; = {(3,1)}

29/33

Example Maintaining the Abstraction

000000000 0e0

Abstraction Example: Shrink Step

2. When combining i and j, splice list; into list;.

listo = {(0,0)}
list1 = {(031)}
list, = {(1,0), (1,1)}

lists = @
list, = {(2,0), (2,1}
lists = @

lists = {(3,0)}
list; = {(3,1)}

29/33

Example Maintaining the Abstraction

000000000 0e0

Abstraction Example: Shrink Step

2. When combining i and j, splice list; into list;.

listo = {(0,0)}
list1 = {(031)}
list, = {(1,0), (1,1)}

lists = @
list, = {(2,0),(2,1)}
lists = @

lists = {(3,0)}
list; = {(3,1)}

29/33

Maintaining the Abstraction

000000000 0e0

Abstraction Example: Shrink Step

2. When combining i and j, splice list; into list;.

listy = {(0,0)}

listy = {(0,1)}

list; = {(1,0), (1,1)}
list3 = @

list, = {(2,0), (2,1)}
lists = @

liste = {(3,0), (3,1)}
list; = @

29/33

Maintaining the Abstraction

000000000 0e0

Abstraction Example: Shrink Step

2. When combining i and j, splice list; into list;.

listy = {(0,0)}
° list; = {(0,1)}
/ list, = {(1,0), (1,1)}
f list; = @
a ’ o list, = {(2,0), (2,1)}
\ lists = @
e/ liste = {(3,0), (3,7)}

list; = @

29/33

Maintaining the Abstraction
000000000080

Abstraction Example: Shrink Step

2. When combining i and j, splice list; into list;.

listo = {(0,0)}
listy = {(051)}
list, = {(1,0), (1,1)}

lists = @

list, = {(2,0), (2,1),

W°-° (3,0, (3, D}
v lists = @
lists = @
list; = @

29/33

Exampl Maintaining the Abstraction

000000000 0e0

Abstraction Example: Shrink Step

2. When combining i and j, splice list; into list;.

O20:0=

listo = {(0,0)}
listy = {(051)}
list, = {(1,0), (1,1)}

lists = @

list, = {(2,0), (2,1),
(3,0), 3,1}

lists = @

lists = @

list; = @

29/33

Maintaining the Abstraction
000000000080

Abstraction Example: Shrink Step

3. Renumber abstract states consecutively.

listo = {(0,0)}
listy = {(051)}
list, = {(1,0), (1,1)}

list; = @

list, = {(2,0), (2,1),

Mj@-e (3,0, (3, D}
v lists = @
lists = @
list; = @

29/33

Maintaining the Abstraction
000000000080

Abstraction Example: Shrink Step

3. Renumber abstract states consecutively.

listo = {(0,0)}
list; = {(0,1)}
list, ={(1,0), (1,1)}
list; = {(2,0), (2,1),

(3,0), (3,1}
0:0:0=" TN

A lists = @
lists = @
list; = @

29/33

Exampl Maintaining the Abstraction

000000000 0e0

Abstraction Example: Shrink Step

4. Regenerate the mapping table from the linked lists.

listo = {(0,0)}
list; = {(0,1)}
list, ={(1,0), (1,1)}
lists = {(2,0), (2,1),

(3,0), (3,1}
0:20:0=""

lists = @
lists = @
list; = @

29/33

Maintaining the Abstraction

000000000 0e0

Abstraction Example: Shrink Step

4. Regenerate the mapping table from the linked lists.

listo = {(0,0)}
list; = {(0,1)}
list, ={(1,0), (1,1)}
lists = {(2,0), (2,1),

(3,0), (3,1}
0:0:0=" T

" lists = @
lists = @
list; = @
S5=0 s;=1

s$9=0 0 1

S1 = 2 2

59 =2 3 3

S1 = 3 3

29/33

Maintaining the Abstraction

00000000000 e

The Final Heuristic Representation

At the end, our heuristic is represented by six tables:
m three one-dimensional tables for the atomic abstractions:

Toackage | L R A B Twuka |L R Twuas |L R
o 1 2 3 o 1 [0 1
= two tables for the two merge and subsequent shrink steps:

T:n&s ‘SZIO Sy =1 sz&s ‘5220 Sy =1
51=0 0 1 s51=0 1 1
si=1] 2 2 s1=1 1 0
51=2 3 3 51=2 2 2
$1=3 3 3 s1=3 3 3

m one table with goal distances for the final transition system:

Th [s=0 s=1 s=2 s=3
h(s) | 3 2 0 1

Given a state s = {package > L, truck A — L, truck B — R},
its heuristic value is then looked up as:

u h(S) = Th [sz&s [T:n&s [Tpackage [L], TtruckA[L]]y Ttruck B [R]]]
30/33

Summary
[Yole}

Summary

31/33

Summary

[e] le}

Summary (1)

m Merge-and-shrink abstractions are constructed by iteratively
transforming the factored transition system of a planning task.

m Merge transformations combine two factors
into their synchronized product.

m Shrink transformations reduce the size of a factor
by abstracting it.

32/33

Summary

[e] le}

Summary (1)

m Merge-and-shrink abstractions are constructed by iteratively
transforming the factored transition system of a planning task.

m Merge transformations combine two factors
into their synchronized product.

m Shrink transformations reduce the size of a factor
by abstracting it.

B Merge-and-shrink abstractions are represented by a set of
reference tables, one for each atomic abstraction and one for each
merge-and-shrink step.

m The heuristic representation uses an additional table for the goal
distances in the final abstract transition system.

32/33

traction Summary

[e]e]]

Summary (2)

m Projections of SAS* tasks correspond to
merges of atomic factors.

m By also including shrinking, merge-and-shrink abstractions
generalize projections: they can reflect all state variables,
but in a potentially lossy way.

33/33

	Generic Algorithm
	

	Example
	

	Maintaining the Abstraction
	

	Summary
	

