Automated Planning E8. Merge-and-Shrink: Algorithm

Jendrik Seipp

Linköping University

based on slides from the AI group at the University of Basel

Content of this Course

[Generic Algorithm](#page-2-0)

[Generic Algorithm](#page-2-0) [Example](#page-8-0) Example Algorithm Example [Maintaining the Abstraction](#page-27-0) [Summary](#page-56-0)
Coop Marine Marine

Merge-and-Shrink

Generic Merge-and-shrink Abstractions: Outline

Using the results of the previous chapter, we can develop a generic abstraction computation procedure that takes all state variables into account.

- Initialization: Compute the FTS consisting of all atomic projections.
- Loop: Repeatedly apply a transformation to the FTS.
	- **Merging: Combine two factors by replacing them** with their synchronized product.
	- **Shrinking: If the factors are too large,** make one of them smaller by abstracting it further (applying an arbitrary abstraction to it).
- Termination: Stop when only one factor is left.

The final factor is then used for an abstraction heuristic.

Generic Algorithm Template

Generic Merge & Shrink Algorithm for planning task Π

```
F := F(\Pi)while |F| > 1:
select type ∈ {merge, shrink}
if type = merge:
              select T_1, T_2 \in F<br>F − (F \setminus T, T_2)F := (F \setminus \{ \mathcal{T}_1, \mathcal{T}_2 \}) \cup \{ \mathcal{T}_1 \otimes \mathcal{T}_2 \}<br>- shrink
if type = shrink:
             select \mathcal{T} \in Fchoose an abstraction mapping \beta on \mathcal T\mathsf{F} \coloneqq (\mathsf{F} \setminus \{\mathcal{T}\}) \cup \{\mathcal{T}^\beta\}return the remaining factor \mathcal{T}^{\alpha} in F
```
Later, we will include another transformation type: label reduction.

Merge-and-Shrink Strategies

Choices to resolve to instantiate the template:

- When to merge, when to shrink?
	- \rightsquigarrow general strategy
- Which abstractions to merge?
	- \sim merge strategy
- Which abstraction to shrink, and how to shrink it (which β)? \rightarrow shrink strategy

General Strategy

A typical general strategy:

- define a limit *N* on the number of states allowed in each factor
- \blacksquare in each iteration, select two factors we would like to merge
- merge them if this does not exhaust the state number limit
- otherwise shrink one or both factors just enough to make a subsequent merge possible

[Example](#page-8-0)

Back to the Running Example

Logistics problem with one package, two trucks, two locations:

- state variable package: {*L*, *^R*, *^A*, *^B*} \mathbb{R}^n
- state variable truck A: {*L*, *^R*}
- **state variable truck B:** $\{L, R\}$

Initialization Step: Atomic Projection for Package

 $\mathcal{T}^{\pi_{\{\text{package}\}}}.$

[Generic Algorithm](#page-2-0) **[Example](#page-8-0) Example Community** [Maintaining the Abstraction](#page-27-0) [Summary](#page-56-0)
 OOO

Initialization Step: Atomic Projection for Truck A

 $\mathcal{T}^{\pi_{\{\mathsf{truck}\,\mathsf{A}\}}}$:

Initialization Step: Atomic Projection for Truck B

 $\mathcal{T}^{\pi_{\{\mathsf{truck}\,\mathsf{B}\}}}.$

current FTS: $\{\mathcal{T}^{\pi_{\{\text{package}\}}}, \mathcal{T}^{\pi_{\{\text{truck A}\}}}, \mathcal{T}^{\pi_{\{\text{fruck B}\}}}\}$

First Merge Step

 $\mathcal{T}_1 := \mathcal{T}^{\pi_{\{\text{package}\}}} \otimes \mathcal{T}^{\pi_{\{\text{truck A}\}}}$:

current FTS: $\{\mathcal{T}_1, \mathcal{T}^{\pi_{\{\text{truck B}\}}}\}$

Need to Shrink?

- With sufficient memory, we could now compute $\mathcal{T}_1 \otimes \mathcal{T}^{\pi_{\text{fruck B}}}$ and recover the full transition system of the task.
- \blacksquare However, to illustrate the general idea, we assume that memory is too restricted: we may never create a factor with more than 8 states.
- \blacksquare To make the product fit the bound, we shrink \mathcal{T}_1 to 4 states. We can decide freely how exactly to abstract \mathcal{T}_1 .
- In this example, we manually choose an abstraction that leads to a good result in the end. Making good shrinking decisions algorithmically is the job of the shrink strategy.

First Shrink Step

First Shrink Step

\mathcal{T}_2 := some abstraction of \mathcal{T}_1

current FTS: $\{\mathcal{T}_2, \mathcal{T}^{\pi_{\{\text{true B}\}}}\}$

Second Merge Step

 $\mathcal{T}_3 := \mathcal{T}_2 \otimes \mathcal{T}^{\pi_{\{\text{truck B}\}}}$:

current FTS: $\{\mathcal{T}_3\}$

Another Shrink Step?

- At this point, merge-and-shrink construction stops. The distances in the final factor define the heuristic function.
- If there were further state variables to integrate, we would shrink again, e.g., leading to the following abstraction (again with four states):

- We get a heuristic value of 3 for the initial state, better than any PDB heuristic that is a proper abstraction.
- \blacksquare The example generalizes to arbitrarily many trucks, even if we stick to the fixed size limit of 8.

[Maintaining the Abstraction](#page-27-0)

Merge-and-Shrink

Generic Algorithm Template

Generic Merge & Shrink Algorithm for planning task Π

```
F := F(\Pi)while |F| > 1:
select type ∈ {merge, shrink}
if type = merge:
              select T_1, T_2 \in F<br>F − (F \setminus T, T_2)F := (F \setminus \{ \mathcal{T}_1, \mathcal{T}_2 \}) \cup \{ \mathcal{T}_1 \otimes \mathcal{T}_2 \}<br>- shrink
if type = shrink:
             select \mathcal{T} \in Fchoose an abstraction mapping \beta on \mathcal T\mathsf{F} \coloneqq (\mathsf{F} \setminus \{\mathcal{T}\}) \cup \{\mathcal{T}^\beta\}return the remaining factor \mathcal{T}^{\alpha} in F
```
- The algorithm computes an abstract transition system.
- For the heuristic evaluation, we need an abstraction.
- How to maintain and represent the corresponding abstraction? $_{21/33}$

The Need for Succinct Abstractions

- One major difficulty for non-PDB abstraction heuristics is to succinctly represent the abstraction.
- For pattern databases, this is easy because the abstractions $$ projections – are very structured.
- For less rigidly structured abstractions, we need another idea.

How to Represent the Abstraction? (1)

Idea: the computation of the abstraction follows the sequence of product computations

- For the atomic abstractions $\pmb{\pi}_{\{\pmb{\nu}\}}$, we generate a one-dimensional table that denotes which value in $dom(v)$ corresponds to which abstract state in $\mathcal{T}^{\pi_{\{\mathsf{v}\}}}$.
- During the merge (product) step $\mathcal{A} := \mathcal{A}_1 \otimes \mathcal{A}_2$, we generate a two-dimensional table that denotes which pair of states of \mathcal{A}_1 and \mathcal{A}_2 corresponds to which state of \mathcal{A} .
- During the shrink (abstraction) steps, we make sure to keep the table in sync with the abstraction choices.

How to Represent the Abstraction? (2)

Idea: the computation of the abstraction mapping follows the sequence of product computations

- Once we have computed the final abstract transition system, we compute all abstract goal distances and store them in a one-dimensional table.
- \blacksquare At this point, we can throw away all the abstract transition systems – we just need to keep the tables.
- **During search, we do a sequence of table lookups to navigate from** the atomic abstraction states to the final abstract state and heuristic value

 \rightarrow 2|*V*| lookups, $O(|V|)$ time

Again, we illustrate the process with our running example.

Abstraction Example: Atomic Abstractions

Computing abstractions for the transition systems of atomic abstractions is simple. Just number the states (domain values) consecutively and generate a table of references to the states:

Abstraction Example: Atomic Abstractions

Computing abstractions for the transition systems of atomic abstractions is simple. Just number the states (domain values) consecutively and generate a table of references to the states:

Abstraction Example: Merge Step

For product transition systems $\mathcal{A}_1 \otimes \mathcal{A}_2$, we again number the product states consecutively and generate a table that links state pairs of \mathcal{A}_1 and \mathcal{A}_2 to states of \mathcal{A} :

Abstraction Example: Merge Step

For product transition systems $\mathcal{A}_1 \otimes \mathcal{A}_2$, we again number the product states consecutively and generate a table that links state pairs of \mathcal{A}_1 and \mathcal{A}_2 to states of \mathcal{A} :

Abstraction Example: Merge Step

For product transition systems $\mathcal{A}_1 \otimes \mathcal{A}_2$, we again number the product states consecutively and generate a table that links state pairs of \mathcal{A}_1 and \mathcal{A}_2 to states of \mathcal{A} :

- ■ The hard part in representing the abstraction is to keep it consistent when shrinking.
- In theory, this is easy to do:
	- When combining states *i* and *j*, arbitrarily use one of them (say *i*) as the number of the new state.
	- Find all table entries in the table for this abstraction which map to the other state *j* and change them to *i*.
- \blacksquare However, doing a table scan each time two states are combined is very inefficient.
- Fortunately, there also is an efficient implementation which takes constant time per combination.

Maintaining the Abstraction Efficiently

- Associate each abstract state with a linked list, representing all table entries that map to this state.
- Before starting the shrink operation, initialize the lists by scanning through the table, then discard the table.
- While shrinking, when combining *i* and *j*, splice the list elements of *j* into the list elements of *i*.
	- For linked lists, this is a constant-time operation.
- Once shrinking is completed, renumber all abstract states so that there are no gaps in the numbering.
- Finally, regenerate the mapping table from the linked list information.

Abstraction Example: Shrink Step

Representation before shrinking:

ł.

Abstraction Example: Shrink Step

1. Convert table to linked lists and discard it.

Abstraction Example: Shrink Step

2. When combining *i* and *j*, splice *list^j* into *listⁱ* .

 $list_0 = \{(0, 0)\}\$ $list_1 = \{(0, 1)\}\$ $list_2 = \{(1, 0)\}\$ $list_3 = \{(1, 1)\}\$ $list_4 = \{(2, 0)\}\$ $list_5 = \{(2, 1)\}\$ $list_6 = \{(3, 0)\}\$ $list_7 = \{(3, 1)\}\$

Abstraction Example: Shrink Step

2. When combining *i* and *j*, splice *list^j* into *listⁱ* .

 $list_0 = \{(0, 0)\}\$ $list_1 = \{(0, 1)\}\$ $list_2 = \{(1, 0), (1, 1)\}$ $list_3 = \emptyset$ $list_4 = \{(2, 0)\}\$ $list_5 = \{(2, 1)\}\$ $list_6 = \{(3, 0)\}\$ $list_7 = \{(3, 1)\}\$

Abstraction Example: Shrink Step

2. When combining *i* and *j*, splice *list^j* into *listⁱ* .

$$
list_0 = \{(0, 0)\}
$$

\n
$$
list_1 = \{(0, 1)\}
$$

\n
$$
list_2 = \{(1, 0), (1, 1)\}
$$

\n
$$
list_3 = \emptyset
$$

\n
$$
list_4 = \{(2, 0)\}
$$

\n
$$
list_5 = \{(2, 1)\}
$$

\n
$$
list_6 = \{(3, 0)\}
$$

\n
$$
list_7 = \{(3, 1)\}
$$

Abstraction Example: Shrink Step

2. When combining *i* and *j*, splice *list^j* into *listⁱ* .

 $list_0 = \{(0, 0)\}\$ $list_1 = \{(0, 1)\}\$ $list_2 = \{(1, 0), (1, 1)\}$ $list_3 = \emptyset$ $list_4 = \{(2, 0), (2, 1)\}\$ $list_5 = \emptyset$ $list_6 = \{(3, 0)\}\$ $list_7 = \{(3, 1)\}\$

Abstraction Example: Shrink Step

2. When combining *i* and *j*, splice *list^j* into *listⁱ* .

$$
list_0 = \{(0, 0)\}\
$$

\n
$$
list_1 = \{(0, 1)\}\
$$

\n
$$
list_2 = \{(1, 0), (1, 1)\}\
$$

\n
$$
list_3 = \emptyset
$$

\n
$$
list_4 = \{(2, 0), (2, 1)\}\
$$

\n
$$
list_5 = \emptyset
$$

\n
$$
list_6 = \{(3, 0)\}\
$$

\n
$$
list_7 = \{(3, 1)\}\
$$

Abstraction Example: Shrink Step

2. When combining *i* and *j*, splice *list^j* into *listⁱ* .

 $list_0 = \{(0, 0)\}\$ $list_1 = \{(0, 1)\}\$ $list_2 = \{(1, 0), (1, 1)\}$ $list_3 = \emptyset$ $list_4 = \{(2, 0), (2, 1)\}$ *list*₅ = \emptyset $list_6 = \{(3, 0), (3, 1)\}\$ $list_7 = \emptyset$

Abstraction Example: Shrink Step

2. When combining *i* and *j*, splice *list^j* into *listⁱ* .

 $list_0 = \{(0, 0)\}\$ $list_1 = \{(0, 1)\}\$ $list_2 = \{(1, 0), (1, 1)\}$ $list_3 = \emptyset$ $list_4 = \{(2, 0), (2, 1)\}$ *list*₅ = \emptyset $list_6 = \{(3, 0), (3, 1)\}\$ $list_7 = \emptyset$

Abstraction Example: Shrink Step

2. When combining *i* and *j*, splice *list^j* into *listⁱ* .

 $list_0 = \{(0, 0)\}\$ $list_1 = \{(0, 1)\}\$ $list_2 = \{(1, 0), (1, 1)\}\$ $list_3 = \emptyset$ $list_4 = \{(2, 0), (2, 1),$ $(3, 0), (3, 1)$ $list_5 = \emptyset$ $list_6 = \emptyset$ $list_7 = \emptyset$

Abstraction Example: Shrink Step

2. When combining *i* and *j*, splice *list^j* into *listⁱ* .

 $list_0 = \{(0, 0)\}\$ $list_1 = \{(0, 1)\}\$ $list_2 = \{(1, 0), (1, 1)\}\$ $list_3 = \emptyset$ $list_4 = \{(2, 0), (2, 1),$ $(3, 0), (3, 1)$ $list_5 = \emptyset$ $list_6 = \emptyset$ $list_7 = \emptyset$

Abstraction Example: Shrink Step

3. Renumber abstract states consecutively.

 $list_0 = \{(0, 0)\}\$ $list_1 = \{(0, 1)\}\$ $list_2 = \{(1, 0), (1, 1)\}$ $list_3 = \emptyset$ $list_4 = \{(2, 0), (2, 1),$ $(3, 0), (3, 1)$ $list_5 = \emptyset$ $list_6 = \emptyset$ $list_7 = \emptyset$

Abstraction Example: Shrink Step

3. Renumber abstract states consecutively.

 $list_0 = \{(0, 0)\}\$ $list_1 = \{(0, 1)\}\$ $list_2 = \{(1, 0), (1, 1)\}$ $list_3 = \{(2, 0), (2, 1),$ $(3, 0), (3, 1)$ $list_4 = \emptyset$ $list_5 = \emptyset$ $list_6 = \emptyset$ $list_7 = \emptyset$

Abstraction Example: Shrink Step

4. Regenerate the mapping table from the linked lists.

 $list_0 = \{(0, 0)\}\$ $list_1 = \{(0, 1)\}\$ $list_2 = \{(1, 0), (1, 1)\}$ $list_3 = \{(2, 0), (2, 1),$ $(3, 0), (3, 1)$ $list_4 = \emptyset$ $list_5 = \emptyset$ $list_6 = \emptyset$ $list_7 = \emptyset$

Abstraction Example: Shrink Step

4. Regenerate the mapping table from the linked lists.

The Final Heuristic Representation

At the end, our heuristic is represented by six tables:

 \blacksquare three one-dimensional tables for the atomic abstractions:

■ two tables for the two merge and subsequent shrink steps:

 \blacksquare one table with goal distances for the final transition system:

T_h	$s = 0$	$s = 1$	$s = 2$	$s = 3$
$h(s)$	3	2	0	1

Given a state $s = \{$ package \mapsto *L*, truck $A \mapsto L$, truck $B \mapsto R\}$, its heuristic value is then looked up as:

$$
\blacksquare \; h(s) = T_h[T_{\text{m\&s}}^2[T_{\text{m\&s}}^1[T_{\text{package}}^1[L], T_{\text{truck A}}[L]], T_{\text{truck B}}[R]]]
$$

[Summary](#page-56-0)

Summary (1)

- Merge-and-shrink abstractions are constructed by iteratively transforming the factored transition system of a planning task.
- **Merge transformations combine two factors** into their synchronized product.
- **Shrink transformations reduce the size of a factor** by abstracting it.

Summary (1)

- Merge-and-shrink abstractions are constructed by iteratively transforming the factored transition system of a planning task.
- **Merge transformations combine two factors** into their synchronized product.
- Shrink transformations reduce the size of a factor by abstracting it.
- Merge-and-shrink abstractions are represented by a set of reference tables, one for each atomic abstraction and one for each merge-and-shrink step.
- The heuristic representation uses an additional table for the goal distances in the final abstract transition system.

Summary (2)

- Projections of SAS⁺ tasks correspond to merges of atomic factors.
- By also including shrinking, merge-and-shrink abstractions generalize projections: they can reflect all state variables, but in a potentially lossy way.