Automated Planning

E7. Merge-and-Shrink: Factored Transition Systems

Jendrik Seipp

Linköping University

based on slides from the AI group at the University of Basel

Content of this Course

[Motivation](#page-2-0)

Beyond Pattern Databases

- Despite their popularity, pattern databases have some fundamental limitations (\rightarrow example on next slides).
- Today and next time, we study a class of abstractions called merge-and-shrink abstractions.
- Merge-and-shrink abstractions can be seen as a proper generalization of pattern databases.
	- They can do everything that pattern databases can do (modulo polynomial extra effort).
	- They can do some things that pattern databases cannot.

[Motivation](#page-2-0) [Main Idea](#page-8-0) [Atomic Projections](#page-14-0) [Synchronized Product](#page-19-0) [Factored Transition Systems](#page-32-0) [Summary](#page-38-0)

Back to the Running Example

Logistics problem with one package, two trucks, two locations:

- state variable package: {*L*, *^R*, *^A*, *^B*} \mathbb{R}^n
- state variable truck A: {*L*, *^R*}
- **state variable truck B:** $\{L, R\}$

Example: Projection (1)

 $\mathcal{T}^{\pi_{\{\text{package}\}}}$:

Example: Projection (2)

 $\mathcal{T}^{\pi_{\{\text{package}, \text{truck } \text{A}\}}}$:

Limitations of Projections

How accurate is the PDB heuristic?

- consider generalization of the example: *N* trucks, 1 package
- consider any pattern that is a proper subset of variable set *V*
- $h(s_0) \leq 2 \rightarrow \infty$ **no better than atomic projection to package**

These values cannot be improved by maximizing over several patterns or using additive patterns.

Merge-and-shrink abstractions can represent heuristics with $h(s_0) \geq 3$ for tasks of this kind of any size. Time and space requirements are linear in *N*.

(In fact, with time/space $O(N^2)$ we can construct a merge-and-shrink abstraction that gives the perfect heuristic *h* $~~*~~ for such tasks, but we do not show this here.)$

[Main Idea](#page-8-0)

Merge-and-Shrink Abstractions: Main Idea

Main Idea of Merge-and-shrink Abstractions

(due to Dräger, Finkbeiner & Podelski, 2006):

Instead of perfectly reflecting a few state variables, reflect all state variables, but in a potentially lossy way.

- Represent planning task as factored transition system (FTS): a set of (small) abstract transition systems (factors) that jointly represent the full transition system of the task.
- Iteratively transform FTS by:
	- $\mathcal{L}_{\mathcal{A}}$ merging: combining two factors into one
	- shrinking: reducing the size of a single factor by abstraction
- When only a single factor is left, its goal distances are the merge-and-shrink heuristic values.

Merge-and-Shrink Abstractions: Idea

Start from atomic factors (projections to single state variables)

[Motivation](#page-2-0) [Main Idea](#page-8-0) [Atomic Projections](#page-14-0) [Synchronized Product](#page-19-0) [Factored Transition Systems](#page-32-0) [Summary](#page-38-0)

Merge-and-Shrink Abstractions: Idea

Merge: replace two factors with their product

[Motivation](#page-2-0) [Main Idea](#page-8-0) [Atomic Projections](#page-14-0) [Synchronized Product](#page-19-0) [Factored Transition Systems](#page-32-0) [Summary](#page-38-0)

Merge-and-Shrink Abstractions: Idea

Shrink: replace a factor by an abstraction of it

[Atomic Projections](#page-14-0)

Running Example: Explanations

- Atomic projections (projections to a single state variable) play an important role for merge-and-shrink abstractions.
- Unlike previous chapters, transition labels are critically important for merge-and-shrink.
- Hence we now look at the transition systems for atomic projections of our example task, including transition labels.
- We abbreviate labels (operator names) as in these examples:
	- MALR: move truck A from left to right
	- DAR: drop package from truck A at right location
	- PBL: pick up package with truck B at left location
- We abbreviate parallel arcs with commas and wildcards (\star) as in these examples:
	- PAL, DAL: two parallel arcs labeled PAL and DAL
	- MA**★★: two parallel arcs labeled MALR and MARL**

Running Example: Atomic Projection for Package

 $\mathcal{T}^{\pi_{\{\text{package}\}}}.$

Running Example: Atomic Projection for Truck A

 $\mathcal{T}^{\pi_{\{\mathsf{truck}\,\mathsf{A}\}}}$:

Running Example: Atomic Projection for Truck B

 $\mathcal{T}^{\pi_{\{\mathsf{truck}\,\mathsf{B}\}}}$:

[Synchronized Product](#page-19-0)

Synchronized Product: Idea

- Given two abstract transition systems with the same labels, we can compute a product transition system.
- The product transition system captures all information **I** of both transition systems.
- A sequence of labels is a solution for the product iff it is a solution for both factors.

Synchronized Product of Transition Systems

Definition (Synchronized Product of Transition Systems)

For *i* ∈ {1, 2}, let $T_i = \langle S_i, L, c, T_i, s_{0i}, S_{\star i} \rangle$ be transition systems with the same labels and cost function same labels and cost function.

The synchronized product of \mathcal{T}_1 and \mathcal{T}_2 , in symbols $\mathcal{T}_1 \otimes \mathcal{T}_2$, is the transition system $\mathcal{T}_{\otimes} = \langle S_{\otimes}, L, c, T_{\otimes}, S_{\otimes} \rangle$ with

\n- \n
$$
S_{\otimes} = S_1 \times S_2
$$
\n
\n- \n $T_{\otimes} = \{ \langle s_1, s_2 \rangle \xrightarrow{\ell} \langle t_1, t_2 \rangle \mid s_1 \xrightarrow{\ell} t_1 \in T_1 \text{ and } s_2 \xrightarrow{\ell} t_2 \in T_2 \}$ \n
\n- \n $S_{0\otimes} = \langle s_{01}, s_{02} \rangle$ \n
\n- \n $S_{\star\otimes} = S_{\star1} \times S_{\star2}$ \n
\n

 $\mathcal{T}^{\pi_{\{\text{package}\}}} \otimes \mathcal{T}^{\pi_{\{\text{truck A}\}}}$:


```
\mathcal{T}^{\pi_{\{\text{package}\}}} \otimes \mathcal{T}^{\pi_{\{\text{truck A}\}}} :
```
 $S_{\otimes} = S_1 \times S_2$

$$
\mathcal{T}^{\pi_{\{\text{package}\}}}\otimes \mathcal{T}^{\pi_{\{\text{fruckA}\}}}:
$$

$$
s_{0\otimes} = \langle s_{01}, s_{02} \rangle
$$


```
\mathcal{T}^{\pi_{\{\text{package}\}}} \otimes \mathcal{T}^{\pi_{\{\text{truck A}\}}} :
```
 $S_{\star\otimes} = S_{\star1} \times S_{\star2}$

Associativity and Commutativity

- Up to isomorphism ("names of states"), products are associative and commutative:
	- $(\mathcal{T} \otimes \mathcal{T}') \otimes \mathcal{T}'' \sim \mathcal{T} \otimes (\mathcal{T}' \otimes \mathcal{T}'')$
	- \blacksquare $T \otimes T' \sim T' \otimes T$
- We do not care about names of states and thus treat products as associative and commutative.
- We can then define the product of a set $F = \{T_1, \ldots, T_n\}$
of transition systems: $\bigotimes F := T_1 \otimes \cdots \otimes T_n$ of transition systems: $\bigotimes F := \mathcal{T}_1 \otimes \ldots \otimes \mathcal{T}_n$

[Factored Transition Systems](#page-32-0)

Merge & Shrink

Strategies

Label Reduction

Factored Transition System

Definition (Factored Transition System)

A finite set $F = \{T_1, \ldots, T_n\}$ of transition systems
with the same labels and cost function with the same labels and cost function is called a factored transition system (FTS).

F represents the transition system \otimes *F*.

A planning task gives rise to an FTS via its atomic projections:

Definition (Factored Transition System Induced by Planning Task)

Let Π be a planning task with state variables *V*.

The factored transition system induced by Π is the FTS $F(\Pi) = \{ \mathcal{T}^{\pi_{\{v\}}} \mid v \in V \}.$

Back to the Example Product

$\mathcal{T}^{\pi_{\{\text{package}\}}} \otimes \mathcal{T}^{\pi_{\{\text{truck A}\}}}$:

We have $\mathcal{T}^{\pi_{\{\text{package}\}}} \otimes \mathcal{T}^{\pi_{\{\text{truckA}\}}} \sim \mathcal{T}^{\pi_{\{\text{package,truckA}\}}}$. Coincidence?

Products of Projections

Theorem (Products of Projections)

Let Π *be a* SAS⁺ *planning task with variable set V, and let V*¹ *and V*² *be disjoint subsets of V.*

 $\mathcal{T}^{\pi_{V_1}} \otimes \mathcal{T}^{\pi_{V_2}} \sim \mathcal{T}^{\pi_{V_1 \cup V_2}}$ *.*

 \rightarrow products allow us to build finer projections from coarser ones

Recovering $\mathcal{T}(\Pi)$ from the Factored Transition System

- \blacksquare By repeated application of the theorem, we can recover all pattern database heuristics of a SAS⁺ planning task as products of atomic factors.
- \blacksquare Moreover, by computing the product of all atomic projections, we can recover the identity abstraction id $=\pi_V$.

This implies:

Corollary (Recovering $\mathcal{T}(\Pi)$ from the Factored Transition System)

Let Π *be a* SAS⁺ *planning task. Then* \mathcal{R} *F*(Π) ~ $\mathcal{T}(\Pi)$ *.*

This is an important result because it shows that *F*(Π) represents all important information about Π.

[Summary](#page-38-0)

[Motivation](#page-2-0) [Main Idea](#page-8-0) [Atomic Projections](#page-14-0) [Synchronized Product](#page-19-0) [Factored Transition Systems](#page-32-0) [Summary](#page-38-0)

Summary

- \blacksquare A factored transition system is a set of transition systems that represents a larger transition system by focusing on its individual components (factors).
- For planning tasks, these factors are the atomic projections (projections to single state variables).
- The synchronized product $T \otimes T'$ of two transition systems with the same labels captures their "joint behaviour".
- For SAS⁺ tasks, all projections can be obtained as products of atomic projections.
- In particular, the product of all factors of a $SAS⁺$ task results in the full transition system of the task.