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Pattern Database Heuristics

The most commonly used abstraction heuristics in search
and planning are pattern database (PDB) heuristics.

PDB heuristics were originally introduced
for the 15-puzzle (Culberson & Schaeffer, 1996)
and for Rubik’s cube (Korf, 1997).

The first use for domain-independent planning
is due to Edelkamp (2001).

Since then, much research has focused on the theoretical
properties of pattern databases, how to use pattern databases
more effectively, how to find good patterns, etc.

Pattern databases are a very active research area
both in planning and in (domain-specific) heuristic search.

For many search problems, pattern databases are
the most effective admissible heuristics currently known.
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Pattern Database Heuristics Informally

Pattern Databases: Informally
A pattern database heuristic for a planning task
is an abstraction heuristic where

some aspects of the task are represented in the abstraction
with perfect precision, while

all other aspects of the task are not represented at all.

This is achieved by projecting the task onto the variables
that describe the aspects that are represented.

Example (15-Puzzle)

Choose a subset T of tiles (the pattern).

Faithfully represent the locations of T in the abstraction.

Assume that all other tiles and the blank can be anywhere
in the abstraction.
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Projections

Formally, pattern database heuristics are abstraction heuristics induced
by a particular class of abstractions called projections.

Definition (Projection)
Let Π be an FDR planning task with variables V and states S.
Let P ⊆ V, and let S′ be the set of states over P.

The projection πP : S → S′ is defined as πP(s) := s|P,
(where s|P(v) := s(v) for all v ∈ P).

We call P the pattern of the projection πP.

In other words, πP maps two states s1 and s2 to the same
abstract state iff they agree on all variables in P.
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Pattern Database Heuristics

Abstraction heuristics based on projections are called
pattern database (PDB) heuristics.

Definition (Pattern Database Heuristic)
The abstraction heuristic induced by πP is called
a pattern database heuristic or PDB heuristic.
We write hP as a shorthand for hπP .

Why are they called pattern database heuristics?

Heuristic values for PDB heuristics are traditionally stored in a
1-dimensional table (array) called a pattern database (PDB).
Hence the name “PDB heuristic”.

The word pattern database alludes to endgame databases
for 2-player games (in particular chess and checkers).
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Example: Transition System
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Logistics problem with one package, two trucks, two locations:
state variable package: {L, R, A, B}
state variable truck A: {L, R}
state variable truck B: {L, R}

8/24



Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Example: Projection (1)

Abstraction induced by π{package} :
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h{package} (LRR) = 2
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Example: Projection (2)

Abstraction induced by π{package,truck A} :
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Implementing PDBs: Precomputation
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Pattern Database Implementation

Assume we are given a pattern P for a planning task Π.
How do we implement hP?

1 In a precomputation step, we compute a graph representation for
the abstraction T (Π)πP and compute the abstract goal distance for
each abstract state.

2 During search, we use the precomputed abstract goal distances in a
lookup step.
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Precomputation Step

Let Π be a planning task and P a pattern.
Let T = T (Π) and T ′ = T πP .

We want to compute a graph representation of T ′.
T ′ is defined through an abstraction of T .

For example, each concrete transition induces
an abstract transition.

However, we cannot compute T ′ by iterating
over all transitions of T .

This would take time Ω(∥T ∥).
This is prohibitively long (or else we could solve the task
using uniform-cost search or similar techniques).

Hence, we need a way of computing T ′ in time
which is polynomial only in ∥Π∥ and ∥T ′∥.
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Syntactic Projections

Definition (Syntactic Projection)
Let Π = ⟨V, I, O, γ⟩ be an FDR planning task,
and let P ⊆ V be a subset of its variables.
The syntactic projection Π |P of Π to P is the FDR planning task
⟨P, I|P, {o|P | o ∈ O}, γ |P⟩, where

ϕ |P for formula ϕ is defined as the formula obtained from ϕ by
replacing all atoms (v = d) with v < P by ⊤, and

o|P for operator o is defined by replacing all formulas ϕ occurring in
the precondition or effect conditions of o with ϕ |P and all atomic
effects (v := d) with v < P with the empty effect ⊤.

Put simply, Π |P throws away all information not pertaining
to variables in P.
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Idea

Π T (Π)

T (Π)πP

T (Π|P)Π|P
relationship?

induced TS

abstract TS

induced TS

syntactic projection

Π |P can be computed in linear time in ∥Π∥.

If T (Π|P) was “equivalent” to T (Π)πP this would give us an
efficient way to compute T (Π)πP .

What do we mean with “equivalent”?

Is this actually the case?
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Equivalence Theorem for Syntactic Projections

Theorem (Syntactic Projections vs. Projections)

Let Π be a SAS+ task, and let P be a pattern for Π.
Then T (Π)πP and T (Π |P) are isomorphic.

Two isomorphic transition systems are interchangeable for all practical
intents and purposes.
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PDB Computation

Using the equivalence theorem, we can compute pattern databases for
SAS+ tasks Π and patterns P:

Computing Pattern Databases

def compute-PDB(Π, P):
Compute Π′ := Π|P.
Compute T ′ := T (Π′).
Perform a backward uniform-cost search from the goal

states of T ′ to compute all abstract goal distances.
PDB := a table containing all goal distances in T ′

return PDB

The algorithm runs in polynomial time and space
in terms of ∥Π∥ + |PDB|.
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Implementing PDBs: Lookup
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Lookup Step: Overview

During search, the PDB is the only piece of information
necessary to represent hP. (It is not necessary to store
the abstract transition system itself at this point.)

Hence, the space requirements for PDBs during search
are linear in the number of abstract states S′:
there is one table entry for each abstract state.

During search, hP(s) is computed by mapping
πP(s) to a natural number in the range {0, . . . , |S′ | − 1}
using a perfect hash function, then looking up
the table entry for this number.
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Lookup Step: Algorithm

Let P = {v1, . . . , vk} be the pattern.

We assume that all variable domains are natural numbers counted
from 0, i.e., dom(v) = {0, 1, . . . , |dom(v) | − 1}.

For all i ∈ {1, . . . , k}, we precompute Ni :=
∏i−1

j=1 |dom(vj) |.

Then we can look up heuristic values as follows:

Computing Pattern Database Heuristics

def PDB-heuristic(s):
index :=

∑k
i=1 Nis(vi)

return PDB[index]

This is a very fast operation: it can be performed in O(k).
For comparison, most relaxation heuristics need time O(∥Π∥) per
state.
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Lookup Step: Example (1)

Abstraction induced by π{package,truck A} :
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Lookup Step: Example (2)

P = {v1, v2} with v1 = package, v2 = truck A.

dom(v1) = {L, R, A, B} ≈ {0, 1, 2, 3}
dom(v2) = {L, R} ≈ {0, 1}

{ N1 =
∏0

j=1 |dom(vj) | = 1, N2 =
∏1

j=1 |dom(vj) | = 4

{ index(s) = 1 · s(package) + 4 · s(truck A)
Pattern database:
abstract state LL RL AL BL LR RR AR BR

index 0 1 2 3 4 5 6 7
value 2 0 2 1 2 0 1 1
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Summary
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Summary

Pattern database (PDB) heuristics are abstraction heuristics
based on projection to a subset of variables.

For SAS+ tasks, they can easily be implemented
via syntactic projections of the task representation.

PDBs are lookup tables that store heuristic values,
indexed by perfect hash values for projected states.

PDB values can be looked up very fast,
in time O(k) for a projection to k variables.
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