
Automated Planning
E6. Pattern Databases

Jendrik Seipp

Linköping University

based on slides from the AI group at the University of Basel

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Content of this Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Abstraction

Abstractions
in General

Pattern
Databases

Merge & Shrink
Constraints

2/24

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Projections and Pattern Database
Heuristics

3/24

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Pattern Database Heuristics

The most commonly used abstraction heuristics in search
and planning are pattern database (PDB) heuristics.

PDB heuristics were originally introduced
for the 15-puzzle (Culberson & Schaeffer, 1996)
and for Rubik’s cube (Korf, 1997).

The first use for domain-independent planning
is due to Edelkamp (2001).

Since then, much research has focused on the theoretical
properties of pattern databases, how to use pattern databases
more effectively, how to find good patterns, etc.

Pattern databases are a very active research area
both in planning and in (domain-specific) heuristic search.

For many search problems, pattern databases are
the most effective admissible heuristics currently known.

4/24

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Pattern Database Heuristics Informally

Pattern Databases: Informally
A pattern database heuristic for a planning task
is an abstraction heuristic where

some aspects of the task are represented in the abstraction
with perfect precision, while

all other aspects of the task are not represented at all.

This is achieved by projecting the task onto the variables
that describe the aspects that are represented.

Example (15-Puzzle)

Choose a subset T of tiles (the pattern).

Faithfully represent the locations of T in the abstraction.

Assume that all other tiles and the blank can be anywhere
in the abstraction.

5/24

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Projections

Formally, pattern database heuristics are abstraction heuristics induced
by a particular class of abstractions called projections.

Definition (Projection)
Let Π be an FDR planning task with variables V and states S.
Let P ⊆ V, and let S′ be the set of states over P.

The projection πP : S → S′ is defined as πP(s) := s|P,
(where s|P(v) := s(v) for all v ∈ P).

We call P the pattern of the projection πP.

In other words, πP maps two states s1 and s2 to the same
abstract state iff they agree on all variables in P.

6/24

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Pattern Database Heuristics

Abstraction heuristics based on projections are called
pattern database (PDB) heuristics.

Definition (Pattern Database Heuristic)
The abstraction heuristic induced by πP is called
a pattern database heuristic or PDB heuristic.
We write hP as a shorthand for hπP .

Why are they called pattern database heuristics?

Heuristic values for PDB heuristics are traditionally stored in a
1-dimensional table (array) called a pattern database (PDB).
Hence the name “PDB heuristic”.

The word pattern database alludes to endgame databases
for 2-player games (in particular chess and checkers).

7/24

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Example: Transition System

LRR LLL

LLR

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLL

Logistics problem with one package, two trucks, two locations:
state variable package: {L, R, A, B}
state variable truck A: {L, R}
state variable truck B: {L, R}

8/24

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Example: Projection (1)

Abstraction induced by π{package} :

LRR LLL

LLR

LRL

LRR

LLR

LRL

LLL

ALR ARL

ALL ARR

ALR ARL

ARRALL

BLL

BRL

BRR

BLR

BLL BRR

BLRBRL

RRR

RRL

RLR

RLLRLL

RRL

RLR

RRR

h{package} (LRR) = 2

9/24

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Example: Projection (2)

Abstraction induced by π{package,truck A} :

LRR

LRL

LRR

LRL

LLL

LLRLLR

LLL

ALR

ALL

ALR

ALL

ARL

ARR

ARL

ARR

BLR

BLL BRR

BRL

BLL

BLR

BRR

BRL

RRR

RRLRRL

RRR

RLR

RLLRLL

RLR

h{package,truck A} (LRR) = 2

10/24

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Example: Projection (2)

Abstraction induced by π{package,truck A} :

LRR

LRL

LRR

LRL

LLL

LLRLLR

LLL

ALR

ALL

ALR

ALL

ARL

ARR

ARL

ARR

BRR

BLL BLR

BRL

BLL BLR

BRL BRR

RRR

RRLRRL

RRR

RLR

RLLRLL

RLR

h{package,truck A} (LRR) = 2

10/24

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Implementing PDBs: Precomputation

11/24

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Pattern Database Implementation

Assume we are given a pattern P for a planning task Π.
How do we implement hP?

1 In a precomputation step, we compute a graph representation for
the abstraction T (Π)πP and compute the abstract goal distance for
each abstract state.

2 During search, we use the precomputed abstract goal distances in a
lookup step.

12/24

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Precomputation Step

Let Π be a planning task and P a pattern.
Let T = T (Π) and T ′ = T πP .

We want to compute a graph representation of T ′.
T ′ is defined through an abstraction of T .

For example, each concrete transition induces
an abstract transition.

However, we cannot compute T ′ by iterating
over all transitions of T .

This would take time Ω(∥T ∥).
This is prohibitively long (or else we could solve the task
using uniform-cost search or similar techniques).

Hence, we need a way of computing T ′ in time
which is polynomial only in ∥Π∥ and ∥T ′∥.

13/24

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Syntactic Projections

Definition (Syntactic Projection)
Let Π = ⟨V, I, O, γ⟩ be an FDR planning task,
and let P ⊆ V be a subset of its variables.
The syntactic projection Π |P of Π to P is the FDR planning task
⟨P, I|P, {o|P | o ∈ O}, γ |P⟩, where

ϕ |P for formula ϕ is defined as the formula obtained from ϕ by
replacing all atoms (v = d) with v < P by ⊤, and

o|P for operator o is defined by replacing all formulas ϕ occurring in
the precondition or effect conditions of o with ϕ |P and all atomic
effects (v := d) with v < P with the empty effect ⊤.

Put simply, Π |P throws away all information not pertaining
to variables in P.

14/24

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Idea

Π T (Π)

T (Π)πP

T (Π|P)Π|P
relationship?

induced TS

abstract TS

induced TS

syntactic projection

Π |P can be computed in linear time in ∥Π∥.

If T (Π|P) was “equivalent” to T (Π)πP this would give us an
efficient way to compute T (Π)πP .

What do we mean with “equivalent”?

Is this actually the case?

15/24

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Idea

Π T (Π)

T (Π)πP
T (Π|P)Π |P

relationship?

induced TS

abstract TS

induced TS

syntactic projection

Π |P can be computed in linear time in ∥Π∥.

If T (Π|P) was “equivalent” to T (Π)πP this would give us an
efficient way to compute T (Π)πP .

What do we mean with “equivalent”?

Is this actually the case?

15/24

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Idea

Π T (Π)

T (Π)πP
T (Π|P)Π |P

relationship?

induced TS

abstract TS

induced TS

syntactic projection

Π |P can be computed in linear time in ∥Π∥.

If T (Π|P) was “equivalent” to T (Π)πP this would give us an
efficient way to compute T (Π)πP .

What do we mean with “equivalent”?

Is this actually the case?

15/24

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Idea

Π T (Π)

T (Π)πP
T (Π|P)Π |P

relationship?

induced TS

abstract TS

induced TS

syntactic projection

Π |P can be computed in linear time in ∥Π∥.

If T (Π|P) was “equivalent” to T (Π)πP this would give us an
efficient way to compute T (Π)πP .

What do we mean with “equivalent”?

Is this actually the case?

15/24

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Equivalence Theorem for Syntactic Projections

Theorem (Syntactic Projections vs. Projections)

Let Π be a SAS+ task, and let P be a pattern for Π.
Then T (Π)πP and T (Π |P) are isomorphic.

Two isomorphic transition systems are interchangeable for all practical
intents and purposes.

16/24

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

PDB Computation

Using the equivalence theorem, we can compute pattern databases for
SAS+ tasks Π and patterns P:

Computing Pattern Databases

def compute-PDB(Π, P):
Compute Π′ := Π|P.
Compute T ′ := T (Π′).
Perform a backward uniform-cost search from the goal

states of T ′ to compute all abstract goal distances.
PDB := a table containing all goal distances in T ′

return PDB

The algorithm runs in polynomial time and space
in terms of ∥Π∥ + |PDB|.

17/24

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Implementing PDBs: Lookup

18/24

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Lookup Step: Overview

During search, the PDB is the only piece of information
necessary to represent hP. (It is not necessary to store
the abstract transition system itself at this point.)

Hence, the space requirements for PDBs during search
are linear in the number of abstract states S′:
there is one table entry for each abstract state.

During search, hP(s) is computed by mapping
πP(s) to a natural number in the range {0, . . . , |S′ | − 1}
using a perfect hash function, then looking up
the table entry for this number.

19/24

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Lookup Step: Algorithm

Let P = {v1, . . . , vk} be the pattern.

We assume that all variable domains are natural numbers counted
from 0, i.e., dom(v) = {0, 1, . . . , |dom(v) | − 1}.

For all i ∈ {1, . . . , k}, we precompute Ni :=
∏i−1

j=1 |dom(vj) |.

Then we can look up heuristic values as follows:

Computing Pattern Database Heuristics

def PDB-heuristic(s):
index :=

∑k
i=1 Nis(vi)

return PDB[index]

This is a very fast operation: it can be performed in O(k).
For comparison, most relaxation heuristics need time O(∥Π∥) per
state.

20/24

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Lookup Step: Example (1)

Abstraction induced by π{package,truck A} :

LRR

LRL

LRR

LRL

LLL

LLRLLR

LLL

ALR

ALL

ALR

ALL

ARL

ARR

ARL

ARR

BRR

BLL BLR

BRL

BLL BLR

BRL BRR

RRR

RRLRRL

RRR

RLR

RLLRLL

RLR

21/24

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Lookup Step: Example (2)

P = {v1, v2} with v1 = package, v2 = truck A.

dom(v1) = {L, R, A, B} ≈ {0, 1, 2, 3}
dom(v2) = {L, R} ≈ {0, 1}

{ N1 =
∏0

j=1 |dom(vj) | = 1, N2 =
∏1

j=1 |dom(vj) | = 4

{ index(s) = 1 · s(package) + 4 · s(truck A)
Pattern database:
abstract state LL RL AL BL LR RR AR BR

index 0 1 2 3 4 5 6 7
value 2 0 2 1 2 0 1 1

22/24

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Summary

23/24

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Summary

Pattern database (PDB) heuristics are abstraction heuristics
based on projection to a subset of variables.

For SAS+ tasks, they can easily be implemented
via syntactic projections of the task representation.

PDBs are lookup tables that store heuristic values,
indexed by perfect hash values for projected states.

PDB values can be looked up very fast,
in time O(k) for a projection to k variables.

24/24

	Projections and Pattern Database Heuristics
	

	Implementing PDBs: Precomputation
	

	Implementing PDBs: Lookup
	

	Summary
	

