
Automated Planning

E5. Abstractions: Orthogonality and Additivity

Jendrik Seipp

Linköping University

Content of this Course

Additivity

Orthogonality of Abstractions

Definition (Orthogonal)

Let α_1 and α_2 be abstractions of transition system \mathcal{T} .

We say that α_1 and α_2 are orthogonal if for all transitions $s \stackrel{\ell}{\to} t$ of \mathcal{T} , we have $\alpha_1(s) = \alpha_1(t)$ or $\alpha_2(s) = \alpha_2(t)$.

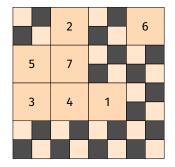
Affecting Transition Labels

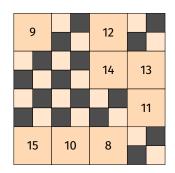
Definition (Affecting Transition Labels)

Let $\mathcal T$ be a transition system, and let ℓ be one of its labels. We say that ℓ affects $\mathcal T$ if $\mathcal T$ has a transition $s \xrightarrow{\ell} t$ with $s \neq t$.

Theorem (Affecting Labels vs. Orthogonality)

Let α_1 and α_2 be abstractions of transition system \mathcal{T} . If no label of \mathcal{T} affects both \mathcal{T}^{α_1} and \mathcal{T}^{α_2} , then α_1 and α_2 are orthogonal.


Orthogonal Abstractions: Example

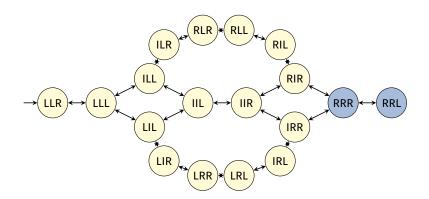

	2		6
5	7		
3	4	1	

9		12	
		14	13
			11
15	10	8	

Are the abstractions orthogonal? \rightsquigarrow No, because the blank is considered both in \mathcal{T}^{α_1} and \mathcal{T}^{α_2} .

Orthogonal Abstractions: Example

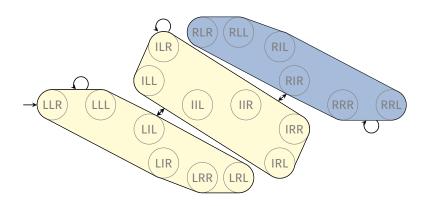
Are the abstractions orthogonal? → Yes.


Orthogonality and Additivity

Theorem (Additivity for Orthogonal Abstractions)

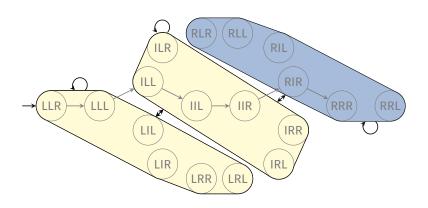
Let $h^{\alpha_1}, \ldots, h^{\alpha_n}$ be abstraction heuristics of the same transition system such that α_i and α_i are orthogonal for all $i \neq j$.

Then $\sum_{i=1}^n h^{\alpha_i}$ is a safe, goal-aware, admissible and consistent heuristic for Π .


Additivity 000000

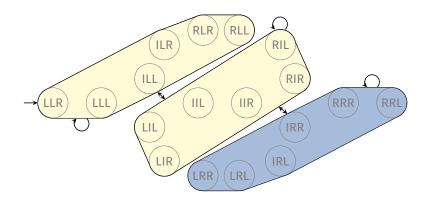
transition system ${\mathcal T}$

state variables: first package, second package, truck

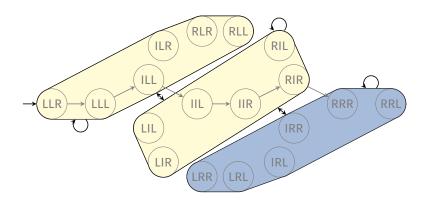

Additivity

abstraction α_1

abstraction: only consider value of first package


Additivity 000000

abstraction α_1


abstraction: only consider value of first package

Additivity

abstraction α_2 (orthogonal to α_1) abstraction: only consider value of second package

Additivity

abstraction α_2 (orthogonal to α_1) abstraction: only consider value of second package

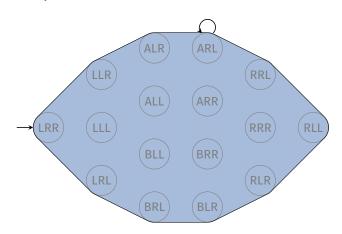
Outlook

Using Abstraction Heuristics in Practice

In practice, there are conflicting goals for abstractions:

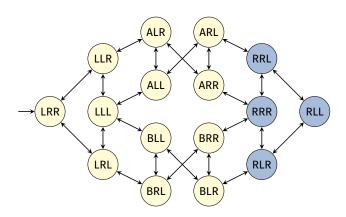
- we want to obtain an informative heuristic, but
- want to keep its representation small.

Abstractions have small representations if

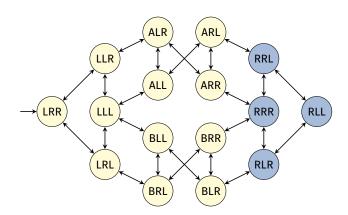

- there are few abstract states and
- there is a succinct encoding for α .

Counterexample: One-State Abstraction

One-state abstraction: $\alpha(s) := \text{const.}$

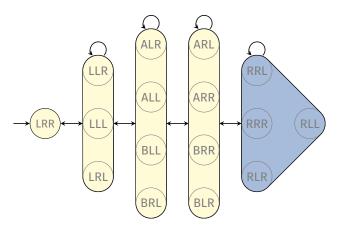

Counterexample: One-State Abstraction

One-state abstraction: $\alpha(s) := \text{const.}$


- + very few abstract states and succinct encoding for α
- completely uninformative heuristic

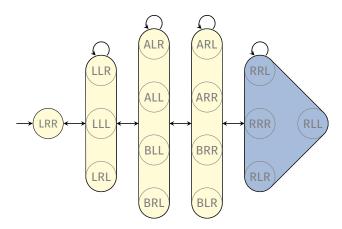
Counterexample: Identity Abstraction

Identity abstraction: $\alpha(s) := s$.


Counterexample: Identity Abstraction

Identity abstraction: $\alpha(s) := s$.

- + perfect heuristic and succinct encoding for α
- too many abstract states


Counterexample: Perfect Abstraction

Perfect abstraction: $\alpha(s) := h^*(s)$.

Counterexample: Perfect Abstraction

Perfect abstraction: $\alpha(s) := h^*(s)$.

- + perfect heuristic and usually few abstract states
- usually no succinct encoding for α

Automatically Deriving Good Abstraction Heuristics

Abstraction Heuristics for Planning: Main Research Problem

Automatically derive effective abstraction heuristics for planning tasks.

→ we will study two state-of-the-art approaches in the following chapters

Summary

Summary

- Abstraction heuristics from orthogonal abstractions can be added without losing admissibility or consistency.
- One sufficient condition for orthogonality is that all abstractions are affected by disjoint sets of labels.
- Practically useful abstractions are those which give informative heuristics, yet have a small representation.
- Coming up with good abstractions automatically is the main research challenge when applying abstraction heuristics in planning.