
Automated Planning
E3. Abstractions: Introduction

Jendrik Seipp

Linköping University

based on slides from the AI group at the University of Basel



Introduction Practical Requirements Multiple Abstractions Outlook Summary

Content of this Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Abstraction

Abstractions
in General

Pattern
Databases

Merge & Shrink
Constraints

2/21



Introduction Practical Requirements Multiple Abstractions Outlook Summary

Introduction

3/21



Introduction Practical Requirements Multiple Abstractions Outlook Summary

Coming Up with Heuristics in a Principled Way

General Procedure for Obtaining a Heuristic
Solve a simplified version of the problem.

Major ideas for heuristics in the planning literature:

delete relaxation

abstraction

critical paths

landmarks

network flows

potential heuristics

Heuristics based on abstraction are among the most prominent
techniques for optimal planning.

4/21



Introduction Practical Requirements Multiple Abstractions Outlook Summary

Abstracting a Transition System

Abstracting a transition system means dropping some distinctions
between states, while preserving the transition behaviour
as much as possible.

An abstraction of a transition system T is defined by
an abstraction mapping α that defines which states of T
should be distinguished and which ones should not.

From T and α , we compute an abstract transition system T α which
is similar to T , but smaller.

The abstract goal distances (goal distances in T α )
are used as heuristic estimates for goal distances in T .

5/21



Introduction Practical Requirements Multiple Abstractions Outlook Summary

Abstracting a Transition System: Example

example from domain-specific heuristic search:

Example (15-Puzzle)
A 15-puzzle state is given by a permutation ⟨b, t1, . . . , t15⟩
of {1, . . . , 16}, where b denotes the blank position
and the other components denote the positions of the 15 tiles.

One possible abstraction mapping ignores the precise location
of tiles 8–15, i.e., two states are distinguished iff they differ
in the position of the blank or one of the tiles 1–7:

α (⟨b, t1, . . . , t15⟩) = ⟨b, t1, . . . , t7⟩

The heuristic values for this abstraction correspond to the cost
of moving tiles 1–7 to their goal positions.

6/21



Introduction Practical Requirements Multiple Abstractions Outlook Summary

Abstraction Example: 15-Puzzle

9 2 12 6

5 7 14 13

3 4 1 11

15 10 8

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

real state space:

16! = 20922789888000 ≈ 2 · 1013 states
16!
2 = 10461394944000 ≈ 1013 reachable states

7/21



Introduction Practical Requirements Multiple Abstractions Outlook Summary

Abstraction Example: 15-Puzzle

2 6

5 7

3 4 1

1 2 3 4

5 6 7

abstract state space:

16 · 15 · . . . · 9 = 518918400 ≈ 5 · 108 states

16 · 15 · . . . · 9 = 518918400 ≈ 5 · 108 reachable states

7/21



Introduction Practical Requirements Multiple Abstractions Outlook Summary

Computing the Abstract Transition System

Given T and α , how do we compute T α ?

Requirement
We want to obtain an admissible heuristic.
Hence, h∗(α (s)) (in the abstract state space T α ) should never
overestimate h∗(s) (in the concrete state space T ).

An easy way to achieve this is to ensure that all solutions in T
are also present in T α :

If s is a goal state in T , then α (s) is a goal state in T α .

If T has a transition from s to t, then T α

has a transition from α (s) to α (t) with the same cost.

8/21



Introduction Practical Requirements Multiple Abstractions Outlook Summary

Computing the Abstract Transition System: Example

Example (15-Puzzle)
In the running example:

T has the unique goal state ⟨16, 1, 2, . . . , 15⟩.
{ T α has the unique goal state ⟨16, 1, 2, . . . , 7⟩.

Let x and y be neighbouring positions in the 4 × 4 grid.
T has a transition from ⟨x, t1, . . . , ti−1, y, ti+1, . . . , t15⟩
to ⟨y, t1, . . . , ti−1, x, ti+1, . . . , t15⟩ for all i ∈ {1, . . . , 15}.
{ T α has a transition from ⟨x, t1, . . . , ti−1, y, ti+1, . . . , t7⟩

to ⟨y, t1, . . . , ti−1, x, ti+1, . . . , t7⟩ for all i ∈ {1, . . . , 7}.
{ Moreover, T α has a transition from ⟨x, t1, . . . , t7⟩

to ⟨y, t1, . . . , t7⟩ if y < {t1, . . . , t7}.

9/21



Introduction Practical Requirements Multiple Abstractions Outlook Summary

Practical Requirements

10/21



Introduction Practical Requirements Multiple Abstractions Outlook Summary

Practical Requirements for Abstractions

To be useful in practice, an abstraction heuristic must be
efficiently computable. This gives us two requirements for α :

For a given state s, the abstract state α (s)
must be efficiently computable.

For a given abstract state α (s), the abstract goal distance
h∗(α (s)) must be efficiently computable.

There are a number of ways of achieving these requirements:

pattern database heuristics (Culberson & Schaeffer, 1996)

domain abstractions (Hernádvölgyi and Holte, 2000)

merge-and-shrink abstractions (Dräger, Finkbeiner & Podelski, 2006)

Cartesian abstractions (Ball, Podelski & Rajamani, 2001)

structural patterns (Katz & Domshlak, 2008)

11/21



Introduction Practical Requirements Multiple Abstractions Outlook Summary

Practical Requirements for Abstractions: Example

Example (15-Puzzle)
In our running example, α can be very efficiently computed:
just project the given 16-tuple to its first 8 components.

To compute abstract goal distances efficiently during search,
the most common approach is to precompute all abstract goal distances
prior to search by performing a backward uniform-cost search from the
abstract goal state(s). These distances are then stored in a table
(requires ≈ 495 MiB RAM).

During search, computing h∗(α (s)) is just a table lookup.

This heuristic is an example of a pattern database heuristic.

12/21



Introduction Practical Requirements Multiple Abstractions Outlook Summary

Multiple Abstractions

13/21



Introduction Practical Requirements Multiple Abstractions Outlook Summary

Multiple Abstractions

One important practical question is how to come up
with a suitable abstraction mapping α .

Indeed, there is usually a huge number of possibilities,
and it is important to pick good abstractions
(i.e., ones that lead to informative heuristics).

However, it is generally not necessary to commit
to a single abstraction.

14/21



Introduction Practical Requirements Multiple Abstractions Outlook Summary

Combining Multiple Abstractions

Maximizing several abstractions:

Each abstraction mapping gives rise to an admissible heuristic.

By computing the maximum of several admissible heuristics,
we obtain another admissible heuristic which dominates
the component heuristics.

Thus, we can always compute several abstractions
and maximize over the individual abstract goal distances.

Adding several abstractions:

In some cases, we can even compute the sum
of individual estimates and still stay admissible.

Summation often leads to much higher estimates
than maximization, so it is important to understand
under which conditions summation of heuristics is admissible.

15/21



Introduction Practical Requirements Multiple Abstractions Outlook Summary

Maximizing Several Abstractions: Example

Example (15-Puzzle)
mapping to tiles 1–7 was arbitrary
{ can use any subset of tiles

with the same amount of memory required for the tables
for the mapping to tiles 1–7, we could store the tables
for nine different abstractions to six tiles and the blank

use maximum of individual estimates

16/21



Introduction Practical Requirements Multiple Abstractions Outlook Summary

Adding Several Abstractions: Example

9 2 12 6

5 7 14 13

3 4 1 11

15 10 8

9 2 12 6

5 7 14 13

3 4 1 11

15 10 8

1st abstraction: ignore precise location of 8–15

2nd abstraction: ignore precise location of 1–7

{ Is the sum of the abstraction heuristics admissible?

17/21



Introduction Practical Requirements Multiple Abstractions Outlook Summary

Adding Several Abstractions: Example

2 6

5 7

3 4 1

9 12

14 13

11

15 10 8

1st abstraction: ignore precise location of 8–15

2nd abstraction: ignore precise location of 1–7

{ The sum of the abstraction heuristics is not admissible.

17/21



Introduction Practical Requirements Multiple Abstractions Outlook Summary

Adding Several Abstractions: Example

2 6

5 7

3 4 1

9 12

14 13

11

15 10 8

1st abstraction: ignore precise location of 8–15 and blank

2nd abstraction: ignore precise location of 1–7 and blank

{ The sum of the abstraction heuristics is admissible.

17/21



Introduction Practical Requirements Multiple Abstractions Outlook Summary

Outlook

18/21



Introduction Practical Requirements Multiple Abstractions Outlook Summary

Our Plan for the Next Lectures

In the following, we take a deeper look at abstractions
and their use for admissible heuristics.

In the next two chapters, we formally introduce abstractions
and abstraction heuristics and study some of their
most important properties.

Afterwards, we discuss some particular classes
of abstraction heuristics in detail, namely

pattern database heuristics and

merge-and-shrink abstractions.

19/21



Introduction Practical Requirements Multiple Abstractions Outlook Summary

Summary

20/21



Introduction Practical Requirements Multiple Abstractions Outlook Summary

Summary

Abstraction is one of the principled ways of deriving heuristics
for planning tasks and transition systems in general.

The key idea is to map states to a smaller abstract transition system
T α by means of an abstraction function α .

Goal distances in T α are then used as admissible estimates
for goal distances in the original transition system.

To be practical, we must be able to compute abstraction functions
and determine abstract goal distances efficiently.

Often, multiple abstractions are used.
They can always be maximized admissibly.

Adding abstraction heuristics is not always admissible.
When it is, it leads to a stronger heuristic than maximizing.

21/21


	Introduction
	

	Practical Requirements
	

	Multiple Abstractions
	

	Outlook
	

	Summary
	


