Automated Planning

E1. Planning Tasks in Finite-Domain Representation

Jendrik Seipp

Linkdping University

based on slides from the Al group at the University of Basel

How We Continue

m The next class of heuristics we will consider
are abstraction heuristics.

Prelude
Foundations
Approaches

Delete Relaxation

Constraints

m However, this requires some preparations.

2/27

1ce and Normal Forms

Back to Foundations: Finite-Domain Representation

m Abstraction heuristics benefit from a more compact task
representation, called finite-domain representation.

m To understand the relationship to the propositional task
representation, we need to know a special kind of invariants,
namely mutexes.

~> We first get to know finite-domain representation (this chapter) and
then speak about invariants and transformations between the
representations (next chapter).

~> not specific to abstraction heuristics, but general foundations

3/27

Content of this Course

— Prelude

— Approaches

—1 Delete Relaxation

— Abstraction

— Constraints

4/27

Finite-Domain Representation

5/27

Finite-Domain Representation > and Normal Forms

0800000000000 00

Finite-Domain State Variables

m So far, we used propositional (Boolean) state variables.
~» possible values Tand F

m We now consider finite-domain variables.
~> every variable has a finite set of possible values

m A state is still an assignment to the state variables.

Example: 0(n?) Boolean variables or O(n) finite-domain variables with
domain size 0(n) suffice for blocks world with n blocks.

6/27

Finite-Domain Representation C e and Normal Forms Summary

0080000000000 00

Blocks World State with Propositional Variables

s(A-on-B) = F
s(A-on-C) = F
s(A-on-table) = T
s(B-on-A) =T
s(B-on-C) = F
s(B-on-table) = F
s(C-on-A) =F C
s(C-on-B) = F
s(C-on-table) = T
~> 2° = 512 states)

Note: it may be useful to add auxiliary state variables like A-clear.
7127

Finite-Domain Representation quivalence and Normal Forms

0008000000000 00

Blocks World State with Finite-Domain Variables

Use three finite-domain state variables:
m below-a: {b, c, table}
m below-b: {a, c, table}
m below-c: {a, b, table}

s(below-a) = table
s(below-b) = a
s(below-c) = table C

~>» 3% = 27 states

Note: it may be useful to add auxiliary state variables like above-a.

8/27

Finite-Domain Representation ce and Normal Forms

0000800000000 00

Advantage of Finite-Domain Representation

How many “useless” (physically impossible) states are there
with these blocks world state representations?
m There are 13 physically possible states with three blocks:

m all blocks on table: 1 state
m all blocks in one stack: 3! = 6 states
m two blocks stacked, the other separate: (})2! = 6

m With propositional variables, 2° — 13 = 499 states are useless.
m With finite-domain variables, only 27 — 13 = 14 are useless.

Although useless states are unreachable,
they can introduce “shortcuts” in some heuristics
and thus lead to worse heuristic estimates.

9/27

Finite-Domain Representation 1ce and Normal Forms

0000080000000 00

Finite-Domain State Variables

Definition (Finite-Domain State Variable)

A finite-domain state variable is a symbol v with an associated domain
dom(v), which is a finite non-empty set of values.

Let V be a finite set of finite-domain state variables.

A state s over V is an assignment s : V — | J, ¢, dom(v)
such that s(v) € dom(v) forallv € V.

A formula over V is a propositional logic formula whose atomic
propositions are of the form v = d where v € V and d € dom(v).

Slightly extending propositional logic, we treat states s
over finite-domain variables as logical interpretations
wheres = v =diffs(v) = d.

10/27

Finite-Domain Representation C e and Normal Forms

0000008000000 00

Example: Finite-Domain State Variables

Consider finite-domain variables V = {location, bike} with
dom(location) = {at-home, in-front-of-uni, in-lecture} and
dom(bike) = {locked, unlocked, stolen}.

Consider state s = {location — at-home, bike + locked}.

Does s |= (location = at-home A —bike = stolen) hold?

1/27

Finite-Domain Representation C e and Normal Forms

0000008000000 00

Example: Finite-Domain State Variables

Consider finite-domain variables V = {location, bike} with
dom(location) = {at-home, in-front-of-uni, in-lecture} and
dom(bike) = {locked, unlocked, stolen}.

Consider state s = {location — at-home, bike + locked}.

Does s |= (location = at-home A —bike = stolen) hold? ~» Yes.

1/27

Finite-Domain Representation 1ce and Normal Forms

0000000800000 00

Reminder: Syntax of Operators

Definition (Operator)

An operator o over state variables V is an object
with three properties:

m a precondition pre(o), a formula over V

m an effect eff(o) over V

® a cost cost(o) € R

Only necessary adaptation: What is an effect?

(location = in-front-of-uni,
location := in-lecture A (bike = unlocked > bike := stolen), 1)

12/27

Finite-Domain Representation 1ce and Normal Forms

0000000080000 00

Syntax of Effects

Definition (Effect over Finite-Domain State Variables)

Effects over finite-domain state variables V
are inductively defined as follows:

m T is an effect (empty effect).

m Ifv € Vis a finite-domain state variable and d € dom(v),
then v := d is an effect (atomic effect).

m If eand e’ are effects, then (e A €) is an effect
(conjunctive effect).

m If y is a formula over V and e is an effect,
then (y > e) is an effect (conditional effect).

Parentheses can be omitted when this does not cause ambiguity.
only change compared to propositional case: atomic effects

13/27

Finite-Domain Representation quivalence and Normal Forms

0000000008000 00

Semantics of Effects: Effect Conditions

Definition (Effect Condition with Finite-Domain Representation)

Let v := d be an atomic effect, and let e be an effect.

The effect condition effcond(v := d, e) under which v := d triggers
given the effect e is a propositional formula defined as follows:

m effcond(v:=d, T) = L
m effcond(v:=d,v:=d) =T
m effcond(v:=d,v :=d') =1
for atomic effects with v £ vord’ # d
m effcond(v:=d,(eAe’)) =
(effcond(v := d, e) V effcond(v :=d,e’))
m effcond(v:=d, (y > e)) = (¥ A effcond(v :=d, e))

Same definition as for propositional tasks,
we just use the adapted definition of atomic effects.
14/27

Finite-Domain Representation > and Normal Forms

000000000080 000

Conflicting Effects and Consistency Condition

® What should an effect of the formv :=a A v := b mean?

m For finite-domain representations, the accepted semantics
is to make this illegal, i.e., to make an operator inapplicable
if it would lead to conflicting effects.

Definition (Consistency Condition)

Let e be an effect over finite-domain state variables V.

The consistency condition for e, consist(e) is defined as

/\ /\ —(effcond(v := d, e) A effcond(v := d’, e)).

veV d,d’edom(v),d#d’

How did we handle conflicting effects
in propositional planning tasks? ~» We also forbid them.

15/27

Finite-Domain Representation C e and Normal Forms Summary

00000000000 e000

Semantics of Operators: Finite-Domain Case

Definition (Applicable, Resulting State)

Let V be a set of finite-domain state variables

and e be an effect over V.

If s |= consist(e), the resulting state of applying e ins,
written s[e], is the state s’ defined as follows for all v € V:

') d if s |= effcond(v := d, e) for some d € dom(v)
s'(v) =
s(v) otherwise

Let o be an operator over V.

Operator o is applicable in s if s |= pre(o) A consist(eff(0)).
If o is applicable in s, the resulting state of applying o in s,
written s[o], is the state s[eff(o)]

16/27

Finite-Domain Representation > and Normal Forms

000000000000 e00

Applying Operators: Example

V = {location, bike} with
dom(location) = {at-home, in-front-of-uni, in-lecture} and
dom(bike) = {locked, unlocked, stolen}.

State s = {location > in-front-of-uni, bike — unlocked}

o = {location = in-front-of-uni, location := at-home, 1)
o’ = (location = in-front-of-uni,

location := in-lecture A (bike = unlocked > bike := stolen), 1)

What is s[[o]]? What is s[[o’]|?

17/27

Finite-Domain Representation 1ce and Normal Forms

0000000000000 e0

FDR Planning Tasks

Definition (Planning Task)

An FDR planning task (or planning task in finite-domain representation)
is a 4-tuple N = (V, 1,0, y) where

m Vis a finite set of finite-domain state variables,

m | is an assignment for V called the initial state,
m O is a finite set of operators over V, and
H

y is a formula over V called the goal.

Apart from the variables, this is the same definition
as for propositional planning tasks,
but the underlying concepts have been adapted.

18/27

Finite-Domain Representation C e and Normal Forms

0000000000000 0e

Mapping FDR Planning Tasks to Transition Systems

Definition (Transition System Induced by an FDR Planning Task)

The FDR planning task N = (V, 1, 0, y) induces
the transition system 7 (M) = (S, L, ¢, T, S, Sx), Where
m Sis the set of all states over V,
m L is the set of operators O,
m c(0) = cost(o) for all operators o € O,
m T={(s,0,5)|s€S, oapplicableins, s’ =s[o]},
m S) = /,and
mS,={seS|sky})

Exactly the same definition as for propositional planning tasks,
but the underlying concepts have been adapted.

19/27

Equivalence and Normal Forms

20/27

Equivalence and Normal Forms

[e] lelelele]

Equivalence and Flat Operators

m The definitions of equivalent effects/operators

and flat effects/operators apply equally to finite-domain
representation.

m The same is true for the equivalence transformations.

21/27

Equivalence and Normal Forms

[e]e] lelele]

Conflict-Free Operators

Definition (Conflict-Free)

An effect e over finite-domain state variables V

is called conflict-free if effcond(v := d, e) A effcond(v := d’, e)
is unsatisfiable forallv € Vand d,d’ € dom(v) with d # d’.

An operator o is called conflict-free if eff(0) is conflict-free.

Note: consist(e) = T for conflict-free e.

Algorithm to make given operator o conflict-free:
m replace pre(o) with pre(o) A consist(eff(0))
m replace all atomic effects v := d by (consist(eff(0)) > v := d)

The resulting operator o’ is conflict-free and o = 0’.

22/27

Equivalence and Normal Forms

[e]ele] Jele]

SAS* Operators and Planning Tasks

Definition (SAS* Operator)

An operator o of an FDR planning task is a SAS™ operator if

m pre(0) is a satisfiable conjunction of atoms, and

m eff(o) is a conflict-free conjunction of atomic effects.

.

Definition (SAS* Planning Task)

An FDR planning task (V, O, I, y) is a SAS™ planning task
if all operators o € O are SAS™ operators
and y is a satisfiable conjunction of atoms.

.

Note: SAS* operators are conflict-free and flat.

23/27

Equivalence and Normal Forms

[e]ele]le] Je}

SAS* Operators: Remarks

m Every SAS* operator is of the form
(=di A Avp=dp, vii=diA---Av, =d)

where all v; are distinct and all v/.’ are distinct.

m Often, SAS* operators o are described
via two sets of partial assignments:
m the preconditions {vy > ds,...,v, > d,}
m the effects {vj > d},..., v}, — dp}

24/27

Equivalence and Normal Forms

[e]elelele]]

SAS™ vs. STRIPS

m SAS* is an analogue of STRIPS planning tasks for FDR,
but there is no special role of “positive” conditions.

m Apart from this difference, all comments for STRIPS
apply analogously.

m If all variable domains are binary, SAS* is essentially
STRIPS with negation.

Derives from SAS = Simplified Action Structures
(Backstrom & Klein, 1991)

25/27

Summary
[1)

Summary

26/27

1ce and Normal Forms Summary
o oce

Summary

m Planning tasks in finite-domain representation (FDR)
are an alternative to propositional planning tasks.

m FDR tasks are often more compact (have fewer states).

m This makes many planning algorithms more efficient
when working with a finite-domain representation.

m SAST tasks are a restricted form of FDR tasks
where only conjunctions of atoms are allowed
in the preconditions, effects and goal.

No conditional effects are allowed.

27/27

	Finite-Domain Representation
	

	Equivalence and Normal Forms
	

	Summary
	

