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Motivation

In this chapter, we analyze the behaviour
of hmax and hadd more deeply.
Our goal is to understand their shortcomings.

In the next chapter we then used this understanding
to devise an improved heuristic.

As a preparation for our analysis, we need some further definitions
that concern choices in AND/OR graphs.

The key observation is that if we want to establish the value of a
certain node n, we can to some extent choose how we want to
achieve the OR nodes that are relevant to achieving n.
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Preview: Choice Function & Best Achievers

Preserve at most one incoming arc of each OR node,
but node values may not change.
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Choice Functions

Definition (Choice Function)
Let G be an AND/OR graph with nodes N and OR nodes N∨.

A choice function for G is a function f : N′ → N defined on
some set N′ ⊆ N∨ such that f (n) ∈ predecessors(n) for all n ∈ N′.

In words, choice functions select (at most)
one predecessor for each OR node of G.

Intuitively, f (n) selects by which disjunct n is achieved.

If f (n) is undefined for a given n, the intuition is
that n is not achieved.

6/17



Choice Functions Best Achievers Summary

Reduced Graphs

Once we have decided how to achieve an OR node,
we can remove the other alternatives:

Definition (Reduced Graph)
Let G be an AND/OR graph, and let f be a choice function
for G defined on nodes N′.

The reduced graph for f is the subgraph of G
where all outgoing arcs of OR nodes are removed
except for the chosen arcs ⟨n, f (n)⟩ with n ∈ N′.

7/17



Choice Functions Best Achievers Summary

Best Achievers

8/17



Choice Functions Best Achievers Summary

Choice Functions Induced by hmax and hadd

Which choices do hmax and hadd make?

At every OR node n, we set the cost of n
to the minimum of the costs of the predecessors of n.

The motivation for this is to achieve n via the predecessor that can
be achieved most cheaply according to our cost estimates.

{ This corresponds to defining a choice function f
with f (n) ∈ argminn′∈N′ n′.cost for all reached OR nodes n,
where N′ ⊆ predecessors(n) are all predecessors of n processed
before n.

The predecessors chosen by this cost function are called
best achievers (according to hmax or hadd).

Note that the best achiever function f is in general
not well-defined because there can be multiple minimizers.
We assume that ties are broken arbitrarily.
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Example: Best Achievers (1)

best achievers for hadd
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Example: Best Achievers (1)
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Example: Best Achievers (2)

best achievers for hadd; modified goal e ∨ (g ∧ h)
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Example: Best Achievers (2)
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Best Achiever Graphs

Observation: The hmax/hadd costs of nodes remain the same
if we replace the RTG by the reduced graph for the respective best
achiever function.

The AND/OR graph that is obtained by removing
all nodes with infinite cost from this reduced graph
is called the best achiever graph for hmax/hadd.

We write Gmax and Gadd for the best achiever graphs.

Gmax (Gadd) is always acyclic: for all arcs ⟨n, n′⟩ it contains,
n is processed by hmax (by hadd) after n′.
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Paths in Best Achiever Graphs

Let n be a node of the best achiever graph.
The cost of an effect node is the cost of the associated operator.
The cost of a path in the best achiever graph is the sum of costs of all
effect nodes on the path.

The following properties can be shown by induction:

hmax(n) is the maximum cost of all paths ending in n in Gmax. A path
achieving this maximum is called a critical path.

hadd(n) is the sum, over all effect nodes n′, of the cost of n′

multiplied by the number of paths from n′ to n in Gadd.

In particular, these properties hold for the goal node nγ
if it is reachable.
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Example: Undercounting in hmax

Gmax: undercounting in hmax
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Example: Overcounting in hadd

Gadd: overcounting in hadd
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Summary

16/17



Choice Functions Best Achievers Summary

Summary

hmax and hadd can be used to decide how to achieve
OR nodes in a relaxed task graph
{ best achievers
Best achiever graphs help identify shortcomings of hmax and hadd

compared to the perfect delete relaxation heuristic h+.
hmax underestimates h+ because it only considers
the cost of a critical path for the relaxed planning task.
hadd overestimates h+ because it double-counts operators occurring
on multiple paths in the best achiever graph.
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