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Delete Relaxation Heuristics

m In this chapter, we introduce heuristics
based on delete relaxation.

m Their basic idea is to propagate information
in relaxed task graphs, similar to the previous chapter.

m Unlike the previous chapter, we do not just propagate information
about whether a given node is reachable,
but estimates how expensive it is to reach the node.
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Reminder: Running Example

We will use the same running example as in the previous chapter:
M = (V,1,{01,0,,03,04},y) with

V={ab,cd,ef,g,h}
I={a—T,b—>T,c—Fd—T,
e—Ff—Fg—Fh—F}
oo={cV(aAnb),cA((cAnd)>e)1)

0; =(T,f,2)
03 =(f,g,1)
o, ={f,h,1)
y=eAn(gAh)
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Associating Costs with RTG Nodes

Basic intuitions for associating costs with RTG nodes:
m To apply an operator, we must pay its cost.
m To make an OR node true, it is sufficient
to make one of its predecessors true.
~> Therefore, we estimate the cost of an OR node
as the minimum of the costs of its predecessors.
m To make an AND node true, all its predecessors
must be made true first.

~> We can be optimistic and estimate the cost
as the maximum of the predecessor node costs.
~> Or we can be pessimistic and estimate the cost
as the sum of the predecessor node costs.
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h™* Algorithm

(Differences to reachability analysis algorithm highlighted.)

Computing h™® Values
Associate a cost attribute with each node.
for all nodes n:
n.cost := co
while no fixed point is reached:
Choose a node n.
if nis an AND node that is not an effect node:
N.cost := MaXy epredecessors(n) N’ -COSt
if n is an effect node for operator o:
n.cost := cost(0) + MaXy epredecessors(n) N’ -COSt
if nis an OR node:
Nn.cost := MiNy cpredecessors(n) N’ -COSt

The overall heuristic value is the cost of the goal node, n, .cost.
8/20



Introduction h™aX ang padd Properties of hM3X and h29¢

[e]e]e] Jelele}

h™®: Example

9/20



Introduction hMaxX 3p4 padd Propertie hMmax 5nq pade

[e]e]e] Jelele}

h™®: Example

9/20



Introduction h™aX ang padd Properties of "M and h2d

[e]e]e] Jelele}

h™: Example

9/20



Introduction h™aX ang padd Properties of "M and h2d

[e]e]e] Jelele}

h™: Example

9/20



Introduction h™aX ang padd Properties of "M and h2d

[e]e]e] Jelele}

h™: Example

9/20



hMax gng padd Properties of ™2 and h

[e]e]e] Jelele}

h™&: Example

9/20



hMax gng padd Properties of ™2 and h

[e]e]e] Jelele}

h™&: Example

9/20



hMax gng padd Properties of ™2 and h

[e]e]e] Jelele}

h™&: Example

9/20



hMax gng padd
0008000

h™: Example

9/20



hMax gng padd
0008000

h™: Example

9/20



hMax gng padd
0008000

h™: Example

9/20



hMax gnd padd
0008000

h™: Example

9/20



hMax gnd padd
0008000

h™: Example

9/20



hMax gnd padd
0008000

h™: Example

9/20



hMax gnd padd
0008000

h™: Example

9/20



hMax gnd padd
0008000

h™: Example

9/20



hMax gnd padd
0008000

h™: Example

9/20



hMax gnd padd
0008000

h™: Example

9/20



hMax gnd padd
0008000

h™: Example

9/20



hMax gnd padd
0008000

h™: Example

9/20



hMax gnd padd
0008000

h™: Example

9/20



hMax gnd padd
0008000

h™: Example

~> hmax(l) — 3

9/20



Introduction h™aX ang padd Properties of h™3X and h24d Summary

0000800 000000

h34d Algorithm

(Differences to h™®* algorithm highlighted.)

Computing h?%9 values
Associate a cost attribute with each node.
for all nodes n:
n.cost := oo
while no fixed point is reached:
Choose a node n.
if nis an AND node that is not an effect node:
n.cost := X csyce(n) N’ -COSt
if n is an effect node for operator o:
n.cost := cost(0) + X esucc(n) N’ -COSt
if nis an OR node:
n.cost := Min esycc(n) N’.COSt

The overall heuristic value is the cost of the goal node, n, .cost.
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h™3 and h2499: pefinition

We can now define our first non-trivial efficient planning heuristics:

h™* and h299 Heuristics
Let I = (V, 1,0, y) be a propositional planning task
in positive normal form.

The h™® heuristic value of a state s, written h™**(s), is obtained by
constructing the RTG for M = (V,s, 0", y) and then computing n, .cost
using the h™® value algorithm for RTGs.

The h?%? heuristic value of a state s, written h*4%(s), is computed in the
same way using the h* value algorithm for RTGs.

Notation: we will use the same notation h™®(n) and h?%%(n)
for the h™@/h24d yalues of RTG nodes
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Understanding h™® and h34d

We want to understand h™ and h*%9 better:
m Are they well-defined?
m How can they be efficiently computed?
m Are they safe?
= Are they admissible?

m How do they compare to the optimal solution cost
for a delete-relaxed task (h*)?
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Understanding h™® and h34d

We want to understand h™ and h*%9 better:
m Are they well-defined? Yes.
m How can they be efficiently computed?
m Are they safe?
= Are they admissible?

m How do they compare to the optimal solution cost
for a delete-relaxed task (h*)?
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Efficient Computation of '™ and h24¢

m If nodes are poorly chosen, the h™/h299 algorithm
can update the same node many times
until it reaches its final value.

m However, there is a simple strategy that prevents this:
in every iteration, pick a node with minimum new value
among all nodes that can be updated to a new value.

m With this strategy, no node is updated more than once.

m Using a suitable priority queue data structure,
this allows computing the h™®/h299 values of an RTG
with nodes N and arcs A in time O(|N| log [N| + |A]).
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Efficient Computation of h™ and h?99: Remarks

m In the following chapters, we will always assume that we are using
this efficient version of the '™ and h399 algorithm.

m In particular, we will assume that all reachable nodes
of the relaxed task graph are processed exactly once
(and all unreachable nodes not at all), so that it makes sense
to speak of certain nodes being processed after others etc.
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Heuristic Quality of h™® and h39d

This leaves us with the questions about the heuristic quality
of "™ and h4d:

m Are they safe?
m Are they admissible?
m How do they compare to the optimal solution cost
for a delete-relaxed task?
It is easy to see that h™ and h39 are safe:
they assign oo iff a node is unreachable in the delete relaxation.

In our running example, it seems that h™®* is prone to underestimation
and h?% is prone to overestimation.

We will study this further in the next chapter.
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Summary

® h™ and h*% values estimate how expensive it is to reach
a state variable, operator effect or formula (e.g., the goal).
m They are computed by propagating cost information
in relaxed task graphs:

m At OR nodes, choose the cheapest alternative.
m At AND nodes, maximize or sum the predecessor costs.
m At effect nodes, also add the operator cost.

® h™ and h?9d values can serve as heuristics.

m They are well-defined and can be computed efficiently
by computing them in order of increasing cost along the RTG.
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