Automated Planning

D4. Delete Relaxation: ™ and h2dd

Jendrik Seipp

Linkoping University

based on slides from the Al group at the University of Basel

Content of this Course

— Prelude

— Foundations

— Relaxed Tasks

— Approaches

— Abstraction

Relaxed Task
Graphs

— Constraints

2/20

Introduction
©00

Introduction

3/20

max nd hc,m

Introduction “ Tt Properties of h

oceo 00« o [)

Delete Relaxation Heuristics

m In this chapter, we introduce heuristics
based on delete relaxation.

m Their basic idea is to propagate information
in relaxed task graphs, similar to the previous chapter.

m Unlike the previous chapter, we do not just propagate information
about whether a given node is reachable,
but estimates how expensive it is to reach the node.

4/20

Introduction ! el oro es of hM3X gand hade

[e]e] }

Reminder: Running Example

We will use the same running example as in the previous chapter:
M = (V,1,{01,0,,03,04},y) with

V={ab,cd,ef,g,h}
I={a—T,b—>T,c—Fd—T,
e—Ff—Fg—Fh—F}
oo={cV(aAnb),cA((cAnd)>e)1)

0; =(T,f,2)
03 =(f,g,1)
o, ={f,h,1)
y=eAn(gAh)

5/20

hMax gng padd
©000000

hM3X 3nd hadd

6/20

Introduction

h™aX ang padd o1 s of hM3X and h2d¢
0000000 00 o

Associating Costs with RTG Nodes

Basic intuitions for associating costs with RTG nodes:
m To apply an operator, we must pay its cost.
m To make an OR node true, it is sufficient
to make one of its predecessors true.
~> Therefore, we estimate the cost of an OR node
as the minimum of the costs of its predecessors.
m To make an AND node true, all its predecessors
must be made true first.

~> We can be optimistic and estimate the cost
as the maximum of the predecessor node costs.
~> Or we can be pessimistic and estimate the cost
as the sum of the predecessor node costs.

7/20

Introduction h™aX ang padd Properties of hM3X and h24¢ Summary

ocoeocococo 000000

h™* Algorithm

(Differences to reachability analysis algorithm highlighted.)

Computing h™® Values
Associate a cost attribute with each node.
for all nodes n:
n.cost := co
while no fixed point is reached:
Choose a node n.
if nis an AND node that is not an effect node:
N.cost := MaXy epredecessors(n) N’ -COSt
if n is an effect node for operator o:
n.cost := cost(0) + MaXy epredecessors(n) N’ -COSt
if nis an OR node:
Nn.cost := MiNy cpredecessors(n) N’ -COSt

The overall heuristic value is the cost of the goal node, n, .cost.
8/20

Introduction h™aX ang padd Properties of hM3X and h29¢

[e]e]e] Jelele}

h™®: Example

9/20

Introduction hMaxX 3p4 padd Propertie hMmax 5nq pade

[e]e]e] Jelele}

h™®: Example

9/20

Introduction h™aX ang padd Properties of "M and h2d

[e]e]e] Jelele}

h™: Example

9/20

Introduction h™aX ang padd Properties of "M and h2d

[e]e]e] Jelele}

h™: Example

9/20

Introduction h™aX ang padd Properties of "M and h2d

[e]e]e] Jelele}

h™: Example

9/20

hMax gng padd Properties of ™2 and h

[e]e]e] Jelele}

h™&: Example

9/20

hMax gng padd Properties of ™2 and h

[e]e]e] Jelele}

h™&: Example

9/20

hMax gng padd Properties of ™2 and h

[e]e]e] Jelele}

h™&: Example

9/20

hMax gng padd
0008000

h™: Example

9/20

hMax gng padd
0008000

h™: Example

9/20

hMax gng padd
0008000

h™: Example

9/20

hMax gnd padd
0008000

h™: Example

9/20

hMax gnd padd
0008000

h™: Example

9/20

hMax gnd padd
0008000

h™: Example

9/20

hMax gnd padd
0008000

h™: Example

9/20

hMax gnd padd
0008000

h™: Example

9/20

hMax gnd padd
0008000

h™: Example

9/20

hMax gnd padd
0008000

h™: Example

9/20

hMax gnd padd
0008000

h™: Example

9/20

hMax gnd padd
0008000

h™: Example

9/20

hMax gnd padd
0008000

h™: Example

9/20

hMax gnd padd
0008000

h™: Example

~> hmax(l) — 3

9/20

Introduction h™aX ang padd Properties of h™3X and h24d Summary

0000800 000000

h34d Algorithm

(Differences to h™®* algorithm highlighted.)

Computing h?%9 values
Associate a cost attribute with each node.
for all nodes n:
n.cost := oo
while no fixed point is reached:
Choose a node n.
if nis an AND node that is not an effect node:
n.cost := X csyce(n) N’ -COSt
if n is an effect node for operator o:
n.cost := cost(0) + X esucc(n) N’ -COSt
if nis an OR node:
n.cost := Min esycc(n) N’.COSt

The overall heuristic value is the cost of the goal node, n, .cost.
10/20

Introduction h™aX ang padd Properties of hM3X and h29¢

0000080

h3dd: Example

11/20

Introduction hMaxX 3p4 padd Propertie hMmax 5nq pade

0000080

h3dd: Example

11/20

Introduction h™aX ang padd Properties of "M and h2d

0000080

h39d: Example

11/20

Introduction h™aX ang padd Properties of "M and h2d

0000080

h39d: Example

11/20

Introduction h™aX ang padd Properties of "M and h2d

0000080

h39d: Example

11/20

hMax gng padd Properties of ™2 and h

0000080

h39d: Example

11/20

hMax gng padd Properties of ™2 and h

0000080

h39d: Example

11/20

hMax gng padd Properties of ™2 and h

0000080

h39d: Example

11/20

hMax gng padd
0000080

h39d: Example

11/20

hMax gng padd
0000080

h39d: Example

11/20

hMax gng padd
0000080

h39d: Example

11/20

hMax gnd padd
0000080

h39d: Example

11/20

hMax gnd padd
0000080

h39d: Example

11/20

hMax gnd padd
0000080

h39d: Example

11/20

hMax gnd padd
0000080

h39d: Example

11/20

hMax gnd padd
0000080

h39d: Example

11/20

hMax gnd padd
0000080

h39d: Example

11/20

hMax gnd padd
0000080

h39d: Example

11/20

hMax gnd padd
0000080

h39d: Example

11/20

hMax gnd padd
0000080

h39d: Example

11/20

hMax gnd padd
0000080

h39d: Example

11/20

hMax gnd padd
0000080

h39d: Example

~ hadd(l) -8

11/20

O00000e [)

Introduction h™aX ang padd Properties of M@ and h2dd Summary

h™3 and h2499: pefinition

We can now define our first non-trivial efficient planning heuristics:

h™* and h299 Heuristics
Let I = (V, 1,0, y) be a propositional planning task
in positive normal form.

The h™® heuristic value of a state s, written h™**(s), is obtained by
constructing the RTG for M = (V,s, 0", y) and then computing n, .cost
using the h™® value algorithm for RTGs.

The h?%? heuristic value of a state s, written h*4%(s), is computed in the
same way using the h* value algorithm for RTGs.

Notation: we will use the same notation h™®(n) and h?%%(n)
for the h™@/h24d yalues of RTG nodes

12/20

Properties of h™® and h39d

13/20

Introduction = C Properties of "% and h24d

[e] Jele]ele]

Understanding h™® and h34d

We want to understand h™ and h*%9 better:
m Are they well-defined?
m How can they be efficiently computed?
m Are they safe?
= Are they admissible?

m How do they compare to the optimal solution cost
for a delete-relaxed task (h*)?

14/20

Introduction = C Properties of "% and h24d

[e] Jele]ele]

Understanding h™® and h34d

We want to understand h™ and h*%9 better:
m Are they well-defined? Yes.
m How can they be efficiently computed?
m Are they safe?
= Are they admissible?

m How do they compare to the optimal solution cost
for a delete-relaxed task (h*)?

14/20

[e]e] Je]ele]

Introduction 2 C Properties of "% and h24d

Efficient Computation of '™ and h24¢

m If nodes are poorly chosen, the h™/h299 algorithm
can update the same node many times
until it reaches its final value.

m However, there is a simple strategy that prevents this:
in every iteration, pick a node with minimum new value
among all nodes that can be updated to a new value.

m With this strategy, no node is updated more than once.

m Using a suitable priority queue data structure,
this allows computing the h™®/h299 values of an RTG
with nodes N and arcs A in time O(|N| log [N| + |A]).

15/20

Properties of M@ and h2dd
000800

h™®*. Example of Efficient Computation

16/20

Introduction I C Properties of "% and h24d

[e]e]e] Jele]

h™: Example of Efficient Computation

16/20

Introduction I act Properties of "% and h24d

[e]e]e] Jele]

16/20

Introduction Properties of "% and h24d

[e]e]e] Jele]

h™: Example of Efficient Computation

16/20

Introduction i h Properties of "% and h24d

[e]e]e] Jele]

16/20

Introduction i h Properties of "% and h24d

[e]e]e] Jele]

16/20

Introduction i act Properties of "% and h24d

[e]e]e] Jele]

16/20

Properties of h™3X and h24d
000800

h™: Example of Efficient Computation

16/20

Properties of h™3X and h24d
000800

h™: Example of Efficient Computation

16/20

Properties of h™3X and h24d
000800

h™: Example of Efficient Computation

16/20

Properties of h™3X and h24d
000800

h™®*. Example of Efficient Computation

16/20

Properties of h™3X and h24d
000800

h™®*. Example of Efficient Computation

16/20

Properties of M@ and h2dd
000800

h™®*. Example of Efficient Computation

16/20

Properties of M@ and h2dd
000800

h™®*. Example of Efficient Computation

16/20

Properties of M@ and h2dd
000800

h™®*. Example of Efficient Computation

16/20

Properties of M@ and h2dd
000800

h™®*. Example of Efficient Computation

16/20

Properties of M@ and h2dd
000800

h™®*. Example of Efficient Computation

16/20

Properties of M@ and h2dd
000800

h™®*. Example of Efficient Computation

16/20

Properties of M@ and h2dd
000800

h™®*. Example of Efficient Computation

16/20

Properties of M@ and h2dd
000800

h™®*. Example of Efficient Computation

16/20

Properties of M@ and h2dd
000800

h™®*. Example of Efficient Computation

16/20

Properties of M@ and h2dd
000800

h™®*. Example of Efficient Computation

~ h™X(]) = 3

16/20

Properties of h™3X and h24d
000080

Introduction

Efficient Computation of h™ and h?99: Remarks

m In the following chapters, we will always assume that we are using
this efficient version of the '™ and h399 algorithm.

m In particular, we will assume that all reachable nodes
of the relaxed task graph are processed exactly once
(and all unreachable nodes not at all), so that it makes sense
to speak of certain nodes being processed after others etc.

17/20

Introduction 2 e Properties of "% and h24d

O0000e

Heuristic Quality of h™® and h39d

This leaves us with the questions about the heuristic quality
of "™ and h4d:

m Are they safe?
m Are they admissible?
m How do they compare to the optimal solution cost
for a delete-relaxed task?
It is easy to see that h™ and h39 are safe:
they assign oo iff a node is unreachable in the delete relaxation.

In our running example, it seems that h™®* is prone to underestimation
and h?% is prone to overestimation.

We will study this further in the next chapter.

18/20

Summary
[1)

Summary

19/20

Introduction 2 C Y s of hMax

and h2dd Summary
ce

Summary

® h™ and h*% values estimate how expensive it is to reach
a state variable, operator effect or formula (e.g., the goal).
m They are computed by propagating cost information
in relaxed task graphs:

m At OR nodes, choose the cheapest alternative.
m At AND nodes, maximize or sum the predecessor costs.
m At effect nodes, also add the operator cost.

® h™ and h?9d values can serve as heuristics.

m They are well-defined and can be computed efficiently
by computing them in order of increasing cost along the RTG.

20/20

	Introduction
	

	hmax and hadd
	

	Properties of hmax and hadd
	

	Summary
	

