Automated Planning

D3. Delete Relaxation: Relaxed Task Graphs

Jendrik Seipp

Linköping University

Content of this Course

Relaxed Task Graphs •00

Relaxed Task Graphs

Relaxed Task Graphs

Relaxed Task Graphs

Let Π^+ be a relaxed planning task.

The relaxed task graph of Π^+ , in symbols $RTG(\Pi^+)$, is an AND/OR graph that encodes

- which state variables can become true in an applicable operator sequence for Π^+ ,
- \blacksquare which operators of Π^+ can be included in an applicable operator sequence for Π^+ ,
- \blacksquare if the goal of Π^+ can be reached,
- and how these things can be achieved.

We present its definition in stages.

Note: Throughout this chapter, we assume flat operators.

Running Example

Relaxed Task Graphs

As a running example, consider the relaxed planning task $\langle V, I, \{o_1, o_2, o_3, o_4\}, \gamma \rangle$ with

$$V = \{a, b, c, d, e, f, g, h\}$$

$$I = \{a \mapsto \mathbf{T}, b \mapsto \mathbf{T}, c \mapsto \mathbf{F}, d \mapsto \mathbf{T},$$

$$e \mapsto \mathbf{F}, f \mapsto \mathbf{F}, g \mapsto \mathbf{F}, h \mapsto \mathbf{F}\}$$

$$o_1 = \langle c \lor (a \land b), c \land ((c \land d) \rhd e), 1 \rangle$$

$$o_2 = \langle \top, f, 2 \rangle$$

$$o_3 = \langle f, g, 1 \rangle$$

$$o_4 = \langle f, h, 1 \rangle$$

$$\gamma = e \land (g \land h)$$

Construction

Components of Relaxed Task Graphs

A relaxed task graph is an AND/OR graph:

- Nodes can be forced true and false
- If *n* is an AND node and all of its predecessors are forced true, then n is forced true.
- If n is an OR node and at least one of its predecessors is forced true, then *n* is forced true.

A relaxed task graph has four kinds of components:

- Variable nodes represent the state variables.
- The initial node represents the initial state.
- Operator subgraphs represent the preconditions and effects of operators.
- The goal subgraph represents the goal.

Variable Nodes

Let $\Pi^+ = \langle V, I, O^+, \gamma \rangle$ be a relaxed planning task.

■ For each $v \in V$, $RTG(\Pi^+)$ contains an OR node n_v . These nodes are called variable nodes.

Variable Nodes: Example

$$V = \{a, b, c, d, e, f, g, h\}$$

Initial Node

Let $\Pi^+ = \langle V, I, O^+, \gamma \rangle$ be a relaxed planning task.

- $RTG(\Pi^+)$ contains an AND node n_l . This node is called the initial node.
- For all $v \in V$ with $I(v) = \mathbf{T}$, $RTG(\Pi^+)$ has an arc from n_l to n_v . These arcs are called initial state arcs.
- The initial node has no predecessor nodes.

Initial Node and Initial State Arcs: Example

$$V = \{a, b, c, d, e, f, g, h\}$$

Initial Node and Initial State Arcs: Example

$$I = \{a \mapsto \mathsf{T}, b \mapsto \mathsf{T}, c \mapsto \mathsf{F}, d \mapsto \mathsf{T}, e \mapsto \mathsf{F}, f \mapsto \mathsf{F}, g \mapsto \mathsf{F}, h \mapsto \mathsf{F}\}$$

Operator Subgraphs

Let $\Pi^+ = \langle V, I, O^+, \gamma \rangle$ be a relaxed planning task. For each operator $o^+ \in O^+$, $RTG(\Pi^+)$ contains an operator subgraph with the following parts:

- \blacksquare for each formula φ that occurs as a subformula of the precondition or of some effect condition of o^+ , a formula node n_{ω} (details follow)
- for each conditional effect $(\gamma \triangleright \nu)$ that occurs in the effect of o^+ , an effect node $n_{o^+}^{\chi}$ (details follow); unconditional effects are treated as $(\top \triangleright v)$

Formula Nodes

Formula nodes n_{ω} are defined as follows:

- If $\varphi = v$ for some state variable v, n_{φ} is the variable node n_{v} (so no new node is introduced).
- If $\varphi = \top$, n_{ω} is an AND node without incoming arcs.
- If $\varphi = \bot$, n_{φ} is an OR node without incoming arcs.
- If $\varphi = (\varphi_1 \wedge \varphi_2)$, n_{φ} is an AND node with incoming arcs from n_{φ_1} and n_{φ_2} .
- If $\varphi = (\varphi_1 \vee \varphi_2)$, n_{φ} is an OR node with incoming arcs from n_{φ_1} and n_{φ_2} .

Note: identically named nodes are identical, so if the same formula occurs multiple times in the task, the same node is reused.

Effect Nodes

Effect nodes $n_{o^+}^{\chi}$ are defined as follows:

- n_{0+}^{χ} is an AND node
- It has an incoming arc from the formula nodes $n_{pre(o^+)}$ (precondition arcs) and n_{γ} (effect condition arcs).
- **Exception:** if $\gamma = \top$,
 - 1) there is no effect condition arc, and
 - 2) we omit the precondition arc if there are other incoming arcs. (This makes our pictures cleaner.)
- For every conditional effect $(\chi \triangleright v)$ in the operator, there is an arc from $n_{o^+}^{\chi}$ (effect arcs) to variable node n_{ν} .

Note: identically named nodes are identical, so if the same effect condition occurs multiple times in the same operator, this only induces one node.

Goal Subgraph

Let $\Pi^+ = \langle V, I, O^+, \gamma \rangle$ be a relaxed planning task.

 $RTG(\Pi^+)$ contains a goal subgraph, consisting of formula nodes for the goal γ and its subformulas, constructed in the same way as formula nodes for preconditions and effect conditions.

Goal Subgraph and Final Relaxed Task Graph: Example

Goal Subgraph and Final Relaxed Task Graph: Example

Reachability Analysis

•0000

How Can We Use Relaxed Task Graphs?

- We are now done with the definition of relaxed task graphs.
- Now we want to use them to derive information about planning tasks.
- In the following chapter, we will use them to compute heuristics for delete-relaxed planning tasks.
- Here, we start with something simpler: reachability analysis.
- Since the initial node is an AND node without predecessors, it is forced true.

Algorithm for Reachability Analysis

- reachability analysis in RTGs = computing all forced true nodes
- Here is an algorithm that achieves this:

Reachability Analysis

Associate a reachable attribute with each node.

```
for all nodes n:
```

n.reachable := false

while no fixed point is reached:

Choose a node n.

if n is an AND node:

 $n.reachable := \bigwedge_{n' \in predecessors(n)} n'.reachable$

if n is an OR node:

 $n.reachable := \bigvee_{n' \in predecessors(n)} n'.reachable$

Reachability Analysis

Reachability Analysis: Example

00000

00000

00000

Remarks

Relaxed Task Graphs in the Literature

Some remarks on the planning literature:

- Usually, only the STRIPS case is studied.
- → definitions simpler: only variable nodes and operator nodes. no formula nodes or effect nodes
 - Usually, so-called relaxed planning graphs (RPGs) are studied instead of RTGs.
 - These are temporally unrolled versions of RTGs, i.e., they have multiple layers ("time steps") and are acyclic.
- \sim TDDC17 course

Summary

Summary

- Relaxed task graphs (RTGs) represent (most of) the information of a relaxed planning task as an AND/OR graph.
- They consist of:
 - variable nodes
 - an initial node
 - operator subgraphs including formula nodes and effect nodes
 - a goal subgraph including formula nodes
- RTGs can be used to analyze reachability in relaxed tasks

Questions?

post feedback and ask questions anonymously at

https://padlet.com/jendrikseipp/tddd48