
Automated Planning
D2. Delete Relaxation: Finding Relaxed Plans

Jendrik Seipp

Linköping University

based on slides from the AI group at the University of Basel

Greedy Algorithm Optimal Relaxed Plans Summary

Content of this Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Relaxed Tasks

Relaxed Task
Graphs

Relaxation
Heuristics

Abstraction

Constraints

2/14

Greedy Algorithm Optimal Relaxed Plans Summary

Greedy Algorithm

3/14

Greedy Algorithm Optimal Relaxed Plans Summary

On-Set and Dominating States

Definition (On-Set)
The on-set of an interpretation s is the set of propositional variables that
are true in s.

{ for states of propositional planning tasks:

{

states can be viewed as sets of (true) state variables

Definition (Dominate)
An interpretation s′ dominates an interpretation s if on(s) ⊆ on(s′).

{ all state variables true in s are also true in s′

4/14

Greedy Algorithm Optimal Relaxed Plans Summary

Motivation

A general way to come up with heuristics is to solve
a simplified version of the real problem.

delete relaxation: given a task in positive normal form,
discard all delete effects

relaxation lemma: solutions for a state s also work for any
dominating state s′ (which satisfies a superset of the variables in s)

monotonicity lemma: s⟦o⟧ dominates s

5/14

Greedy Algorithm Optimal Relaxed Plans Summary

Greedy Algorithm for Relaxed Planning Tasks

The relaxation and monotonicity lemmas suggest the following algorithm
for solving relaxed planning tasks:

Greedy Planning Algorithm for ⟨V, I, O+, γ⟩
s := I
π+ := ⟨⟩
loop forever:

if s |= γ:
return π+

else if there is an operator o+ ∈ O+ applicable in s
with s⟦o+⟧ , s:

Append such an operator o+ to π+.
s := s⟦o+⟧

else:
return unsolvable

6/14

Greedy Algorithm Optimal Relaxed Plans Summary

Correctness of the Greedy Algorithm

The algorithm is sound:

If it returns a plan, this is indeed a correct solution.
If it returns “unsolvable”, the task is indeed unsolvable

Upon termination, there clearly is no relaxed plan from s.
By iterated application of the monotonicity lemma,
s dominates I.
By the relaxation lemma, there is no solution from I.

What about completeness (termination) and runtime?

Each iteration of the loop adds at least one atom to on(s).
This guarantees termination after at most |V | iterations.

Thus, the algorithm can clearly be implemented
to run in polynomial time.

A good implementation runs in O(∥Π∥).

7/14

Greedy Algorithm Optimal Relaxed Plans Summary

Using the Greedy Algorithm as a Heuristic

We can apply the greedy algorithm within heuristic search
for a general (non-relaxed) planning task:

When evaluating a state s in progression search,
solve relaxation of planning task with initial state s.

When evaluating a subgoal ϕ in regression search,
solve relaxation of planning task with goal ϕ.
Set h(s) to the cost of the generated relaxed plan.

in general not well-defined:
different choices of o+ in the algorithm lead to different h(s)

Is this admissible/safe/goal-aware/consistent?

8/14

Greedy Algorithm Optimal Relaxed Plans Summary

Using the Greedy Algorithm as a Heuristic

We can apply the greedy algorithm within heuristic search
for a general (non-relaxed) planning task:

When evaluating a state s in progression search,
solve relaxation of planning task with initial state s.

When evaluating a subgoal ϕ in regression search,
solve relaxation of planning task with goal ϕ.
Set h(s) to the cost of the generated relaxed plan.

in general not well-defined:
different choices of o+ in the algorithm lead to different h(s)

Is this admissible/safe/goal-aware/consistent?
It is safe (from the previous slide) and easily seen to be goal-aware. It is
not admissible (see next slide) and therefore also not consistent.

8/14

Greedy Algorithm Optimal Relaxed Plans Summary

Properties of the Greedy Algorithm as a Heuristic

Is this an admissible heuristic?

Yes if the relaxed plans are optimal
(due to the plan preservation corollary).

However, usually they are not, because the greedy algorithm
can make poor choices of which operators to apply.

How hard is it to find optimal relaxed plans?

9/14

Greedy Algorithm Optimal Relaxed Plans Summary

Optimal Relaxed Plans

10/14

Greedy Algorithm Optimal Relaxed Plans Summary

Optimal Relaxation Heuristic

Definition (h+ heuristic)
Let Π = ⟨V, I, O, γ⟩ be a planning task in positive normal form with states
S.

The optimal delete relaxation heuristic h+ for Π
is the function h : S → Ò+

0 ∪ {∞}
where h(s) is the cost of an optimal relaxed plan for s,
i.e., of an optimal plan for Π+

s = ⟨V, s, O+, γ⟩.

(can analogously define a heuristic for regression)

h+ is admissible, safe, goal-aware, and consistent.

11/14

Greedy Algorithm Optimal Relaxed Plans Summary

Complexity of Optimal Relaxed Planning (1)

Theorem (Complexity of Optimal Relaxed Planning)
The BCPlanEx problem restricted to delete-relaxed
planning tasks is NP-complete.

12/14

Greedy Algorithm Optimal Relaxed Plans Summary

Summary

13/14

Greedy Algorithm Optimal Relaxed Plans Summary

Summary

Because of their monotonicity property, delete-relaxed tasks
can be solved in polynomial time by a greedy algorithm.

However, the solution quality of this algorithm is poor.

For an informative heuristic, we would ideally want to find
optimal relaxed plans.

The solution cost of an optimal relaxed plan
is the estimate of the h+ heuristic.

However, the bounded-cost plan existence problem
for relaxed planning tasks is NP-complete.

14/14

	Greedy Algorithm
	

	Optimal Relaxed Plans
	

	Summary
	

