Automated Planning

D2. Delete Relaxation: Finding Relaxed Plans

Jendrik Seipp

Linkdping University

based on slides from the Al group at the University of Basel

Content of this Course

— Prelude

— Foundations

— Approaches
- (e
Graphs

— Abstraction

Relaxation
Heuristics

— Constraints

2/14

Greedy Algorithm

Greedy Algorithm

3/14

Greedy Algorithm Optimal Relaxed Plans Summary

[e] lelelelele}

On-Set and Dominating States

Definition (On-Set)

The on-set of an interpretation s is the set of propositional variables that
are truein s.

~» for states of propositional planning tasks:
states can be viewed as sets of (true) state variables

Definition (Dominate)

An interpretation s’ dominates an interpretation s if on(s) C on(s’).

~> all state variables true in s are also true in s’

414

Greedy Algorithm Optimal Relaxed Plans

[e]e] lelelele}

Motivation

m A general way to come up with heuristics is to solve
a simplified version of the real problem.

m delete relaxation: given a task in positive normal form,
discard all delete effects

m relaxation lemma: solutions for a state s also work for any
dominating state s’ (which satisfies a superset of the variables in s)

m monotonicity lemma: s[[o]] dominates s

5/14

Greedy Algorithm Optimal Relaxed P!

[e]e]e] lelele}

Greedy Algorithm for Relaxed Planning Tasks

The relaxation and monotonicity lemmas suggest the following algorithm
for solving relaxed planning tasks:

Greedy Planning Algorithm for (V, I, 0%, y)

s =1

7t =)

loop forever:
ifs|=y:

return 7"
else if there is an operator o* € 0" applicablein s
with s[o*] # s:
Append such an operator o™ to .
s :=s[o*]
else:
return unsolvable

6/14

Greedy Algorithm Optimal Relaxed Plans

0000800

Correctness of the Greedy Algorithm

The algorithm is sound:
m If it returns a plan, this is indeed a correct solution.
m If it returns “unsolvable”, the task is indeed unsolvable
m Upon termination, there clearly is no relaxed plan from s.
m By iterated application of the monotonicity lemma,
s dominates I.
m By the relaxation lemma, there is no solution from I.
What about completeness (termination) and runtime?
m Each iteration of the loop adds at least one atom to on(s).
m This guarantees termination after at most |V| iterations.

m Thus, the algorithm can clearly be implemented
to run in polynomial time.

m A good implementation runs in O(||IT]|).

714

Greedy Algorithm Optimal Relaxed Plans

0000080

Using the Greedy Algorithm as a Heuristic

We can apply the greedy algorithm within heuristic search
for a general (non-relaxed) planning task:

® When evaluating a state s in progression search,
solve relaxation of planning task with initial state s.

m When evaluating a subgoal ¢ in regression search,
solve relaxation of planning task with goal ¢.
m Set h(s) to the cost of the generated relaxed plan.
m in general not well-defined:
different choices of o™ in the algorithm lead to different h(s)

Is this admissible/safe/goal-aware/consistent?

8/14

Greedy Algorithm Optimal Relaxed Plans

0000080

Using the Greedy Algorithm as a Heuristic

We can apply the greedy algorithm within heuristic search
for a general (non-relaxed) planning task:

® When evaluating a state s in progression search,
solve relaxation of planning task with initial state s.

m When evaluating a subgoal ¢ in regression search,
solve relaxation of planning task with goal ¢.

m Set h(s) to the cost of the generated relaxed plan.

m in general not well-defined:
different choices of o™ in the algorithm lead to different h(s)

Is this admissible/safe/goal-aware/consistent?
It is safe (from the previous slide) and easily seen to be goal-aware. It is
not admissible (see next slide) and therefore also not consistent.

8/14

Greedy Algorithm Optimal Relaxed Plans

O00000e

Properties of the Greedy Algorithm as a Heuristic

Is this an admissible heuristic?

m Yes if the relaxed plans are optimal
(due to the plan preservation corollary).

m However, usually they are not, because the greedy algorithm
can make poor choices of which operators to apply.

How hard is it to find optimal relaxed plans?

914

Optimal Relaxed Plans
©00

Optimal Relaxed Plans

10/14

Optimal Relaxed Plans Summary

Optimal Relaxation Heuristic

Definition (h* heuristic)

Let I = (V, 1,0, y) be a planning task in positive normal form with states
S.

The optimal delete relaxation heuristic h* for N

is the function h : S — Ry U {oo}

where h(s) is the cost of an optimal relaxed plan for s,

i.e., of an optimal plan for M} = (v, s, 0%, y).

(can analogously define a heuristic for regression)

h* is admissible, safe, goal-aware, and consistent.

1/14

Optimal Relaxed Plans
ocoe

Complexity of Optimal Relaxed Planning (1)

Theorem (Complexity of Optimal Relaxed Planning)

The BCPLANEX problem restricted to delete-relaxed
planning tasks is NP-complete.

12/14

Summary
[1)

Summary

13/14

Optimal Relaxed Plans Summary
[o]ele} ce

Summary

m Because of their monotonicity property, delete-relaxed tasks
can be solved in polynomial time by a greedy algorithm.

m However, the solution quality of this algorithm is poor.

m For an informative heuristic, we would ideally want to find
optimal relaxed plans.

m The solution cost of an optimal relaxed plan
is the estimate of the h™ heuristic.

m However, the bounded-cost plan existence problem
for relaxed planning tasks is NP-complete.

14/14

	Greedy Algorithm
	

	Optimal Relaxed Plans
	

	Summary
	

