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Devising a Symbolic Search Algorithm

m We now put the pieces together to build
a symbolic search algorithm for propositional planning tasks.
m use BDDs as a black box data structure:

m care about provided operations and their time complexity
m do not care about their internal implementation

m Efficient implementations are available as libraries, e.g.:

m CUDD, a high-performance BDD library
m libbdd, shipped with Ubuntu
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BDD Operations: Preliminaries

m All BDDs work on a fixed and totally ordered
set of propositional variables.
m Complexity of operations given in terms of:

m R, the number of BDD variables
m ||BJ|, the number of nodes in the BDD B
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BDD Operations (1)

BDD operations: logical/set atoms

m bdd-fullset(): build BDD representing all assignments
m inlogic: T
m time complexity: O(1)

m bdd-emptyset(): build BDD representing @
m in logic: L
m time complexity: O(1)

m bdd-atom(v): build BDD representing {s | s(v) = T}
m in logic: v
m time complexity: O(1)
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BDD Operations (2)

BDD operations: logical/set connectives
m bdd-complement(B): build BDD representing@
m in logic: ¢
m time complexity: O(||B||)
m bdd-union(B, B): build BDD representing r(B) U r(B’)

m in logic: (¢ V y)
m time complexity: O(||B]| - ||B’I])

m bdd-intersection(B, B): build BDD representing r(B) N r(B’)

m in logic: (@ A y)
m time complexity: O(||B]| - ||B’I])
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BDD Operations (3)

BDD operations: Boolean tests
m bdd-includes(B, I): return true iff | € r(B)
m in logic: | |= @7
m time complexity: O(R)
m bdd-equals(B, B'): return true iff r(B) = r(B")
m in logic: @ = y?
m time complexity: O(1) (due to canonical representation)
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Conditioning: Formulas

The last two basic BDD operations are a bit more unusual
and require some preliminary remarks.

Conditioning a variable v in a formula ¢ to T or F,
written ¢ [T/v] or ¢ [F/v], means restricting v
to a particular truth value:

Examples:
B (AAN(BV=0)[T/B]=(AA(TV=(0)=A
B (AAN(BV-0)[F/B]=(AA(LV=C)=AA-C
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Conditioning: Sets of Assignments

We can define the same operation for sets of assignments S:
S[F/v] and S[T/v] restrict S to elements with the given value
for v.and remove v from the domain of definition:

Example:
mS={{A—F,B— FCH F},
{A—T,B—T,C+ F},
{ABT,B—>TCHT}}
~ S[T/B] ={{A- T,C—> F},
{A—-T,CH— T}}
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Forgetting

Forgetting (a.k.a. existential abstraction) is similar to conditioning:
we allow either truth value for v and remove the variable.

We write this as Jv ¢ (for formulas) and 3v S (for sets).

Formally:
m vy =@[T/v] V@[F/v]
m JvS = S[T/v] US[F/v]
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Forgetting: Example

Examples:

mS={{A—FB— FCH F},
{ABT,B—T,C F},
{ABT,B—>TCH T}}

~ dABS={{A—>F,C— F},

{ABT,CH F},

(AP T.CHT}H}

~ AcsS={{A—F, B+ F},

{A-T,B— T}}
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BDD Operations (4)

BDD operations: conditioning and forgetting
m bdd-condition(B, v, t) where t € {T, F}:
build BDD representing r(B)[t/v]
m in logic: @[t/v]
m time complexity: O(||B||)
m bdd-forget(B, v):
build BDD representing 3v r(B)

m inlogic: v (= @[T/v] V @[F/v])
m time complexity: O(||B||?)
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Formulas to BDDs

m With the logical/set operations, we can convert propositional
formulas ¢ into BDDs representing the models of ¢.

m We denote this computation with bdd-formula(ep).

m Each individual logical connective takes polynomial time,
but converting a full formula of length n can take 0(2") time. (How
is this possible?)
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Singleton BDDs

m We can convert a single truth assignment |
into a BDD representing {/} by computing
the conjunction of all literals true in |
(using bdd-atom, bdd-complement and bdd-intersection).

m We denote this computation with bdd-singleton(/).

m When done in the correct order, this takes time O(R).
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Renaming

We will need to support one final operation on formulas: renaming.

Renaming X to Y in formula ¢, written ¢ [X — Y],
means replacing all occurrences of X by Y in ¢.

We require that Y is not present in ¢ initially.

Example:
mp=(AA(BV ()
~ @[A— D] =(DA(BV ()
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How Hard Can That Be?

m For formulas, renaming is a simple (linear-time) operation.

m For a BDD B, it is equally simple (O(||B||)) when renaming
between variables that are adjacent in the variable order.

® In general, it requires O(||B||?), using the equivalence
pX—= Y] =K@ A X Y))
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Planning Task State Variables vs. BDD Variables

Consider propositional planning task (V, I, 0, y) with states S.
In symbolic planning, we have two BDD variables v and v’
for every state variable v € V of the planning task.

m use unprimed variables v to describe sets of states:
{s € S | some property}

m use combinations of unprimed and primed variables v, v/
to describe sets of state pairs:
{(s,s’) | some property}
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Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

def bfs-progression(V, I, 0, y):
goal_states := models(y)
reached, := {I}
i:=0
loop:

if reached; N goal_states + @:
return solution found
reached;;, := reached; U apply(reached;, O)
if reached;,; = reached;:
return no solution exists
i=1i+1
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Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

def bfs-progression(V, I, 0, y):
goal_states := models(y)
reached, := {I}
i:=0
loop:

if reached; N goal_states + @:
return solution found
reached;;, := reached; U apply(reached;, O)
if reached;,; = reached;:
return no solution exists
i=1i+1

Use bdd-formula.
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Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

def bfs-progression(V, I, 0, y):
goal_states := models(y)
reached, := {I}
i:=0
loop:

if reached; N goal_states + @:
return solution found
reached;;, := reached; U apply(reached;, O)
if reached;,; = reached;:
return no solution exists
i=1i+1

Use bdd-intersection, bdd-emptyset, bdd-equals.
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Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

def bfs-progression(V, I, 0, y):
goal_states := models(y)
reached, := {I}
i:=0
loop:

if reached; N goal_states + @:
return solution found
reached;;, := reached; U apply(reached;, O)
if reached;,; = reached;:
return no solution exists
i=1i+1

Use bdd-union.
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Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

def bfs-progression(V, I, 0, y):
goal_states := models(y)
reached, := {I}
i:=0
loop:

if reached; N goal_states + @:
return solution found
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Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

def bfs-progression(V, I, 0, y):
goal_states := models(y)
reached, := {I}
i:=0
loop:

if reached; N goal_states + @:
return solution found
reached;,, := reached; U apply(reached;, O)
if reached;,; = reached;:
return no solution exists
i=1i+1

How to do this?
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The apply Function (1)

We need an operation that
m for a set of states reached (given as a BDD)
m and a set of operators O

m computes the set of states (as a BDD) that result from
applying some operator o € O in some state s € reached.

We have seen something similar already...
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Translating Operators into Formulas

Definition (Operators in Propositional Logic)
Let o be an operator with effect e and V a set of state variables. Define

Tv(0) := pre(o) A A,cy(effcond(v,e) V (v A —effcond(—v, e)) < V).

Says that o is applicable and for each variable v € V it encodes that the
new value of v, represented by v/, is T if it became T or if the old value
was T and it did not become L.
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The apply Function (2)

. e o
m The formula 7y (0) describes all transitions s — s’

® induced by a single operator o
m in terms of variables V describing s
m and variables V" describing s’.

m The formula /¢ Tv(0) describes state transitions
by any operator in O.

® We can translate this formula to a BDD
(over variables V U V') with bdd-formula.

m The resulting BDD is called the transition relation
of the planning task, written as T, (0).
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Translating Operators into Formulas: Example

BV ={v,n,},V ={v},v;},0 = {(vs, ~vy)}

Transition Relation

70(0) = \/ (0) = Ty({v1, ~v1))
0€0
=7
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Translating Operators into Formulas: Example

BV ={v,n,},V ={v},v;},0 = {(vs, ~vy)}

Tv(0) = \/ 7(0) = T ({vs, ~w1))

0€0

=V
A ((effcond(vy, =vq) V (v4 A —effcond(—vq, =vq))) < v;)
A ((effcond(vy, =v4) V (vo A =effcond(=vy, —vy))) < vy)
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Translating Operators into Formulas: Example

mV= {V'I9V2}l v/ = {V,?, V;}I 0= {<V1, _'V1>}
Transition Relation

1v(0) = \/ 7(0) = T ({v1, ~w1))

€0
=

A ((effcond(vy, =v4) V (v4 A —effcond(—vy, —v4))) <> vq)

A ((effcond(vy, =v4) V (vy A =effcond(—vy, —vq))) < vy)
=y

ALV (ynAL)) o)

ALV (,AT)) & vy
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Translating Operators into Formulas: Example

BV ={v;,v,},V ={v;,v;},0 = {{vs, ~vy)}

Transition Relation

\/ 7v(0) = Tv({v1, "Vy))

0€0

Tv(0)

Vi

A ((effcond(vy, =vq) V (v4 A =effcond(—vq, —vq))) < v;)
A ((effcond(vy, =v4) V (vo A =effcond(=vy, —vy))) < vy)
= v

ALV (yAL) e vy

ALV (v, AT)) & vy

=vi A (Lo ) A (v, o v))
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Translating Operators into Formulas: Example

BV ={v;,v,},V ={v;,v;},0 = {{vs, ~vy)}

Transition Relation

\/ 7v(0) = Tv({v1, "Vy))

0€0

Tv(0)

Vi

A ((effcond(vy, =vq) V (v4 A =effcond(—vq, —vq))) < v;)
A ((effcond(vy, =v4) V (vo A =effcond(=vy, —vy))) < vy)
= v

ALV (yAL) e vy

ALV (v, AT)) & vy

=vi A (Lo ) A (v, o v))

=vi AV A (v o v))
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Transition Relation as BDD: Example

B V={v,v}andV = {v, v}

B O={{(vi,v)} w Ty(0) =vy A vy A (v & vy)

Transition Relation as BDD

27/36



Formulas and Singletons Renaming Symbolic Breadth-first Search

0000000080

The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function

def apply(reached, 0):

B :=Ty(0)
B := bdd-intersection(B, reached)
foreachv € V:

B := bdd-forget(B, v)
foreachv € V:

B := bdd-rename(B, V', v)
return B )
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The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function
def apply(reached, 0):
B :=Ty(0)
B := bdd-intersection(B, reached)
foreachv € V:
B := bdd-forget(B, v)
foreachv € V:
B := bdd-rename(B, V', v)
return B )

This describes the set of state pairs {s,s’) where s’ is a successor of s in
terms of variables V U V’.
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The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function
def apply(reached, 0):
B :=Ty(0)
B := bdd-intersection(B, reached)
foreachv € V:
B := bdd-forget(B, v)
foreachv € V:
B := bdd-rename(B, V', v)
return B )

This describes the set of state pairs {s,s’) where s’ is a successor of s
and s € reached in terms of variables V U V’.
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The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function
def apply(reached, 0):
B :=Ty(0)
B := bdd-intersection(B, reached)
foreachv € V:
B := bdd-forget(B, v)
foreachv € V:
B := bdd-rename(B, V', v)
return B )

This describes the set of states s’ which are successors
of some state s € reached in terms of variables V’.
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The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function
def apply(reached, 0):
B :=Ty(0)
B := bdd-intersection(B, reached)
foreachv € V:
B := bdd-forget(B, v)
foreachv € V:
B := bdd-rename(B, V', v)
return B )

This describes the set of states s’ which are successors
of some state s € reached in terms of variables V.
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The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function
def apply(reached, 0):
B :=Ty(0)
B := bdd-intersection(B, reached)
foreachv € V:
B := bdd-forget(B, v)
foreachv € V:
B := bdd-rename(B, V', v)
return B )

Thus, apply indeed computes the set of successors of reached using
operators O.
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The apply function: Example

BV ={v;,v,}and V' = {v;,v;}
m 0= {<V1,—|V1>} N> TV(O) =vi A _|V.; A (V2 PR V;)

Let reached = v,

r(B):
v AV,

HViAV,
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The apply function: Example

BV ={v;,v,}and V' = {v;,v;}
m 0= {<V1,—|V1>} N> TV(O) =vi A _|V.; A (V2 PR V;)

B = bdd-intersection(Ty(0), reached =

r(B):
BV AV AV AV

B viAV A v, AV,
1 1 2 2
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The apply function: Example

BV ={v;,v,}and V' = {v;,v;}
m 0= {<V1,—|V1>} N> TV(O) =vi A _|V.; A (V2 PR V;)

B = bdd-forget(B, v;)

r(B):
BV AV AV

B VAV, Ay,
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The apply function: Example

BV ={v;,v,}and V' = {v;,v;}
m 0= {<V1,—|V1>} N> TV(O) =vi A _|V.; A (V2 PR V;)

B = bdd-forget(B, v,)

r(B):
VAV

BV, A,
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The apply function: Example

BV ={v;,v,}and V' = {v;,v;}
m 0= {<V1,—|V1>} N> TV(O) =vi A _|V.; A (V2 PR V;)

B = bdd-rename(B, v}, v;)

r(B):

BV AV,

-
o

B v AV,
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The apply function: Example

BV ={v;,v,}and V' = {v;,v;}
m 0= {<V1,—|V1>} N> TV(O) =vi A _|V.; A (V2 PR V;)

B = bdd-rename(B, v;, v>)

r(B):

BV AV,

-
o

Vv AV,
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Discussion

m This completes the discussion of a (basic)
symbolic search algorithm for classical planning.

m We ignored the aspect of solution extraction.
This needs some extra work, but is not a major challenge.

m In practice, some steps can be performed slightly more efficiently,
but these are comparatively minor details.
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Variable Orders

For good performance, we need a good variable ordering.

m Variables that refer to the same state variable
before and after operator application (v and v’)
should be neighbors in the transition relation BDD.
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Extensions

Symbolic search can be extended to...

m regression and bidirectional search:
this is very easy and often effective

m uniform-cost search:
requires some work, but not too difficult in principle

m heuristic search:
requires a heuristic representable as a BDD;
has not really been shown to outperform blind symbolic search
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Summary

m Symbolic search operates on sets of states
instead of individual states as in explicit-state search.

m State sets and transition relations can be represented
as BDDs.

m Based on this, we can implement a blind breadth-first search
in an efficient way.

m A good variable ordering is crucial for performance.
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