Automated Planning

C5. Symbolic Search: Full Algorithm

Jendrik Seipp

Linköping University

based on slides from the AI group at the University of Basel

Content of this Course

Devising a Symbolic Search Algorithm

- We now put the pieces together to build a symbolic search algorithm for propositional planning tasks.
- use BDDs as a black box data structure:
	- care about provided operations and their time complexity $\mathcal{L}_{\mathcal{A}}$
	- do not care about their internal implementation
- Efficient implementations are available as libraries, e.g.:
	- CUDD, a high-performance BDD library
	- libbdd, shipped with Ubuntu $\mathcal{L}_{\mathcal{A}}$

[Basic BDD Operations](#page-3-0)

BDD Operations: Preliminaries

- All BDDs work on a fixed and totally ordered set of propositional variables.
- Complexity of operations given in terms of:
	- *k*, the number of BDD variables
	- ∥*B*∥, the number of nodes in the BDD *B*

BDD Operations (1)

BDD operations: logical/set atoms

- \blacksquare bdd-fullset(): build BDD representing all assignments
	- in logic: ⊤
	- **time complexity:** $O(1)$
- bdd-emptyset(): build BDD representing ∅
	- in logic: ⊥
	- time complexity: *O*(1)
- **b** bdd-atom(*v*): build BDD representing $\{s \mid s(v) = T\}$
	- in logic: *v* \blacksquare
	- **time complexity:** $O(1)$

BDD Operations (2)

BDD operations: logical/set connectives

- bdd-complement(*B*): build BDD representing *r*(*B*)
	- **in** logic: $\neg \varphi$
	- time complexity: *O*(∥*B*∥)
- $\text{bdd-union}(B, B')$: build BDD representing $r(B) \cup r(B')$
	- \blacksquare in logic: $(φ ∨ ψ)$
	- time complexity: *O*(∥*B*∥ · ∥*B* ′ ∥)
- $\text{bdd-intersection}(B, B')$: build BDD representing $r(B) \cap r(B')$
	- \blacksquare in logic: $(φ ∧ ψ)$
	- time complexity: $O(||B|| \cdot ||B'||)$

BDD Operations (3)

BDD operations: Boolean tests

- bdd-includes(*B*, *I*): return **true** iff $I \in r(B)$
	- \blacksquare in logic: *I* $\models \varphi$?
	- \blacksquare time complexity: $O(k)$
- bdd-equals(*B*, *B'*): return **true** iff $r(B) = r(B')$
	- \blacksquare in logic: $\varphi \equiv \psi$?
	- time complexity: *O*(1) (due to canonical representation) $\mathcal{L}_{\mathcal{A}}$

Conditioning: Formulas

The last two basic BDD operations are a bit more unusual and require some preliminary remarks.

Conditioning a variable v in a formula φ to **T** or **F**, written φ \mathbf{T}/v or φ \mathbf{F}/v , means restricting *v* to a particular truth value:

Examples:

- (*A* ∧ (*B* ∨ ¬*C*)) [**T**/*B*] = (*A* ∧ (⊤ ∨ ¬*C*)) ≡ *A*
- (*A* ∧ (*B* ∨ ¬*C*)) [**F**/*B*] = (*A* ∧ (⊥ ∨ ¬*C*)) ≡ *A* ∧ ¬*C*

Conditioning: Sets of Assignments

We can define the same operation for sets of assignments *S*: *S*[**F**/*v*] and *S*[**T**/*v*] restrict *S* to elements with the given value for *v* and remove *v* from the domain of definition:

Example:

■
$$
S = \{ \{A \mapsto F, B \mapsto F, C \mapsto F\},
$$

\n $\{A \mapsto T, B \mapsto T, C \mapsto F\},$
\n $\{A \mapsto T, B \mapsto T, C \mapsto T\} \}$
\n $\rightarrow S[T/B] = \{ \{A \mapsto T, C \mapsto F\},$
\n $\{A \mapsto T, C \mapsto T\} \}$

Forgetting (a.k.a. existential abstraction) is similar to conditioning: we allow either truth value for *v* and remove the variable.

We write this as $\exists v \varphi$ (for formulas) and $\exists v S$ (for sets).

Formally:

$$
\blacksquare \exists v \, \varphi = \varphi \, [\mathbf{T}/v] \vee \varphi \, [\mathbf{F}/v]
$$

 \blacksquare $\exists v S = S[T/v] \cup S[F/v]$

Forgetting: Example

Examples:

\n
$$
\blacksquare S = \{ \{ A \mapsto F, B \mapsto F, C \mapsto F \},
$$
\n
$$
\{ A \mapsto T, B \mapsto T, C \mapsto F \},
$$
\n
$$
\{ A \mapsto T, B \mapsto T, C \mapsto T \} \}
$$
\n
$$
\rightarrow \exists BS = \{ \{ A \mapsto F, C \mapsto F \},
$$
\n
$$
\{ A \mapsto T, C \mapsto F \},
$$
\n
$$
\{ A \mapsto T, C \mapsto T \} \}
$$
\n
$$
\rightarrow \exists CS = \{ \{ A \mapsto F, B \mapsto F \},
$$
\n
$$
\{ A \mapsto T, B \mapsto T \} \}
$$
\n

BDD Operations (4)

BDD operations: conditioning and forgetting

- bdd-condition(*B*, *v*, *t*) where $t \in \{T, F\}$: build BDD representing *r*(*B*) [*t*/*v*]
	- \blacksquare in logic: φ [*t*/*v*]
	- time complexity: *O*(∥*B*∥)
- bdd-forget(*B*, *v*):

build BDD representing $\exists v r(B)$

- \blacksquare in logic: \exists *ν* φ (= φ [**T**/*v*] ∨ φ [**F**/*v*])
- time complexity: *O*(∥*B*∥ 2) \blacksquare

[Formulas and Singletons](#page-13-0)

Formulas to BDDs

- With the logical/set operations, we can convert propositional formulas φ into BDDs representing the models of φ .
- We denote this computation with bdd-formula(φ).
- Each individual logical connective takes polynomial time, but converting a full formula of length *n* can take *O*(2 *n*) time. (How is this possible?)

Singleton BDDs

- We can convert a single truth assignment *I* into a BDD representing {*I*} by computing the conjunction of all literals true in *I* (using bdd-atom, bdd-complement and bdd-intersection).
- We denote this computation with bdd-singleton(*I*).
- When done in the correct order, this takes time *O*(*k*).

[Renaming](#page-16-0)

We will need to support one final operation on formulas: renaming.

Renaming *X* to *Y* in formula φ , written φ $[X \rightarrow Y]$, means replacing all occurrences of X by Y in φ .

We require that *Y* is not present in φ initially.

Example:

$$
\mathbf{\mathcal{\varphi}} = (A \land (B \lor \neg C))
$$

$$
\rightarrow \varphi [A \rightarrow D] = (D \land (B \lor \neg C))
$$

How Hard Can That Be?

- $\mathcal{L}_{\mathcal{A}}$ For formulas, renaming is a simple (linear-time) operation.
- For a BDD *B*, it is equally simple (*O*(∥*B*∥)) when renaming **I** between variables that are adjacent in the variable order.
- In general, it requires *O*(∥*B*∥ 2), using the equivalence $\varphi[X \to Y] \equiv \exists X(\varphi \land (X \leftrightarrow Y))$

[Symbolic Breadth-first Search](#page-19-0)

Planning Task State Variables vs. BDD Variables

Consider propositional planning task ⟨*V*, *^I*, *^O*, ^γ⟩ with states *^S*.

In symbolic planning, we have two BDD variables *v* and *v* ′ for every state variable $v \in V$ of the planning task.

- use unprimed variables *v* to describe sets of states: {*s* ∈ *S* | some property}
- use combinations of unprimed and primed variables *v*, *v* ′ to describe sets of state pairs:

 $\{\langle s, s' \rangle \mid \text{some property}\}$

Progression Breadth-first Search

```
def bfs-progression(V, I, O, γ):
     goal\_states := models(\gamma)reached<sup>0</sup> := {I}
     i := 0loop:
          if reached<sup>i</sup> \cap goal_states \neq \emptyset:
               return solution found
          reachedi+1
:= reachedi ∪ apply(reachedi
, O)
          if reachedi+1 = reachedi
:
               return no solution exists
          i := i + 1
```
Progression Breadth-first Search

```
def bfs-progression(V, I, O, γ):
     goal\_states := models(\gamma)reached<sup>0</sup> := {I}
     i := 0loop:
          if reached<sup>i</sup> \cap goal_states \neq \emptyset:
               return solution found
          reachedi+1
:= reachedi ∪ apply(reachedi
, O)
          if reachedi+1 = reachedi
:
               return no solution exists
          i := i + 1
```
Use *bdd-formula*.

Progression Breadth-first Search

```
def bfs-progression(V, I, O, γ):
     goal\_states := models(\gamma)reached<sup>0</sup> := {I}
     i := 0loop:
          if reached<sup>i</sup> \cap goal_states \neq \emptyset:
               return solution found
          reachedi+1
:= reachedi ∪ apply(reachedi
, O)
          if reachedi+1 = reachedi
:
               return no solution exists
          i := i + 1
```
Use *bdd-singleton*.

Progression Breadth-first Search

```
def bfs-progression(V, I, O, γ):
     goal\_states := models(\gamma)reached<sup>0</sup> := {I}
     i := 0loop:
          if reached<sup>i</sup> \cap goal_states \neq \emptyset:
               return solution found
          reachedi+1
:= reachedi ∪ apply(reachedi
, O)
          if reachedi+1 = reachedi
:
               return no solution exists
          i := i + 1
```
Use *bdd-intersection*, *bdd-emptyset*, *bdd-equals*.

Progression Breadth-first Search

```
def bfs-progression(V, I, O, γ):
     goal\_states := models(\gamma)reached<sup>0</sup> := {I}
     i := 0loop:
          if reached<sup>i</sup> \cap goal_states \neq \emptyset:
               return solution found
          reachedi+1
:= reachedi ∪ apply(reachedi
, O)
          if reachedi+1 = reachedi
:
               return no solution exists
          i := i + 1
```
Use *bdd-union*.

Progression Breadth-first Search

```
def bfs-progression(V, I, O, γ):
     goal\_states := models(\gamma)reached<sup>0</sup> := {I}
     i := 0loop:
          if reached<sup>i</sup> \cap goal_states \neq \emptyset:
               return solution found
          reachedi+1
:= reachedi ∪ apply(reachedi
, O)
          if reachedi+1 = reachedi
:
               return no solution exists
          i := i + 1
```
Use *bdd-equals*.

Progression Breadth-first Search

```
def bfs-progression(V, I, O, γ):
     goal\_states := models(\gamma)reached<sup>0</sup> := {I}
     i := 0loop:
          if reached<sup>i</sup> \cap goal_states \neq \emptyset:
               return solution found
          reachedi+1
:= reachedi ∪ apply(reachedi
, O)
          if reachedi+1 = reachedi
:
               return no solution exists
          i := i + 1
```
How to do this?

We need an operation that

- for a set of states *reached* (given as a BDD)
- and a set of operators *O*
- computes the set of states (as a BDD) that result from applying some operator *o* ∈ *O* in some state *s* ∈ *reached*.

We have seen something similar already...

Translating Operators into Formulas

Definition (Operators in Propositional Logic)

Let *o* be an operator with effect *e* and *V* a set of state variables. Define $\tau_V(o) := \text{pre}(o) \land \bigwedge_{v \in V} (\text{effcond}(v, e) \lor (v \land \neg \text{effcond}(\neg v, e)) \leftrightarrow v').$

Says that *o* is applicable and for each variable $v \in V$ it encodes that the new value of *v*, represented by *v* ′ , is ⊤ if it became ⊤ or if the old value was ⊤ and it did not become ⊥.

- The formula $\tau_V(o)$ describes all transitions s $\stackrel{o}{\to}$ s $'$
	- induced by a single operator *o*
	- in terms of variables *V* describing *s*
	- and variables *V* ′ describing *s* ′ .
- The formula $\bigvee_{o\in O}\tau_V(o)$ describes state transitions by any operator in *O*.
- We can translate this formula to a BDD (over variables *V* ∪ *V* ′) with *bdd-formula*.
- The resulting BDD is called the transition relation of the planning task, written as $T_V(0)$.

$$
V = \{v_1, v_2\}, V' = \{v'_1, v'_2\}, O = \{\langle v_1, \neg v_1 \rangle\}
$$

Transition Relation

$$
T_V(O) = \bigvee_{o \in O} \tau_V(o) = \tau_V(\langle v_1, \neg v_1 \rangle)
$$

= ?

$$
V = \{v_1, v_2\}, V' = \{v'_1, v'_2\}, O = \{\langle v_1, \neg v_1 \rangle\}
$$

Transition Relation

$$
T_V(O) = \bigvee_{o \in O} \tau_V(o) = \tau_V(\langle v_1, \neg v_1 \rangle)
$$

= v_1

$$
\wedge ((\text{effcond}(v_1, \neg v_1) \vee (v_1 \wedge \neg \text{effcond}(\neg v_1, \neg v_1))) \leftrightarrow v'_1)
$$

$$
\wedge ((\text{effcond}(v_2, \neg v_1) \vee (v_2 \wedge \neg \text{effcond}(\neg v_2, \neg v_1))) \leftrightarrow v'_2)
$$

$$
V = \{v_1, v_2\}, V' = \{v'_1, v'_2\}, O = \{\langle v_1, \neg v_1 \rangle\}
$$

Transition Relation

 $T₀$

$$
\begin{aligned}\n\chi(0) &= \bigvee_{o \in O} \tau_V(o) = \tau_V(\langle v_1, \neg v_1 \rangle) \\
&= v_1 \\
\Lambda \left((\text{effcond}(v_1, \neg v_1) \lor (v_1 \land \neg \text{effcond}(\neg v_1, \neg v_1)) \right) \leftrightarrow v_1' \right) \\
\Lambda \left((\text{effcond}(v_2, \neg v_1) \lor (v_2 \land \neg \text{effcond}(\neg v_2, \neg v_1)) \right) \leftrightarrow v_2' \right) \\
&= v_1 \\
\Lambda \left((\bot \lor (v_1 \land \bot)) \leftrightarrow v_1' \right) \\
\Lambda \left((\bot \lor (v_2 \land \top)) \leftrightarrow v_2' \right)\n\end{aligned}
$$

$$
V = \{v_1, v_2\}, V' = \{v'_1, v'_2\}, O = \{\langle v_1, \neg v_1 \rangle\}
$$

Transition Relation

$$
T_V(0) = \bigvee_{o \in O} \tau_V(o) = \tau_V(\langle v_1, \neg v_1 \rangle)
$$

\n
$$
= v_1
$$

\n
$$
\wedge ((\text{effcond}(v_1, \neg v_1) \vee (v_1 \wedge \neg \text{effcond}(\neg v_1, \neg v_1))) \leftrightarrow v'_1)
$$

\n
$$
\wedge ((\text{effcond}(v_2, \neg v_1) \vee (v_2 \wedge \neg \text{effcond}(\neg v_2, \neg v_1))) \leftrightarrow v'_2)
$$

\n
$$
= v_1
$$

\n
$$
\wedge ((\perp \vee (v_1 \wedge \perp)) \leftrightarrow v'_1)
$$

\n
$$
\wedge ((\perp \vee (v_2 \wedge \top)) \leftrightarrow v'_2)
$$

\n
$$
= v_1 \wedge (\perp \leftrightarrow \neg v'_1) \wedge (v_2 \leftrightarrow v'_2)
$$

$$
V = \{v_1, v_2\}, V' = \{v'_1, v'_2\}, O = \{\langle v_1, \neg v_1 \rangle\}
$$

Transition Relation

$$
T_V(0) = \bigvee_{o \in O} \tau_V(o) = \tau_V(\langle v_1, \neg v_1 \rangle)
$$

\n
$$
= v_1
$$

\n
$$
\wedge ((\text{effcond}(v_1, \neg v_1) \vee (v_1 \wedge \neg \text{effcond}(\neg v_1, \neg v_1))) \leftrightarrow v'_1)
$$

\n
$$
\wedge ((\text{effcond}(v_2, \neg v_1) \vee (v_2 \wedge \neg \text{effcond}(\neg v_2, \neg v_1))) \leftrightarrow v'_2)
$$

\n
$$
= v_1
$$

\n
$$
\wedge ((\perp \vee (v_1 \wedge \perp)) \leftrightarrow v'_1)
$$

\n
$$
\wedge ((\perp \vee (v_2 \wedge \top)) \leftrightarrow v'_2)
$$

\n
$$
= v_1 \wedge (\perp \leftrightarrow \neg v'_1) \wedge (v_2 \leftrightarrow v'_2)
$$

\n
$$
= v_1 \wedge \neg v'_1 \wedge (v_2 \leftrightarrow v'_2)
$$

Transition Relation as BDD: Example

$$
V = \{v_1, v_2\} \text{ and } V' = \{v'_1, v'_2\}
$$

$$
O = \{\langle v_1, \neg v_1 \rangle\} \rightsquigarrow T_V(O) = v_1 \land \neg v'_1 \land (v_2 \leftrightarrow v'_2)
$$

Transition Relation as BDD

Using the transition relation, we can compute *apply*(*reached*, *^O*) as follows:

The apply function

```
def apply(reached, O):
    B := T_V(0)B := bdd-intersection(B, reached)
    for each v \in V:
         B := \text{bdd-foreg}(B, v)for each v \in V:
          B := bdd-rename(B, v' , v)<br>rn B
    return B
```
Using the transition relation, we can compute *apply*(*reached*, *^O*) as follows:

The apply function

```
def apply(reached, O):
    B := T_V(0)B := bdd-intersection(B, reached)
    for each v \in V:
         B := \text{bdd-foreg}(B, v)for each v \in V:
          B := bdd-rename(B, v' , v)<br>rn B
    return B
```
This describes the set of state pairs $\langle s, s' \rangle$ where *s'* is a successor of *s* in
terms of variables $V \cup V'$ terms of variables *V* ∪ *V* ′ .

Using the transition relation, we can compute *apply*(*reached*, *^O*) as follows:

The apply function

```
def apply(reached, O):
    B := T_V(0)B := bdd-intersection(B, reached)
    for each v \in V:
         B := \text{bdd-foreg}(B, v)for each v \in V:
          B := bdd-rename(B, v' , v)<br>rn B
    return B
```
This describes the set of state pairs $\langle s, s' \rangle$ where *s'* is a successor of *s*
and $s \in \text{reached}$ in terms of variables $V \cup V'$ and *s* ∈ *reached* in terms of variables *V* ∪ *V* ′ .

Using the transition relation, we can compute *apply*(*reached*, *^O*) as follows:

The apply function

```
def apply(reached, O):
    B := T_V(0)B := bdd-intersection(B, reached)
    for each v \in V:
         B := \text{bdd-foreg}(B, v)for each v \in V:
          B := bdd-rename(B, v' , v)<br>rn B
    return B
```
This describes the set of states *s* ′ which are successors of some state *s* ∈ *reached* in terms of variables *V* ′ .

Using the transition relation, we can compute *apply*(*reached*, *^O*) as follows:

The apply function

```
def apply(reached, O):
    B := T_V(0)B := bdd-intersection(B, reached)
    for each v \in V:
         B := \text{bdd-foreg}(B, v)for each v \in V:
          B := bdd-rename(B, v' , v)<br>rn B
    return B
```
This describes the set of states *s* ′ which are successors of some state *s* ∈ *reached* in terms of variables *V*.

Using the transition relation, we can compute *apply*(*reached*, *^O*) as follows:

The apply function

```
def apply(reached, O):
    B := T_V(0)B := bdd-intersection(B, reached)
    for each v \in V:
         B := \text{bdd-foreg}(B, v)for each v \in V:
          B := bdd-rename(B, v' , v)<br>rn B
    return B
```
Thus, *apply* indeed computes the set of successors of *reached* using operators *O*.

The *apply* function: Example

$$
V = \{v_1, v_2\} \text{ and } V' = \{v'_1, v'_2\}
$$

$$
O = \{\langle v_1, \neg v_1 \rangle\} \rightsquigarrow T_V(O) = v_1 \land \neg v'_1 \land (v_2 \leftrightarrow v'_2)
$$

The *apply* function: Example

$$
V = \{v_1, v_2\} \text{ and } V' = \{v'_1, v'_2\}
$$

$$
O = \{\langle v_1, \neg v_1 \rangle\} \rightsquigarrow T_V(O) = v_1 \land \neg v'_1 \land (v_2 \leftrightarrow v'_2)
$$

The *apply* function: Example

$$
V = \{v_1, v_2\} \text{ and } V' = \{v'_1, v'_2\}
$$

$$
O = \{\langle v_1, \neg v_1 \rangle\} \rightsquigarrow T_V(O) = v_1 \land \neg v'_1 \land (v_2 \leftrightarrow v'_2)
$$

B = bdd-forget(*B*, *v*₁)

The *apply* function: Example

$$
V = \{v_1, v_2\} \text{ and } V' = \{v'_1, v'_2\}
$$

$$
O = \{\langle v_1, \neg v_1 \rangle\} \rightsquigarrow T_V(O) = v_1 \land \neg v'_1 \land (v_2 \leftrightarrow v'_2)
$$

$B = \text{bdd-forget}(B, v_2)$ *r*(*B*): \neg *v*^{\prime}₂ \land *v*₂ $\neg v'_1 \wedge \neg v'_2$ 0 1 *v* ′ 1 1 / 0

The *apply* function: Example

$$
V = \{v_1, v_2\} \text{ and } V' = \{v'_1, v'_2\}
$$

$$
O = \{\langle v_1, \neg v_1 \rangle\} \rightsquigarrow T_V(O) = v_1 \land \neg v'_1 \land (v_2 \leftrightarrow v'_2)
$$

The *apply* function: Example

$$
V = \{v_1, v_2\} \text{ and } V' = \{v'_1, v'_2\}
$$

$$
O = \{\langle v_1, \neg v_1 \rangle\} \rightsquigarrow T_V(O) = v_1 \land \neg v'_1 \land (v_2 \leftrightarrow v'_2)
$$

[Discussion](#page-49-0)

Discussion

- \blacksquare This completes the discussion of a (basic) symbolic search algorithm for classical planning.
- We ignored the aspect of solution extraction. This needs some extra work, but is not a major challenge.
- In practice, some steps can be performed slightly more efficiently, but these are comparatively minor details.

Variable Orders

For good performance, we need a good variable ordering.

■ Variables that refer to the same state variable before and after operator application (*v* and *v* ′) should be neighbors in the transition relation BDD.

Extensions

Symbolic search can be extended to. ..

- regression and bidirectional search: this is very easy and often effective
- uniform-cost search:

requires some work, but not too difficult in principle

heuristic search:

requires a heuristic representable as a BDD;

has not really been shown to outperform blind symbolic search

Literature

Randal E. Bryant.

Graph-Based Algorithms for Boolean Function Manipulation.

IEEE Transactions on Computers 35.8, pp. 677–691, 1986.

Reduced ordered BDDs.

冨

Kenneth L. McMillan.

Symbolic Model Checking.

PhD Thesis, 1993.

Symbolic search with BDDs.

Álvaro Torralba.

Symbolic Search and Abstraction Heuristics for Cost-Optimal Planning.

PhD Thesis, 2015.

State of the art of symbolic search planning.

[Summary](#page-54-0)

Summary

- Symbolic search operates on sets of states instead of individual states as in explicit-state search.
- State sets and transition relations can be represented as BDDs.
- Based on this, we can implement a blind breadth-first search $\mathcal{L}_{\mathcal{A}}$ in an efficient way.
- A good variable ordering is crucial for performance.