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Motivation
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Symbolic Search Planning: Basic Ideas

come up with a good data structure for sets of states

hope: (at least some) exponentially large state sets
can be represented as polynomial-size data structures

simulate a standard search algorithm like
breadth-first search using these set representations
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Symbolic Breadth-First Progression Search

Symbolic Breadth-First Progression Search

def bfs-progression(V, I, O, γ):
goal_states := models(γ)
reached0 := {I}
i := 0
loop:

if reachedi ∩ goal_states , ∅:
return solution found

reachedi+1 := reachedi ∪ apply(reachedi, O)
if reachedi+1 = reachedi:

return no solution exists
i := i + 1

{ If we can implement operations models, {I}, ∩, , ∅, ∪,

{

apply and = efficiently, this is a reasonable algorithm.
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Data Structures for State Sets
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Representing State Sets

We need to represent and manipulate state sets (again)!

How about an explicit representation, like a hash table?

And how about our good old friend, the formula?
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Time Complexity: Explicit Representations vs. Formulas

Let k be the number of state variables,
|S| the number of states in S and
∥S∥ the size of the representation of S.

Hash table Formula
s ∈ S? O(k) O(∥S∥)
S := S ∪ {s} O(k) O(k)
S := S \ {s} O(k) O(k)
S ∪ S′ O(k|S| + k|S′ |) O(1)
S ∩ S′ O(k|S| + k|S′ |) O(1)
S \ S′ O(k|S| + k|S′ |) O(1)
S O(k2k) O(1)
{s | s(v) = T} O(k2k) O(1)
S = ∅? O(1) co-NP-complete
S = S′? O(k|S|) co-NP-complete
|S| O(1) #P-complete
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Which Operations are Important?

Explicit representations such as hash tables
are unsuitable because their size grows linearly
with the number of represented states.

Formulas are very efficient for some operations,
but not for other important operations
needed by the breadth-first search algorithm.

Examples: S , ∅?, S = S′?

9/33



Motivation Data Structures for State Sets Binary Decision Diagrams BDDs as Canonical Representations Summary

Canonical Representations

One of the problems with formulas is that they allow
many different representations for the same set.

For example, all unsatisfiable formulas represent ∅.

This makes equality tests expensive.

We would like data structures with a canonical representation,
i.e., with only one possible representation for every state set.

Reduced ordered binary decision diagrams (BDDs)
are an example of such a canonical representation.
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Time Complexity: Formulas vs. BDDs
Let k be the number of state variables,
|S| the number of states in S and
∥S∥ the size of the representation of S.

Formula BDD
s ∈ S? O(∥S∥) O(k)
S := S ∪ {s} O(k) O(k)
S := S \ {s} O(k) O(k)
S ∪ S′ O(1) O(∥S∥∥S′∥)
S ∩ S′ O(1) O(∥S∥∥S′∥)
S \ S′ O(1) O(∥S∥∥S′∥)
S O(1) O(∥S∥)
{s | s(v) = T} O(1) O(1)
S = ∅? co-NP-complete O(1)
S = S′? co-NP-complete O(1)
|S| #P-complete O(∥S∥)

Remark: Optimizations allow BDDs with complementation (S)

Remark:

in constant time, but we will not discuss this here.
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Binary Decision Diagrams
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BDD Example

Example
Possible BDD for (u ∧ v) ∨ w

u

v

w w

0 1 0 1

0

1

0 1

0

1

01
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Exercise

BDD exercise
Draw a BDD for (y ∧ ¬x) ∨ z
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Binary Decision Diagrams: Definition

Definition (BDD)
Let V be a set of propositional variables.

A binary decision diagram (BDD) over V is a directed acyclic graph with
labeled arcs and labeled vertices such that:

There is exactly one node without incoming arcs.

All sinks (nodes without outgoing arcs) are labeled 0 or 1.

All other nodes are labeled with a variable v ∈ V
and have exactly two outgoing arcs, labeled 0 and 1.

A note on notation:

In BDDs, 1 stands for T and 0 for F.

We follow this customary notation in BDDs,
but stick to T and F when speaking of logic.
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Binary Decision Diagrams: Terminology

BDD Terminology
The node without incoming arcs is called the root.

The labeling variable of an internal node
is called the decision variable of the node.

The nodes reached from node n via the arc labeled i ∈ {0, 1}
is called the i-successor of n.

The BDDs which only consist of a single sink
are called the zero BDD and one BDD.

Observation: If B is a BDD and n is a node of B, then the subgraph
induced by all nodes reachable from n is also a BDD.

This BDD is called the BDD rooted at n.
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BDD Semantics

Testing whether a BDD Includes a Variable Assignment

def bdd-includes(B: BDD, I: variable assignment):
Set n to the root of B.
while n is not a sink:

Set v to the decision variable of n.
Set n to the 1-successor of n if I(v) = T and

to the 0-successor of n if I(v) = F.
return true if n is labeled 1, false if it is labeled 0.

Definition (Set Represented by a BDD)
Let B be a BDD over variables V.

The set represented by B, in symbols r(B),
consists of all variable assignments I : V → {T, F}
for which bdd-includes(B, I) returns true.
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BDDs as Canonical Representations
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Ordered BDDs: Motivation

In general, BDDs are not a canonical representation for sets of
interpretations. Here is a simple counter-example (V = {u, v}):

Example (BDDs for u ∧ ¬v with Different Variable Order)

u

v

0 1

0

1

01

v

u

1 0

0

1

01

Both BDDs represent the same state set, namely the singleton set
{{u ↦→ T, v ↦→ F}}.
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Ordered BDDs: Definition

As a first step towards a canonical representation,
we now require that the set of variables is totally ordered
by some ordering ≺.

In particular, we will only use variables v1, v2, v3, . . .

and assume the ordering vi ≺ vj iff i < j.

Definition (Ordered BDD)
A BDD is ordered (w.r.t. ≺) iff for each arc from a node
with decision variable u to a node with decision variable v,
we have u ≺ v.
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Ordered BDDs: Example

Example (Ordered and Unordered BDD)

v1

v2

0 1

0

1

01

v2

v1

1 0

0

1

01

The left BDD is ordered w.r.t. the ordering we use in this chapter,
the right one is not.
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Reduced Ordered BDDs: Are Ordered BDDs Canonical?

Example (Two equivalent BDDs that can be reduced)

v1

v2

v3 v3

0 1 0 1

0

1

0 1

0

1

01

v1

v2

v3 v3

0 1

0

1

0
1

0 1

0 1

Ordered BDDs are still not canonical:
both ordered BDDs represent the same set.

However, ordered BDDs can easily be made canonical.
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Reduced Ordered BDDs: Reductions (1)

There are two important operations on BDDs
that do not change the set represented by it:

Definition (Isomorphism Reduction)
If the BDDs rooted at two different nodes n and n′ are isomorphic, then
all incoming arcs of n′ can be redirected to n,
and all BDD nodes unreachable from the root can be removed.
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Reduced Ordered BDDs: Reductions (2)

Example (Isomorphism Reduction)

v1

v2

1

v3

0

0

0

1

1
v3

0

01

0

1

1
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Reduced Ordered BDDs: Reductions (2)

Example (Isomorphism Reduction)

v1

v2

1

0

1

1
v3

0

01

0

v3

0 1

0 1
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Reduced Ordered BDDs: Reductions (2)

Example (Isomorphism Reduction)

v1

v2

1

v3

0

0

0

1

1

0

1

v3

1 0

01
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Reduced Ordered BDDs: Reductions (2)

Example (Isomorphism Reduction)

v1

v2

1

v3

0

0

0

1

1

0

1

1
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Reduced Ordered BDDs: Reductions (2)

Example (Isomorphism Reduction)

v1

v2

v3

0

0

0

1

1

0

1

1 1
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Reduced Ordered BDDs: Reductions (2)

Example (Isomorphism Reduction)

v1

v2

1

v3

0

0

0

1

1

0

1

1
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Reduced Ordered BDDs: Reductions (2)

Example (Isomorphism Reduction)

v1

v2

1

v3

0

0

0

1

1

0

1
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Reduced Ordered BDDs: Reductions (3)

There are two important operations on BDDs
that do not change the set represented by it:

Definition (Shannon Reduction)
If both outgoing arcs of an internal node n of a BDD lead to
the same node m, then n can be removed from the BDD,
with all incoming arcs of n going to m instead.

25/33



Motivation Data Structures for State Sets Binary Decision Diagrams BDDs as Canonical Representations Summary

Reduced Ordered BDDs: Reductions (4)

Example (Shannon Reduction)

v1

v2

v3

0 1

0

1

0
1

0

v3

0 1

1
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Reduced Ordered BDDs: Reductions (4)

Example (Shannon Reduction)

v1

v2

v3

0

0

1

0
1

0

v3

1

0 1

1
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Reduced Ordered BDDs: Reductions (4)

Example (Shannon Reduction)

v1

v2

v3

0 1

0

1

0
1

0

1
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Reduced Ordered BDDs: Definition

Definition (Reduced Ordered BDD)
An ordered BDD is reduced iff it does not admit
any isomorphism reduction or Shannon reduction.

Theorem (Bryant 1986)
For every state set S and a fixed variable ordering,
there exists exactly one reduced ordered BDD representing S.

Moreover, given any ordered BDD B, the equivalent reduced ordered BDD
can be computed in linear time in the size of B.

{ Reduced ordered BDDs are the canonical representation
{ we are looking for.

From now on, we simply say BDD for reduced ordered BDD.
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Reduced Ordered BDDs: Exercise

Consider the following ordered BDD over variables v1, . . . , v5:

v1

v2 v2

v3

v4

v5 v5 v5

0 1 1 0

0 1

0

1

0

1

0

1

0 1

0
1 0

1 0
1

Provide the equivalent reduced ordered BDD.
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Reduced Ordered BDDs: Exercise Solution (1)

In the first two steps we can combine the three isomorphic sub-BDDs
with root v5.

v1

v2 v2

v3

v4

v5 v5

0 1 1 0

0 1

0

1

0

1

0

1

0 1

01 0
1

v1

v2 v2

v3

v4

v5

0 1 1

0 1

0

1

0

1

0

1

0 1

01
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Reduced Ordered BDDs: Exercise Solution (2)

In addition to the isomorphism reduction that combines the two
1-leaves, a Shannon reduction at the node with decision variable v4 is
now also possible.

v1

v2 v2

v3

v4

v5

0 1

0 1

0

1

0

1

0

1

0 1

01

v1

v2 v2

v3

v5

0 1

0 1

0

1

0

1

0

1

01
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Reduced Ordered BDDs: Exercise Solution (3)
Now the two sub-BDDs whose roots are the nodes with decision variable
v2 are isomorphic. Combining them allows a Shannon reduction at v1.

v1

v2

v3

v5

0 1

0
1

0

1

0

1

01

v2

v3

v5

0 1

0

1

0

1

01

The BDD represents the formula (v2 ∨ ¬v5) ∧ (¬v3 ∨ ¬v5) and the
following 20 states: 00000, 00010, 00100, 00110, 01000, 01001, 01010,
01011, 01100, 01110, 10000, 10010, 10100, 10110, 11000, 11001, 11010, 11011,
11100, 11110.
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Summary
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Summary

Symbolic search is based on the idea of performing a state-space
search where many states are considered “at once” by operating on
sets of states rather than individual states.

Binary decision diagrams are a data structure to compactly
represent and manipulate sets of variable assignments.

Reduced ordered BDDs are a canonical representation
of such sets.
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