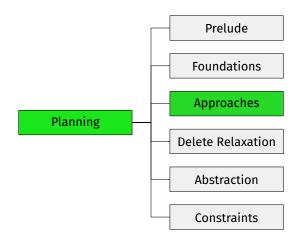
Automated Planning

C3. SAT Planning: Core Idea and Sequential Encoding

Jendrik Seipp

Linköping University

Content of this Course



Introduction •0000

Introduction

Introduction

- SAT solvers (algorithms that find satisfying assignments) to CNF formulas) are one of the major success stories in solving hard combinatorial problems.
- Can we leverage them for classical planning?
- → SAT planning (a.k.a. planning as satisfiability)

background on SAT Solvers:

→ Artificial Intelligence Course (TDDC17)

Complexity Mismatch

Introduction

- The SAT problem is NP-complete, while PLANEX is PSPACE-complete.
- one-shot polynomial reduction from PLANEX to SAT not possible (unless NP = PSPACE)

Introduction

Solution: Iterative Deepening

- We can generate a propositional formula that tests if task Π has a plan with horizon (length bound) T in time $O(\|\Pi\|^k \cdot T)$ (\rightsquigarrow pseudo-polynomial reduction).
- Use as building block of algorithm that probes increasing horizons (a bit like IDA*).
- Can be efficient if there exist plans that are not excessively long.

SAT Planning: Main Loop

Introduction 00000

basic SAT Planning algorithm:

```
SAT Planning
def satplan(\Pi):
     for T \in \{0, 1, 2, \dots\}:
          \varphi := build\_sat\_formula(\Pi, T)
          I = \text{sat\_solver}(\varphi)
                                                        > returns a model or none
          if / is not none:
                return extract_plan(\Pi, T, I)
```

Termination criterion for unsolvable tasks?

SAT Formula: CNF?

- SAT solvers require conjunctive normal form (CNF), i.e., formulas expressed as collection of clauses.
- We will make sure that our SAT formulas are in CNF when our input is a STRIPS task.
- We do allow fully general propositional tasks, but then the formula may need additional conversion to CNF.

SAT Formula: Variables

- **given propositional planning task** $\Pi = \langle V, I, O, \gamma \rangle$
- given horizon $T \in \mathbb{N}_0$

Variables of the SAT Formula

- propositional variables v^i for all $v \in V$, $0 \le i \le T$ encode state after i steps of the plan
- propositional variables o^i for all $o \in O$, $1 \le i \le T$ encode operator(s) applied in i-th step of the plan

Formulas with Time Steps

Definition (Time-Stamped Formulas)

Let φ be a propositional logic formula over the variables V. Let $0 \le i \le T$.

We write φ^i for the formula obtained from φ by replacing each $v \in V$ with v'.

Example:
$$((a \land b) \lor \neg c)^3 = (a^3 \land b^3) \lor \neg c^3$$

SAT Formula: Motivation

We want to express a formula whose models are exactly the plans/traces with *T* steps.

For this, the formula must express four things:

- The variables v^0 ($v \in V$) define the initial state.
- The variables \mathbf{v}^{T} ($v \in V$) define a goal state.
- We select exactly one operator variable o^i ($o \in O$) for each time step $1 \le i \le T$.
- If we select o^i , then variables v^{i-1} and v^i ($v \in V$) describe a state transition from the (i-1)-th state of the plan to the i-th state of the plan (that uses operator o).

The final formula is the conjunction of all these parts.

Initial State, Goal, Operator Selection

0000

SAT Formula: Initial State

SAT Formula: Initial State

initial state clauses:

 $\blacksquare \neg V^0$

for all $v \in V$ with $I(v) = \mathbf{T}$

for all $v \in V$ with $I(v) = \mathbf{F}$

SAT Formula: Goal

SAT Formula: Goal

goal clauses:

 \mathbf{P}^{T}

For STRIPS, this is a conjunction of unit clauses.

For general goals, this may not be in clause form.

SAT Formula: Operator Selection

Let
$$O = \{o_1, \ldots, o_n\}.$$

SAT Formula: Operator Selection

operator selection clauses:

 $o_1^i \vee \cdots \vee o_n^i$ for all $1 \leq i \leq T$

operator exclusion clauses:

Transitions

We now get to the interesting/challenging bit: encoding the transitions.

Key observations: if we apply operator o at time i,

- its precondition must be satisfied at time i-1: $o^i \rightarrow pre(o)^{i-1}$
- variable v is true at time i iff its regression is true at i-1: $o^i \rightarrow (v^i \leftrightarrow regr(v, eff(o))^{i-1})$

Simplifications and Abbreviations

- Let us pick the last formula apart to understand it better (and also get a CNF representation along the way).
- Let us call the formula τ ("transition"): $\tau = o^i \rightarrow (v^i \leftrightarrow rear(v, eff(o))^{i-1}).$

- Let e = eff(o).
 - Let $\rho = regr(v, e)$ ("regression"). We have $\rho = effcond(v, e) \lor (v \land \neg effcond(\neg v, e))$.
 - Let $\alpha = effcond(v, e)$ ("added").
 - Let $\delta = effcond(\neg v, e)$ ("deleted").
- $\rightarrow \tau = o^i \rightarrow (v^i \leftrightarrow \rho^{i-1}) \text{ with } \rho = \alpha \lor (v \land \neg \delta)$

Reminder:
$$\tau = o^{i} \rightarrow (v^{i} \leftrightarrow \rho^{i-1})$$
 with $\rho = \alpha \lor (v \land \neg \delta)$

$$\tau = o^{i} \rightarrow (v^{i} \leftrightarrow \rho^{i-1})$$

$$\equiv o^{i} \rightarrow ((v^{i} \rightarrow \rho^{i-1}) \land (\rho^{i-1} \rightarrow v^{i}))$$

$$\equiv \underbrace{(o^{i} \rightarrow (v^{i} \rightarrow \rho^{i-1}))}_{\tau_{1}} \land \underbrace{(o^{i} \rightarrow (\rho^{i-1} \rightarrow v^{i}))}_{\tau_{2}}$$

 \rightarrow consider this two separate constraints τ_1 and τ_2

Picking it Apart (2)

Reminder:
$$\tau_{1} = o^{i} \rightarrow (v^{i} \rightarrow \rho^{i-1})$$
 with $\rho = \alpha \lor (v \land \neg \delta)$

$$\tau_{1} = o^{i} \rightarrow (v^{i} \rightarrow \rho^{i-1})$$

$$\equiv o^{i} \rightarrow (\neg \rho^{i-1} \rightarrow \neg v^{i})$$

$$\equiv (o^{i} \land \neg \rho^{i-1}) \rightarrow \neg v^{i}$$

$$\equiv (o^{i} \land \neg (\alpha^{i-1} \lor (v^{i-1} \land \neg \delta^{i-1}))) \rightarrow \neg v^{i}$$

$$\equiv (o^{i} \land (\neg \alpha^{i-1} \land (\neg v^{i-1} \lor \delta^{i-1}))) \rightarrow \neg v^{i}$$

$$\equiv \underbrace{((o^{i} \land \neg \alpha^{i-1} \land \neg v^{i-1}) \rightarrow \neg v^{i})}_{\tau_{11}} \land \underbrace{((o^{i} \land \neg \alpha^{i-1} \land \delta^{i-1}) \rightarrow \neg v^{i})}_{\tau_{12}}$$

 \rightarrow consider this two separate constraints τ_{11} and τ_{12}

Interpreting the Constraints (1)

Can we give an intuitive description of τ_{11} and τ_{12} ?

Interpreting the Constraints (1)

Can we give an intuitive description of τ_{11} and τ_{12} ?

~ Yes!

$$\mathbf{v}_{11} = (o^i \wedge \neg \alpha^{i-1} \wedge \neg v^{i-1}) \rightarrow \neg v^i$$

"When applying o, if v is false and o does not add it, it remains false"

- called negative frame clause
- in clause form: $\neg o^i \lor \alpha^{i-1} \lor v^{i-1} \lor \neg v^i$

"When applying o, if o deletes v and does not add it, it is false afterwards." (Note the add-after-delete semantics.)

- called negative effect clause
- in clause form: $\neg o^i \lor \alpha^{i-1} \lor \neg \delta^{i-1} \lor \neg v^i$

For STRIPS tasks, these are indeed clauses.

Picking it Apart (3)

Almost done!

Picking it Apart (3)

Almost done!

Reminder:
$$\tau_2 = o^i \to (\rho^{i-1} \to v^i)$$
 with $\rho = \alpha \lor (v \land \neg \delta)$

$$\tau_2 = o^i \to (\rho^{i-1} \to v^i)$$

$$\equiv (o^i \land \rho^{i-1}) \to v^i$$

$$\equiv (o^i \land (\alpha^{i-1} \lor (v^{i-1} \land \neg \delta^{i-1}))) \to v^i$$

$$\equiv \underbrace{((o^i \land \alpha^{i-1}) \to v^i)}_{\tau_{21}} \land \underbrace{((o^i \land v^{i-1} \land \neg \delta^{i-1}) \to v^i)}_{\tau_{22}}$$

 \rightarrow consider this two separate constraints τ_{21} and τ_{22}

Interpreting the Constraints (2)

How about an intuitive description of τ_{21} and τ_{22} ?

Interpreting the Constraints (2)

How about an intuitive description of τ_{21} and τ_{22} ?

$$\mathbf{v}_{21} = (o^i \wedge \alpha^{i-1}) \rightarrow v^i$$

"When applying o, if o adds v, it is true afterwards."

- called positive effect clause
- in clause form: $\neg o^i \lor \neg \alpha^{i-1} \lor v^i$

"When applying o, if v is true and o does not delete it, it remains true."

- called positive frame clause
- in clause form: $\neg o^i \lor \neg v^{i-1} \lor \delta^{i-1} \lor v^i$

For STRIPS tasks, these are indeed clauses. (But not in general.)

SAT Formula: Transitions

SAT Formula: Transitions

precondition clauses:

 $\neg o^i \lor pre(o)^{i-1}$

for all $1 \le i \le T$, $o \in O$

positive and negative effect clauses:

 $\neg \alpha^i \lor \neg \alpha^{i-1} \lor v^i$

for all $1 \le i \le T$, $o \in O$, $v \in V$

 $\neg o^i \lor \alpha^{i-1} \lor \neg \delta^{i-1} \lor \neg v^i$

for all $1 \le i \le T$, $o \in O$, $v \in V$

positive and negative frame clauses:

 $\neg o^i \lor \neg v^{i-1} \lor \delta^{i-1} \lor v^i$

for all $1 \le i \le T$, $o \in O$, $v \in V$

 $\neg \alpha^i \lor \alpha^{i-1} \lor v^{i-1} \lor \neg v^i$

for all $1 \le i \le T$, $o \in O$, $v \in V$

where $\alpha = effcond(v, eff(o)), \delta = effcond(\neg v, eff(o)).$

For STRIPS, all except the precondition clauses are in clause form.

The precondition clauses are easily convertible to CNF (one clause $\neg o^i \lor v^{i-1}$ for each precondition atom v of o).

Summary

Summary

- SAT planning (planning as satisfiability) expresses a sequence of bounded-horizon planning tasks as SAT formulas.
- Plans can be extracted from satisfying assignments; unsolvable tasks are challenging for the algorithm.
- For each time step, there are propositions encoding which state variables are true and which operators are applied.
- We describe a basic sequential encoding where one operator is applied at every time step.
- The encoding produces a CNF formula for STRIPS tasks.
- The encoding follows naturally (with some work) from using regression to link state variables in adjacent time steps.