
Automated Planning
B3. Formal Definition of Planning

Jendrik Seipp

Linköping University

based on slides from the AI group at the University of Basel

Semantics of Effects and Operators Planning Tasks Positive Normal Form STRIPS Summary

Content of this Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Abstraction

Constraints

2/29

Semantics of Effects and Operators Planning Tasks Positive Normal Form STRIPS Summary

Semantics of Effects and Operators

3/29

Semantics of Effects and Operators Planning Tasks Positive Normal Form STRIPS Summary

Semantics of Effects: Effect Conditions

Definition (Effect Condition for an Effect)
Let ℓ be an atomic effect, and let e be an effect.

The effect condition effcond(ℓ, e) under which ℓ triggers
given the effect e is a propositional formula defined as follows:

effcond(ℓ ,⊤) = ⊥
effcond(ℓ , e) = ⊤ for the atomic effect e = ℓ

effcond(ℓ , e) = ⊥ for all atomic effects e = ℓ ′ , ℓ

effcond(ℓ , (e ∧ e′)) = (effcond(ℓ, e) ∨ effcond(ℓ, e′))
effcond(ℓ , (χ ▷ e)) = (χ ∧ effcond(ℓ , e))

Intuition: effcond(ℓ, e) represents the condition that must be true in the
current state for the effect e to lead to the atomic effect ℓ

4/29

Semantics of Effects and Operators Planning Tasks Positive Normal Form STRIPS Summary

Effect Condition: Example (1)

Example
Consider the move operator m1 from the running example:
eff(m1) = ((t1 ▷ ¬t1) ∧ (¬t1 ▷ t1)).
Under which conditions does it set t1 to false?

effcond(¬t1, eff(m1)) = effcond(¬t1, ((t1 ▷ ¬t1) ∧ (¬t1 ▷ t1)))
= effcond(¬t1, (t1 ▷ ¬t1)) ∨

=

effcond(¬t1, (¬t1 ▷ t1))
= (t1 ∧ effcond(¬t1,¬t1)) ∨

=

(¬t1 ∧ effcond(¬t1, t1))
= (t1 ∧ ⊤) ∨ (¬t1 ∧ ⊥)
≡ t1 ∨ ⊥
≡ t1

5/29

Semantics of Effects and Operators Planning Tasks Positive Normal Form STRIPS Summary

Effect Condition: Example (2)

Example
Consider the move operator m1 from the running example:
eff(m1) = ((t1 ▷ ¬t1) ∧ (¬t1 ▷ t1)).
Under which conditions does it set i to true?

effcond(i, eff(m1)) = effcond(i, ((t1 ▷ ¬t1) ∧ (¬t1 ▷ t1)))
= effcond(i, (t1 ▷ ¬t1)) ∨

=

effcond(i, (¬t1 ▷ t1))
= (t1 ∧ effcond(i,¬t1)) ∨

=

(¬t1 ∧ effcond(i, t1))
= (t1 ∧ ⊥) ∨ (¬t1 ∧ ⊥)
≡ ⊥ ∨ ⊥
≡ ⊥

6/29

Semantics of Effects and Operators Planning Tasks Positive Normal Form STRIPS Summary

Semantics of Effects: Applying an Effect

first attempt:

Definition (Applying Effects)
Let V be a set of propositional state variables.
Let s be a state over V, and let e be an effect over V.

The resulting state of applying e in s, written s⟦e⟧,
is the state s′ defined as follows for all v ∈ V:

s′(v) =

T if s |= effcond(v, e)
F if s |= effcond(¬v, e)

∧ ¬effcond(v, e)

s(v) otherwise

What is the problem with this definition?

7/29

Semantics of Effects and Operators Planning Tasks Positive Normal Form STRIPS Summary

Semantics of Effects: Applying an Effect

correct definition:

Definition (Applying Effects)
Let V be a set of propositional state variables.
Let s be a state over V, and let e be an effect over V.

The resulting state of applying e in s, written s⟦e⟧,
is the state s′ defined as follows for all v ∈ V:

s′(v) =

T if s |= effcond(v, e)
F if s |= effcond(¬v, e) ∧ ¬effcond(v, e)
s(v) otherwise

What is the problem with this definition?

7/29

Semantics of Effects and Operators Planning Tasks Positive Normal Form STRIPS Summary

Add-after-Delete Semantics

Note:

The definition implies that if a variable is simultaneously “added”
(set to T) and “deleted” (set to F),
the value T takes precedence.

This is called add-after-delete semantics.

This detail of effect semantics is somewhat arbitrary,
but has proven useful in applications.

8/29

Semantics of Effects and Operators Planning Tasks Positive Normal Form STRIPS Summary

Semantics of Operators

Definition (Applicable, Applying Operators, Resulting State)
Let V be a set of propositional state variables.
Let s be a state over V, and let o be an operator over V.

Operator o is applicable in s if s |= pre(o).

If o is applicable in s, the resulting state of applying o in s,
written s⟦o⟧, is the state s⟦eff(o)⟧.

9/29

Semantics of Effects and Operators Planning Tasks Positive Normal Form STRIPS Summary

Planning Tasks

10/29

Semantics of Effects and Operators Planning Tasks Positive Normal Form STRIPS Summary

Planning Tasks

Definition (Planning Task)

A (propositional) planning task is a 4-tuple Π = ⟨V, I, O, γ⟩ where

V is a finite set of propositional state variables,

I is an interpretation of V called the initial state,

O is a finite set of operators over V, and

γ is a formula over V called the goal.

11/29

Semantics of Effects and Operators Planning Tasks Positive Normal Form STRIPS Summary

Running Example: Planning Task

Example
From the previous chapter, we see that the running example
can be represented by the task Π = ⟨V, I, O, γ⟩ with

V = {i,w, t1, t2}
I = {i ↦→ F,w ↦→ T, t1 ↦→ F, t2 ↦→ F}
O = {m1,m2, l1, l2, u} where

m1 = ⟨⊤, ((t1 ▷ ¬t1) ∧ (¬t1 ▷ t1)), 5⟩
m2 = ⟨⊤, ((t2 ▷ ¬t2) ∧ (¬t2 ▷ t2)), 5⟩
l1 = ⟨¬i ∧ (w ↔ t1), (i ∧ w), 1⟩
l2 = ⟨¬i ∧ (w ↔ t2), (i ∧ ¬w), 1⟩
u = ⟨i,¬i ∧ (w ▷ ((t1 ▷ w) ∧ (¬t1 ▷ ¬w)))

∧ (¬w ▷ ((t2 ▷ w) ∧ (¬t2 ▷ ¬w))), 1⟩
γ = ¬i ∧ ¬w

12/29

Semantics of Effects and Operators Planning Tasks Positive Normal Form STRIPS Summary

Exercise: Modeling a Propositional Planning Task

Example
Model the following task as a propositional planning task:

You are currently at home and have to write an essay. Since your
computer is broken, you can only write the essay using a computer at the
university library. These computers are always switched off when a user
logs off.

13/29

Semantics of Effects and Operators Planning Tasks Positive Normal Form STRIPS Summary

Mapping Planning Tasks to Transition Systems

Definition (Transition System Induced by a Planning Task)
The planning task Π = ⟨V, I, O, γ⟩ induces
the transition system T (Π) = ⟨S, L, c, T, s0, S⋆⟩, where

S is the set of all states over V,

L is the set of operators O,

c(o) = cost(o) for all operators o ∈ O,

T = {⟨s, o, s′⟩ | s ∈ S, o applicable in s, s′ = s⟦o⟧},

s0 = I, and

S⋆ = {s ∈ S | s |= γ}.

14/29

Semantics of Effects and Operators Planning Tasks Positive Normal Form STRIPS Summary

Planning Tasks: Terminology

Terminology for transitions systems is also applied
to the planning tasks Π that induce them.

For example, when we speak of the states of Π,
we mean the states of T (Π).
A sequence of operators that forms a solution of T (Π)
is called a plan of Π.

15/29

Semantics of Effects and Operators Planning Tasks Positive Normal Form STRIPS Summary

Satisficing and Optimal Planning

By planning, we mean the following two algorithmic problems:

Definition (Satisficing Planning)

Given: a planning task Π
Output: a plan for Π, or unsolvable if no plan for Π exists

Definition (Optimal Planning)

Given: a planning task Π
Output: a plan for Π with minimal cost among all plans for Π,

or unsolvable if no plan for Π exists

16/29

Semantics of Effects and Operators Planning Tasks Positive Normal Form STRIPS Summary

Positive Normal Form

17/29

Semantics of Effects and Operators Planning Tasks Positive Normal Form STRIPS Summary

Flat Effect

Definition (Flat Effect)
An effect is simple if it is either an atomic effect
or of the form (χ ▷ e), where e is an atomic effect.

An effect e is flat if it is a conjunction of 0 or more simple effects,
and none of these simple effects include the same atomic effect.

An operator o is flat if eff(o) is flat.

Notes: analogously to CNF, we consider

a single simple effect as a conjunction of 1 simple effect

the empty effect as a conjunction of 0 simple effects

18/29

Semantics of Effects and Operators Planning Tasks Positive Normal Form STRIPS Summary

Flat Effect: Example

Example
Consider the effect

c ∧ (a ▷ (¬b ∧ (c ▷ (b ∧ ¬d ∧ ¬a)))) ∧ (¬b ▷¬a)

An equivalent flat (and conflict-free) effect is

c ∧
((a ∧ ¬c) ▷ ¬b) ∧
((a ∧ c) ▷ b) ∧
((a ∧ c) ▷ ¬d) ∧

((¬b ∨ (a ∧ c)) ▷ ¬a)

Note: if we want, we can write c as (⊤ ▷ c) to make the structure even
more uniform, with each simple effect having a condition.

19/29

Semantics of Effects and Operators Planning Tasks Positive Normal Form STRIPS Summary

Positive Formulas, Operators and Tasks

Definition (Positive Formula)
A logical formula ϕ is positive if no negation symbols appear in ϕ.

Note: This includes the negation symbols implied by → and ↔.

Definition (Positive Operator)
An operator o is positive if pre(o) and
all effect conditions in eff(o) are positive.

Definition (Positive Propositional Planning Task)
A propositional planning task ⟨V, I, O, γ⟩ is positive
if all operators in O and the goal γ are positive.

20/29

Semantics of Effects and Operators Planning Tasks Positive Normal Form STRIPS Summary

Positive Normal Form

Definition (Positive Normal Form)
A propositional planning task is in positive normal form
if it is positive and all operator effects are flat.

21/29

Semantics of Effects and Operators Planning Tasks Positive Normal Form STRIPS Summary

Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V = {home, uni, lecture, bike, bike-locked}
I = {home ↦→ T, bike ↦→ T, bike-locked ↦→ T,

uni ↦→ F, lecture ↦→ F}
O = {⟨home ∧ bike ∧ ¬bike-locked,¬home ∧ uni⟩,

⟨bike ∧ bike-locked,¬bike-locked⟩,
⟨bike ∧ ¬bike-locked, bike-locked⟩,
⟨uni, lecture ∧ ((bike ∧ ¬bike-locked) ▷ ¬bike)⟩}

γ = lecture ∧ bike

22/29

Semantics of Effects and Operators Planning Tasks Positive Normal Form STRIPS Summary

Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V = {home, uni, lecture, bike, bike-locked}
I = {home ↦→ T, bike ↦→ T, bike-locked ↦→ T,

uni ↦→ F, lecture ↦→ F}
O = {⟨home ∧ bike ∧ ¬bike-locked,¬home ∧ uni⟩,

⟨bike ∧ bike-locked,¬bike-locked⟩,
⟨bike ∧ ¬bike-locked, bike-locked⟩,
⟨uni, lecture ∧ ((bike ∧ ¬bike-locked) ▷ ¬bike)⟩}

γ = lecture ∧ bike

Identify state variable v occurring negatively in conditions.

22/29

Semantics of Effects and Operators Planning Tasks Positive Normal Form STRIPS Summary

Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V = {home, uni, lecture, bike, bike-locked, bike-unlocked}
I = {home ↦→ T, bike ↦→ T, bike-locked ↦→ T,

uni ↦→ F, lecture ↦→ F, bike-unlocked ↦→ F}
O = {⟨home ∧ bike ∧ ¬bike-locked,¬home ∧ uni⟩,

⟨bike ∧ bike-locked,¬bike-locked⟩,
⟨bike ∧ ¬bike-locked, bike-locked⟩,
⟨uni, lecture ∧ ((bike ∧ ¬bike-locked) ▷ ¬bike)⟩}

γ = lecture ∧ bike

Introduce new variable v̂ with complementary initial value.

22/29

Semantics of Effects and Operators Planning Tasks Positive Normal Form STRIPS Summary

Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V = {home, uni, lecture, bike, bike-locked, bike-unlocked}
I = {home ↦→ T, bike ↦→ T, bike-locked ↦→ T,

uni ↦→ F, lecture ↦→ F, bike-unlocked ↦→ F}
O = {⟨home ∧ bike ∧ ¬bike-locked,¬home ∧ uni⟩,

⟨bike ∧ bike-locked,¬bike-locked⟩,
⟨bike ∧ ¬bike-locked, bike-locked⟩,
⟨uni, lecture ∧ ((bike ∧ ¬bike-locked) ▷ ¬bike)⟩}

γ = lecture ∧ bike

Identify effects on variable v.

22/29

Semantics of Effects and Operators Planning Tasks Positive Normal Form STRIPS Summary

Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V = {home, uni, lecture, bike, bike-locked, bike-unlocked}
I = {home ↦→ T, bike ↦→ T, bike-locked ↦→ T,

uni ↦→ F, lecture ↦→ F, bike-unlocked ↦→ F}
O = {⟨home ∧ bike ∧ ¬bike-locked,¬home ∧ uni⟩,

⟨bike ∧ bike-locked,¬bike-locked ∧ bike-unlocked⟩,
⟨bike ∧ ¬bike-locked, bike-locked ∧ ¬bike-unlocked⟩,
⟨uni, lecture ∧ ((bike ∧ ¬bike-locked) ▷ ¬bike)⟩}

γ = lecture ∧ bike

Introduce complementary effects for v̂.

22/29

Semantics of Effects and Operators Planning Tasks Positive Normal Form STRIPS Summary

Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V = {home, uni, lecture, bike, bike-locked, bike-unlocked}
I = {home ↦→ T, bike ↦→ T, bike-locked ↦→ T,

uni ↦→ F, lecture ↦→ F, bike-unlocked ↦→ F}
O = {⟨home ∧ bike ∧ ¬bike-locked,¬home ∧ uni⟩,

⟨bike ∧ bike-locked,¬bike-locked ∧ bike-unlocked⟩,
⟨bike ∧ ¬bike-locked, bike-locked ∧ ¬bike-unlocked⟩,
⟨uni, lecture ∧ ((bike ∧ ¬bike-locked) ▷ ¬bike)⟩}

γ = lecture ∧ bike

Identify negative conditions for v.

22/29

Semantics of Effects and Operators Planning Tasks Positive Normal Form STRIPS Summary

Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V = {home, uni, lecture, bike, bike-locked, bike-unlocked}
I = {home ↦→ T, bike ↦→ T, bike-locked ↦→ T,

uni ↦→ F, lecture ↦→ F, bike-unlocked ↦→ F}
O = {⟨home ∧ bike ∧ bike-unlocked,¬home ∧ uni⟩,

⟨bike ∧ bike-locked,¬bike-locked ∧ bike-unlocked⟩,
⟨bike ∧ bike-unlocked, bike-locked ∧ ¬bike-unlocked⟩,
⟨uni, lecture ∧ ((bike ∧ bike-unlocked) ▷ ¬bike)⟩}

γ = lecture ∧ bike

Replace by positive condition v̂.

22/29

Semantics of Effects and Operators Planning Tasks Positive Normal Form STRIPS Summary

Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V = {home, uni, lecture, bike, bike-locked, bike-unlocked}
I = {home ↦→ T, bike ↦→ T, bike-locked ↦→ T,

uni ↦→ F, lecture ↦→ F, bike-unlocked ↦→ F}
O = {⟨home ∧ bike ∧ bike-unlocked,¬home ∧ uni⟩,

⟨bike ∧ bike-locked,¬bike-locked ∧ bike-unlocked⟩,
⟨bike ∧ bike-unlocked, bike-locked ∧ ¬bike-unlocked⟩,
⟨uni, lecture ∧ ((bike ∧ bike-unlocked) ▷ ¬bike)⟩}

γ = lecture ∧ bike

22/29

Semantics of Effects and Operators Planning Tasks Positive Normal Form STRIPS Summary

STRIPS

23/29

Semantics of Effects and Operators Planning Tasks Positive Normal Form STRIPS Summary

STRIPS Operators and Planning Tasks

Definition (STRIPS Operator)
An operator o of a propositional planning task is a STRIPS operator if

pre(o) is a conjunction of state variables, and

eff(o) is a conflict-free conjunction of atomic effects.

Definition (STRIPS Planning Task)
A propositional planning task ⟨V, I, O, γ⟩ is a STRIPS
planning task if all operators o ∈ O are STRIPS operators
and γ is a conjunction of state variables.

24/29

Semantics of Effects and Operators Planning Tasks Positive Normal Form STRIPS Summary

STRIPS Operators: Remarks

Every STRIPS operator is of the form

⟨v1 ∧ · · · ∧ vn, ℓ1 ∧ · · · ∧ ℓm⟩

where vi are state variables and ℓ j are atomic effects.

Often, STRIPS operators o are described
via three sets of state variables:

the preconditions (state variables occurring in pre(o))
the add effects (state variables occurring positively in eff(o))
the delete effects (state variables occurring negatively in eff(o))

Definitions of STRIPS in the literature often do not require
conflict-freeness. But it is easy to achieve and makes many things
simpler.

There exists a variant called STRIPS with negation
where negative literals are also allowed in conditions.

25/29

Semantics of Effects and Operators Planning Tasks Positive Normal Form STRIPS Summary

Why STRIPS is Interesting

STRIPS is particularly simple, yet expressive enough
to capture general planning tasks.

In particular, STRIPS planning is no easier
than planning in general.

Many algorithms in the planning literature
are only presented for STRIPS planning tasks
(generalization is often, but not always, obvious).

STRIPS
STanford Research Institute Problem Solver (Fikes & Nilsson, 1971)

26/29

Semantics of Effects and Operators Planning Tasks Positive Normal Form STRIPS Summary

Summary

27/29

Semantics of Effects and Operators Planning Tasks Positive Normal Form STRIPS Summary

Summary (1/2)

Planning tasks compactly represent transition systems
and are suitable as inputs for planning algorithms.

A planning task consists of a set of state variables and an initial
state, operators and goal over these state variables.

In satisficing planning, we must find a solution
for a planning task (or show that no solution exists).

In optimal planning, we must additionally guarantee
that generated solutions are of minimal cost.

28/29

Semantics of Effects and Operators Planning Tasks Positive Normal Form STRIPS Summary

Summary (2/2)

A positive task with flat operators is in positive normal form.

STRIPS is even more restrictive than positive normal form,
forbidding complex preconditions and conditional effects.

Both forms are expressive enough to capture
general propositional planning tasks.

Transformation to positive normal form is possible
with polynomial size increase.

Isomorphic transformations of propositional planning tasks to
STRIPS can increase the number of operators exponentially;
non-isomorphic polynomial transformations exist.

29/29

	Semantics of Effects and Operators
	

	Planning Tasks
	

	Positive Normal Form
	

	STRIPS
	

	Summary
	

