Automated Planning B3. Formal Definition of Planning

Jendrik Seipp

Linköping University

based on slides from the AI group at the University of Basel

Content of this Course

[Semantics of Effects and Operators](#page-2-0)

Semantics of Effects: Effect Conditions

Definition (Effect Condition for an Effect)

Let ℓ be an atomic effect, and let *e* be an effect.

The effect condition *effcond*(ℓ, *^e*) under which ^ℓ triggers given the effect *e* is a propositional formula defined as follows:

- \blacksquare effcond $(\ell, \top) = \bot$
- \blacksquare *effcond*(ℓ , *e*) = ⊤ for the atomic effect *e* = ℓ
- $\textit{effcond}(\ell, e) = \bot$ for all atomic effects $e = \ell' \neq \ell$
- ϵ ffcond $(\ell, (e \wedge e')) = (\epsilon$ ffcond $(\ell, e) \vee \epsilon$ ffcond $(\ell, e'))$
- \blacksquare *effcond*(ℓ , $(\gamma \triangleright e)$) = $(\gamma \wedge$ *effcond*(ℓ , *e*))

Intuition: $effcond(\ell, e)$ represents the condition that must be true in the current state for the effect *e* to lead to the atomic effect ℓ

Effect Condition: Example (1)

Example

Consider the move operator m_1 from the running example:

$$
eff(m_1) = ((t_1 \triangleright \neg t_1) \wedge (\neg t_1 \triangleright t_1)).
$$

Under which conditions does it set t_1 to false?

$$
\textit{effcond}(\neg t_1, \textit{eff}(m_1)) = \textit{effcond}(\neg t_1, ((t_1 \triangleright \neg t_1) \land (\neg t_1 \triangleright t_1)))
$$
\n
$$
= \textit{effcond}(\neg t_1, (t_1 \triangleright \neg t_1)) \lor
$$
\n
$$
\textit{effcond}(\neg t_1, (\neg t_1 \triangleright t_1))
$$
\n
$$
= (t_1 \land \textit{effcond}(\neg t_1, \neg t_1)) \lor
$$
\n
$$
(\neg t_1 \land \textit{effcond}(\neg t_1, t_1))
$$
\n
$$
= (t_1 \land \top) \lor (\neg t_1 \land \bot)
$$
\n
$$
\equiv t_1 \lor \bot
$$
\n
$$
\equiv t_1
$$

Effect Condition: Example (2)

Example

Consider the move operator m_1 from the running example:

$$
eff(m_1) = ((t_1 \triangleright \neg t_1) \wedge (\neg t_1 \triangleright t_1)).
$$

Under which conditions does it set *i* to true?

effcond(*i*, *eff*(*m*₁)) = *effcond*(*i*, ((t_1 ⊳ ¬ t_1) ∧ (¬ t_1 ⊳ t_1))) $=$ *effcond*(*i*, $(t_1 \triangleright \neg t_1)$) ∨ *effcond*(i , ($\neg t_1 \triangleright t_1$)) $=$ $(t_1 \wedge \text{effcond}(i, \neg t_1)) \vee$ $(¬t₁ ∧$ *effcond* $(i, t₁))$ $=$ $(t_1 \wedge \bot) \vee (\neg t_1 \wedge \bot)$ ≡ ⊥ ∨ ⊥ ≡ ⊥

Semantics of Effects: Applying an Effect

first attempt:

Definition (Applying Effects)

Let *V* be a set of propositional state variables.

Let *s* be a state over *V*, and let *e* be an effect over *V*.

The resulting state of applying *e* in *s*, written *s*⟦*e*⟧, i s the state s' defined as follows for all $v \in V$:

$$
s'(v) = \begin{cases} \n\mathbf{T} & \text{if } s \models \text{effcond}(v, e) \\ \n\mathbf{F} & \text{if } s \models \text{effcond}(\neg v, e) \\ \ns(v) & \text{otherwise} \n\end{cases}
$$

What is the problem with this definition?

Semantics of Effects: Applying an Effect

correct definition:

Definition (Applying Effects)

Let *V* be a set of propositional state variables.

Let *s* be a state over *V*, and let *e* be an effect over *V*.

The resulting state of applying *e* in *s*, written *s*⟦*e*⟧, i s the state s' defined as follows for all $v \in V$:

$$
s'(v) = \begin{cases} \mathbf{T} & \text{if } s \models \text{effcond}(v, e) \\ \mathbf{F} & \text{if } s \models \text{effcond}(\neg v, e) \land \neg \text{effcond}(v, e) \\ s(v) & \text{otherwise} \end{cases}
$$

Add-after-Delete Semantics

Note:

- \blacksquare The definition implies that if a variable is simultaneously "added" (set to **T**) and "deleted" (set to **F**), the value **T** takes precedence.
- **This is called add-after-delete semantics.**
- This detail of effect semantics is somewhat arbitrary, but has proven useful in applications.

Semantics of Operators

Definition (Applicable, Applying Operators, Resulting State)

Let *V* be a set of propositional state variables. Let *s* be a state over *V*, and let *o* be an operator over *V*.

```
Operator o is applicable in s if s \models pre(o).
```
If *o* is applicable in *s*, the resulting state of applying *o* in *s*, written *s*⟦*o*⟧, is the state *s*⟦*eff*(*o*)⟧.

[Semantics of Effects and Operators](#page-2-0) [Planning Tasks](#page-10-0) [Positive Normal Form](#page-17-0) [STRIPS](#page-30-0) [Summary](#page-34-0)

[Planning Tasks](#page-10-0)

Planning Tasks

Definition (Planning Task)

A (propositional) planning task is a 4-tuple $\Pi = \langle V, I, O, \gamma \rangle$ where

- *V* is a finite set of propositional state variables,
- *I* is an interpretation of *V* called the *initial state*,
- *O* is a finite set of operators over *V*, and
- γ is a formula over *V* called the goal.

Running Example: Planning Task

Example

From the previous chapter, we see that the running example can be represented by the task $\Pi = \langle V, I, O, \gamma \rangle$ with

\n**■**
$$
V = \{i, w, t_1, t_2\}
$$
\n

\n\n**■** $I = \{i \mapsto F, w \mapsto T, t_1 \mapsto F, t_2 \mapsto F\}$ \n

\n\n**■** $O = \{m_1, m_2, l_1, l_2, u\}$ where\n

\n\n**■** $m_1 = \langle T, ((t_1 \triangleright \neg t_1) \land (\neg t_1 \triangleright t_1)), 5 \rangle$ \n

\n\n**■** $m_2 = \langle T, ((t_2 \triangleright \neg t_2) \land (\neg t_2 \triangleright t_2)), 5 \rangle$ \n

\n\n**■** $l_1 = \langle \neg i \land (w \leftrightarrow t_1), (i \land w), 1 \rangle$ \n

\n\n**■** $l_2 = \langle \neg i \land (w \leftrightarrow t_2), (i \land \neg w), 1 \rangle$ \n

\n\n**■** $u = \langle i, \neg i \land (w \triangleright (t_1 \triangleright w) \land (\neg t_1 \triangleright \neg w)) \rangle$ \n

\n\n $\land \neg w \triangleright ((t_2 \triangleright w) \land (\neg t_2 \triangleright \neg w)) \rangle, 1 \rangle$ \n

\n\n**■** $\gamma = \neg i \land \neg w$ \n

Exercise: Modeling a Propositional Planning Task

Example

Model the following task as a propositional planning task:

You are currently at home and have to write an essay. Since your computer is broken, you can only write the essay using a computer at the university library. These computers are always switched off when a user logs off.

Mapping Planning Tasks to Transition Systems

Definition (Transition System Induced by a Planning Task)

The planning task $\Pi = \langle V, I, O, \gamma \rangle$ induces

the transition system $\mathcal{T}(\Pi) = \langle S, L, c, T, s_0, S_{\star} \rangle$, where

- *S* is the set of all states over *V*,
- *L* is the set of operators *O*,

$$
\bullet \ \ c(o) = cost(o) \text{ for all operators } o \in O,
$$

$$
\blacksquare \ \mathsf{T} = \{ \langle s, o, s' \rangle \mid s \in S, \ o \ \text{applicable in } s, \ s' = s[\![o]\!]\},
$$

 $s_0 = I$, and

$$
\blacksquare S_{\star} = \{s \in S \mid s \models \gamma\}.
$$

Planning Tasks: Terminology

- \blacksquare Terminology for transitions systems is also applied to the planning tasks Π that induce them.
- For example, when we speak of the states of Π , we mean the states of $\mathcal{T}(\Pi)$.
- A sequence of operators that forms a solution of $\mathcal{T}(\Pi)$ **I** is called a $plan$ of Π .

Satisficing and Optimal Planning

By planning, we mean the following two algorithmic problems:

Definition (Optimal Planning)

- Given: a planning task Π
- Output: a plan for Π with minimal cost among all plans for Π, or **unsolvable** if no plan for Π exists

[Positive Normal Form](#page-17-0)

Definition (Flat Effect)

An effect is simple if it is either an atomic effect or of the form $(y \triangleright e)$, where *e* is an atomic effect.

An effect *e* is flat if it is a conjunction of 0 or more simple effects, and none of these simple effects include the same atomic effect.

An operator *o* is flat if *eff*(*o*) is flat.

Notes: analogously to CNF, we consider

- \blacksquare a single simple effect as a conjunction of 1 simple effect
- \blacksquare the empty effect as a conjunction of 0 simple effects

Flat Effect: Example

Example

Consider the effect

$$
c \wedge (a \triangleright (\neg b \wedge (c \triangleright (b \wedge \neg d \wedge \neg a)))) \wedge (\neg b \triangleright \neg a)
$$

An equivalent flat (and conflict-free) effect is

$$
c \wedge
$$

\n
$$
((a \wedge \neg c) \vartriangleright \neg b) \wedge
$$

\n
$$
((a \wedge c) \vartriangleright b) \wedge
$$

\n
$$
((a \wedge c) \vartriangleright \neg d) \wedge
$$

\n
$$
((\neg b \vee (a \wedge c)) \vartriangleright \neg a)
$$

Note: if we want, we can write *c* as (⊤ ▷ *c*) to make the structure even more uniform, with each simple effect having a condition.

Positive Formulas, Operators and Tasks

Definition (Positive Formula)

A logical formula φ is positive if no negation symbols appear in φ .

Note: This includes the negation symbols implied by \rightarrow and \leftrightarrow .

Definition (Positive Operator)

An operator *o* is positive if *pre*(*o*) and all effect conditions in *eff*(*o*) are positive.

Definition (Positive Propositional Planning Task)

A propositional planning task ⟨*V*, *^I*, *^O*, ^γ⟩ is positive if all operators in *O* and the goal γ are positive.

Positive Normal Form

Definition (Positive Normal Form)

A propositional planning task is in positive normal form if it is positive and all operator effects are flat.

Example (Transformation to Positive Normal Form)

- *^V* ⁼ {*home*, *uni*, *lecture*, *bike*, *bike-locked*}
- $I = \{home \mapsto \mathbf{T}, bike \mapsto \mathbf{T}, bike\}$ $uni \mapsto$ **F**, *lecture* \mapsto **F**}

$$
O = \{ \langle \text{home} \land \text{bike} \land \neg \text{bike-locked}, \neg \text{home} \land \text{uni} \rangle, \}
$$

⟨*bike* [∧] *bike-locked*, [¬]*bike-locked*⟩,

⟨*bike* [∧] [¬]*bike-locked*, *bike-locked*⟩,

⟨*uni*, *lecture* ∧ ((*bike* [∧] [¬]*bike-locked*) [▷] [¬]*bike*)⟩}

γ = *lecture* ∧ *bike*

Example (Transformation to Positive Normal Form)

- *^V* ⁼ {*home*, *uni*, *lecture*, *bike*, *bike-locked*}
- $I = \{home \mapsto \mathbf{T}, bike \mapsto \mathbf{T}, bike\}$ $uni \mapsto$ **F**, *lecture* \mapsto **F**}

$$
O = \{ \langle \text{home} \land \text{bike} \land \neg \text{bike-locked}, \neg \text{home} \land \text{uni} \rangle, \}
$$

⟨*bike* [∧] *bike-locked*, [¬]*bike-locked*⟩,

⟨*bike* [∧] [¬]*bike-locked*, *bike-locked*⟩,

⟨*uni*, *lecture* ∧ ((*bike* [∧] [¬]*bike-locked*) [▷] [¬]*bike*)⟩}

γ = *lecture* ∧ *bike*

Identify state variable *v* occurring negatively in conditions.

Example (Transformation to Positive Normal Form)

- *^V* ⁼ {*home*, *uni*, *lecture*, *bike*, *bike-locked*, *bike-unlocked*}
- $I = \{home \mapsto \mathbf{T}, bike \mapsto \mathbf{T}, bike\}$

 uni \mapsto **F**, *lecture* \mapsto **F**, *bike-unlocked* \mapsto **F**)

$$
O = \{ \langle home \land bike \land \neg bike\text{-locked}, \neg home \land uni \rangle, \}
$$

⟨*bike* [∧] *bike-locked*, [¬]*bike-locked*⟩,

⟨*bike* [∧] [¬]*bike-locked*, *bike-locked*⟩,

⟨*uni*, *lecture* ∧ ((*bike* [∧] [¬]*bike-locked*) [▷] [¬]*bike*)⟩}

γ = *lecture* ∧ *bike*

Introduce new variable \hat{v} with complementary initial value.

Example (Transformation to Positive Normal Form)

- *^V* ⁼ {*home*, *uni*, *lecture*, *bike*, *bike-locked*, *bike-unlocked*}
- $I = \{home \mapsto \mathbf{T}, bike \mapsto \mathbf{T}, bike\}$

 uni \mapsto **F**, *lecture* \mapsto **F**, *bike-unlocked* \mapsto **F**}

$$
O = \{ \langle home \land bike \land \neg bike\text{-locked}, \neg home \land uni \rangle, \}
$$

⟨*bike* [∧] *bike-locked*, [¬]*bike-locked*⟩,

⟨*bike* [∧] [¬]*bike-locked*, *bike-locked*⟩,

⟨*uni*, *lecture* ∧ ((*bike* [∧] [¬]*bike-locked*) [▷] [¬]*bike*)⟩}

γ = *lecture* ∧ *bike*

Identify effects on variable *v*.

Example (Transformation to Positive Normal Form)

- *^V* ⁼ {*home*, *uni*, *lecture*, *bike*, *bike-locked*, *bike-unlocked*}
- $I = \{home \mapsto \mathbf{T}, bike \mapsto \mathbf{T}, bike\}$

 uni \mapsto **F**, *lecture* \mapsto **F**, *bike-unlocked* \mapsto **F**}

$$
O = \{ \langle home \land bike \land \neg bike\text{-locked}, \neg home \land uni \rangle, \langle \rangle \}
$$

⟨*bike* [∧] *bike-locked*, [¬]*bike-locked* [∧] *bike-unlocked*⟩,

⟨*bike* [∧] [¬]*bike-locked*, *bike-locked* ∧ ¬*bike-unlocked*⟩,

⟨*uni*, *lecture* ∧ ((*bike* [∧] [¬]*bike-locked*) [▷] [¬]*bike*)⟩}

γ = *lecture* ∧ *bike*

Introduce complementary effects for *v*ˆ.

Example (Transformation to Positive Normal Form)

- *^V* ⁼ {*home*, *uni*, *lecture*, *bike*, *bike-locked*, *bike-unlocked*}
- $I = \{home \mapsto \mathbf{T}, bike \mapsto \mathbf{T}, bike\}$

 uni \mapsto **F**, *lecture* \mapsto **F**, *bike-unlocked* \mapsto **F**}

^O ⁼ {⟨*home* [∧] *bike* [∧] [¬]*bike-locked*, [¬]*home* [∧] *uni*⟩,

⟨*bike* [∧] *bike-locked*, [¬]*bike-locked* [∧] *bike-unlocked*⟩,

⟨*bike* [∧] [¬]*bike-locked*, *bike-locked* ∧ ¬*bike-unlocked*⟩,

⟨*uni*, *lecture* ∧ ((*bike* [∧] [¬]*bike-locked*) [▷] [¬]*bike*)⟩}

γ = *lecture* ∧ *bike*

Identify negative conditions for *v*.

Example (Transformation to Positive Normal Form)

- *^V* ⁼ {*home*, *uni*, *lecture*, *bike*, *bike-locked*, *bike-unlocked*}
- $I = \{home \mapsto \mathbf{T}, bike \mapsto \mathbf{T}, bike\}$

 uni \mapsto **F**, *lecture* \mapsto **F**, *bike-unlocked* \mapsto **F**}

^O ⁼ {⟨*home* [∧] *bike* [∧] *bike-unlocked*, [¬]*home* [∧] *uni*⟩,

⟨*bike* [∧] *bike-locked*, [¬]*bike-locked* [∧] *bike-unlocked*⟩,

⟨*bike* [∧] *bike-unlocked*, *bike-locked* ∧ ¬*bike-unlocked*⟩,

⟨*uni*, *lecture* ∧ ((*bike* [∧] *bike-unlocked*) [▷] [¬]*bike*)⟩}

γ = *lecture* ∧ *bike*

Replace by positive condition *v*ˆ.

Example (Transformation to Positive Normal Form)

- *^V* ⁼ {*home*, *uni*, *lecture*, *bike*, *bike-locked*, *bike-unlocked*}
- $I = \{home \mapsto \mathbf{T}, bike \mapsto \mathbf{T}, bike\}$

 uni \mapsto **F**, *lecture* \mapsto **F**, *bike-unlocked* \mapsto **F**}

^O ⁼ {⟨*home* [∧] *bike* [∧] *bike-unlocked*, [¬]*home* [∧] *uni*⟩,

⟨*bike* [∧] *bike-locked*, [¬]*bike-locked* [∧] *bike-unlocked*⟩,

⟨*bike* [∧] *bike-unlocked*, *bike-locked* ∧ ¬*bike-unlocked*⟩,

⟨*uni*, *lecture* ∧ ((*bike* [∧] *bike-unlocked*) [▷] [¬]*bike*)⟩}

γ = *lecture* ∧ *bike*

[STRIPS](#page-30-0)

STRIPS Operators and Planning Tasks

Definition (STRIPS Operator)

An operator *o* of a propositional planning task is a STRIPS operator if

- *pre*(*o*) is a conjunction of state variables, and
- *eff*(*o*) is a conflict-free conjunction of atomic effects.

Definition (STRIPS Planning Task)

A propositional planning task ⟨*V*, *^I*, *^O*, ^γ⟩ is a STRIPS planning task if all operators *o* ∈ *O* are STRIPS operators and γ is a conjunction of state variables.

STRIPS Operators: Remarks

Every STRIPS operator is of the form

$$
\langle v_1 \wedge \cdots \wedge v_n, \ \ell_1 \wedge \cdots \wedge \ell_m \rangle
$$

where v_i are state variables and ℓ_i are atomic effects.

- Often, STRIPS operators *o* are described via three sets of state variables:
	- the preconditions (state variables occurring in *pre*(*o*))
	- the add effects (state variables occurring positively in *eff*(*o*))
	- the delete effects (state variables occurring negatively in *eff*(*o*))
- Definitions of STRIPS in the literature often do not require conflict-freeness. But it is easy to achieve and makes many things simpler.
- There exists a variant called STRIPS with negation where negative literals are also allowed in conditions.

Why STRIPS is Interesting

- STRIPS is particularly simple, yet expressive enough to capture general planning tasks.
- In particular, STRIPS planning is no easier than planning in general.
- Many algorithms in the planning literature are only presented for STRIPS planning tasks (generalization is often, but not always, obvious).

STRIPS

STanford Research Institute Problem Solver (Fikes & Nilsson, 1971)

[Summary](#page-34-0)

Summary (1/2)

- **Planning tasks compactly represent transition systems** and are suitable as inputs for planning algorithms.
- A planning task consists of a set of state variables and an initial state, operators and goal over these state variables.
- In satisficing planning, we must find a solution for a planning task (or show that no solution exists).
- \blacksquare In optimal planning, we must additionally guarantee that generated solutions are of minimal cost.

Summary (2/2)

- \blacksquare A positive task with flat operators is in positive normal form.
- **STRIPS** is even more restrictive than positive normal form, forbidding complex preconditions and conditional effects.
- Both forms are expressive enough to capture general propositional planning tasks.
- Transformation to positive normal form is possible with polynomial size increase.
- Isomorphic transformations of propositional planning tasks to STRIPS can increase the number of operators exponentially; non-isomorphic polynomial transformations exist.