Automated Planning

B3. Formal Definition of Planning

Jendrik Seipp

Linkdping University

based on slides from the Al group at the University of Basel

Content of this Course

— Prelude

— Approaches

—1 Delete Relaxation

— Abstraction

— Constraints

2/29

Semantics of Effects and Operators

Semantics of Effects and Operators

3/29

Semantics of Effects and Operators Pl 3 Tasks Positive Normal Form

[e] lelelelele}

Semantics of Effects: Effect Conditions

Definition (Effect Condition for an Effect)
Let £ be an atomic effect, and let e be an effect.

The effect condition effcond(¢, e) under which € triggers
given the effect e is a propositional formula defined as follows:

m effcond(€,T) = L

effcond(¢, e) = T for the atomic effecte = €
effcond(¢, e) = L for all atomic effectse = ¢ # ¢
effcond(£, (e A e")) = (effcond(£,e) V effcond(£,e’))
effcond(¢, (y > e)) = (x A effcond(¢, e))

v

Intuition: effcond (¢, e) represents the condition that must be true in the
current state for the effect e to lead to the atomic effect ¢

4/29

Semantics of Effects and Operators e ks rmal Form

[e]e] lelelele}

Effect Condition: Example (1)

Consider the move operator m, from the running example:
eff(my) = ((t1 > =) A (=t > ty)).
Under which conditions does it set t; to false?

effcond(—ty, eff(mq)) = effcond(=ty, ((t1 > —t1) A (=ty > t7)))
effcond(—tq, (t > —ty)) V
effcond(—tq, (—ty > tq))

(t) A effcond(—tq, —tq)) V

(—t; A effcond(—tq, t1))

=t AT)V (ot A L)

=t VL

Et1

5/29

Semantics of Effects and Operators ormal Form

[e]e]e] lelele}

Effect Condition: Example (2)

Consider the move operator m, from the running example:
eff(my) = ((t1 > —ty) A (=t > ty)).
Under which conditions does it set i to true?

effcond(i, eff(m;)) = effcond(i, ((t; > —t;) A (=t > t7)))
= effcond(i, (t; > —ty)) V
effcond(i, (—t; > tq))
= (t; A effcond(i, —t7)) V
(—t; A effcond(i, t1))
=(t; AL)V (-t A L)
=1Vl
=1

6/29

Semantics of Effects and Operators Jk sks 20! ormal Form

0000800

Semantics of Effects: Applying an Effect

first attempt:

Definition (Applying Effects)
Let V be a set of propositional state variables.
Let s be a state over V, and let e be an effect over V.

The resulting state of applying e in s, written s[e,
is the state s’ defined as follows for all v € V:

T if s |= effcond(v, e)
s'(v) =<F if s |= effcond(—v, e)

s(v) otherwise

What is the problem with this definition?

7/29

Semantics of Effects and Operators Jk sks 20! ormal Form

0000800

Semantics of Effects: Applying an Effect

correct definition:

Definition (Applying Effects)

Let V be a set of propositional state variables.
Let s be a state over V, and let e be an effect over V.

The resulting state of applying e in s, written s[e,
is the state s’ defined as follows for all v € V:

T if s |= effcond(v, e)
s'(v) =4F if s |= effcond(—v, e) A —effcond(v, e)

s(v) otherwise

7/29

Semantics of Effects and Operators Jk asks yrmal Form

0000080

Add-after-Delete Semantics

Note:

m The definition implies that if a variable is simultaneously “added”
(set to T) and “deleted” (set to F),
the value T takes precedence.

m This is called add-after-delete semantics.

m This detail of effect semantics is somewhat arbitrary,
but has proven useful in applications.

8/29

Semantics of Effects and Operators Jk sks 0 ormal Form

O00000e

Semantics of Operators

Definition (Applicable, Applying Operators, Resulting State)

Let V be a set of propositional state variables.
Let s be a state over V, and let o be an operator over V.

Operator o is applicable in s if s |= pre(o).

If o is applicable in s, the resulting state of applying o in s,
written s[o], is the state s[eff(o)]

9/29

Planning Tasks
©000000

Planning Tasks

10/29

of Effects and Operators Planning Tasks ositive Normal Form

[e] lelelelele}

Planning Tasks

Definition (Planning Task)

A (propositional) planning task is a 4-tuple I = (V, 1, 0, y) where
m V is a finite set of propositional state variables,
m | is an interpretation of V called the initial state,
m O is a finite set of operators over V, and

m y is a formula over V called the goal.

11/29

of Effects and Operators Planning Tasks e Normal Form

[e]e] lelelele}

Running Example: Planning Task

From the previous chapter, we see that the running example
can be represented by the task [= (V, I, 0, y) with
mV= {I, w, t1, tz}
mi={ibFw—Tt—Ft—F}
m 0 = {my,my, I, l, u} where
mi = (T, ((t > =t;) A (5t > 1)), 5)
m, = <T, ((tz > _|t2) A (“tz > tz)),5>
L=HiAwety),([Aw),1)
12 = <_" A (W s t2)9 (' A _'W)91>
u={,—iAw> (> w) A (=t > —w)))
A(mw e (> w) A (=t > —w))), 1)

By=-iA-w

12/29

of Effects and Operators Planning Tasks ormal Form

[e]e]e] lelele}

Exercise: Modeling a Propositional Planning Task

Model the following task as a propositional planning task:

You are currently at home and have to write an essay. Since your
computer is broken, you can only write the essay using a computer at the
university library. These computers are always switched off when a user
logs off.

13/29

cs of Effects and Operators Planning Tasks ormal Form

[e]e]e]e] Jele}

Mapping Planning Tasks to Transition Systems

Definition (Transition System Induced by a Planning Task)

The planning task I = (V, 1,0, y) induces
the transition system 7 (I) = (S, L, ¢, T, S, S«), Where

m Sis the set of all states over V,
L is the set of operators O,
c(0) = cost(o) for all operators o € O,

]
]
mT={(s,0,5)|s€S, oapplicableins, s" =s[o]},
® sg =/,and

]

Se={seS|slr}

14/29

cs of Effects and Operators Planning Tasks 0 ormal Form

0000080

Planning Tasks: Terminology

m Terminology for transitions systems is also applied
to the planning tasks 1 that induce them.

m For example, when we speak of the states of I,
we mean the states of 7 ().

m Asequence of operators that forms a solution of 7 (IT)
is called a plan of I.

15/29

s of Effects and Operators Planning Tasks

O00000e

Satisficing and Optimal Planning

By planning, we mean the following two algorithmic problems:

Definition (Satisficing Planning)

Given: a planning task I
Output: a plan for I, or unsolvable if no plan for I exists

Definition (Optimal Planning)

Given: a planning task I
Output: a plan for 1 with minimal cost among all plans for 1,
or unsolvable if no plan for I exists

16/29

Positive Normal Form

17/29

of Effects and Operators {E sks Positive Normal Form

[e] lelelele]

Flat Effect

Definition (Flat Effect)

An effect is simple if it is either an atomic effect
or of the form (y > e), where e is an atomic effect.

An effect e is flat if it is a conjunction of 0 or more simple effects,
and none of these simple effects include the same atomic effect.

An operator o is flat if eff(0) is flat.

Notes: analogously to CNF, we consider
m a single simple effect as a conjunction of 1 simple effect

m the empty effect as a conjunction of 0 simple effects

18/29

Positive Normal Form

[e]e] lelele]

Flat Effect: Example

Consider the effect
cA(a> (b A(c> (bA—dA=a)))) A (=b>-a)
An equivalent flat (and conflict-free) effect is

CA
((a A =) > =b) A
((anc)> b) A
((anc) > —d) A
((=bV (aAc)) > —a)

Note: if we want, we can write c as (T > ¢) to make the structure even
more uniform, with each simple effect having a condition.
19/29

Positive Normal Form

[e]ele] Jele]

Positive Formulas, Operators and Tasks

Definition (Positive Formula)

A logical formula ¢ is positive if no negation symbols appear in ¢.

Note: This includes the negation symbols implied by — and <.

Definition (Positive Operator)

An operator o is positive if pre(o) and
all effect conditions in eff(o) are positive.

.

Definition (Positive Propositional Planning Task)

A propositional planning task (V, I, 0, y) is positive
if all operators in O and the goal y are positive.

.

20/29

Positive Normal Form
000080

Positive Normal Form

Definition (Positive Normal Form)

A propositional planning task is in positive normal form
if it is positive and all operator effects are flat.

21/29

Positive Normal Form

[e]elele]e]]

Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V = {home, uni, lecture, bike, bike-locked}
I = {home — T, bike - T, bike-locked — T,
uni — F, lecture — F}
0 = {(home A bike A —bike-locked, =home A uni,
(bike A bike-locked, —bike-locked),
(bike A —bike-locked, bike-locked),
(uni, lecture A ((bike A —bike-locked) > —bike))}
Y = lecture A bike

22/29

Positive Normal Form

[e]elele]e]]

Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V = {home, uni, lecture, bike, bike-locked}
I = {home — T, bike - T, bike-locked — T,
uni — F, lecture — F}
0 = {(home A bike A —bike-locked, =home A uni,
(bike A bike-locked, —bike-locked),
(bike A —bike-locked, bike-locked),
(uni, lecture A ((bike A —bike-locked) > —bike))}
Y = lecture A bike

Identify state variable v occurring negatively in conditions.

22/29

Positive Normal Form

[e]elele]e]]

Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V = {home, uni, lecture, bike, bike-locked, bike-unlocked}
I = {home — T, bike - T, bike-locked — T,

uni +— F, lecture — F, bike-unlocked +— F}
0 = {(home A bike A —bike-locked, =home A uni,

(bike A bike-locked, —bike-locked),

(bike A —bike-locked, bike-locked),

(uni, lecture A ((bike A —bike-locked) > —bike))}
Y = lecture A bike

Introduce new variable ¥ with complementary initial value.

22/29

Positive Normal Form

[e]elele]e]]

Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V = {home, uni, lecture, bike, bike-locked, bike-unlocked}
I = {home — T, bike - T, bike-locked — T,

uni +— F, lecture — F, bike-unlocked — F}
0 = {(home A bike A —bike-locked, =home A uni,

(bike A bike-locked, —bike-locked),

(bike A —bike-locked, bike-locked),

(uni, lecture A ((bike A —bike-locked) > —bike))}
Y = lecture A bike

Identify effects on variable v.

22/29

Positive Normal Form

[e]elele]e]]

Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V = {home, uni, lecture, bike, bike-locked, bike-unlocked}

I = {home — T, bike - T, bike-locked — T,
uni +— F, lecture — F, bike-unlocked — F}

0 = {(home A bike A —bike-locked, =home A uni,
(bike A bike-locked, —bike-locked A bike-unlocked),
(bike A —bike-locked, bike-locked A —bike-unlocked),
(uni, lecture A ((bike A —bike-locked) > —bike))}

Y = lecture A bike

Introduce complementary effects for v.

22/29

Positive Normal Form

[e]elele]e]]

Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V = {home, uni, lecture, bike, bike-locked, bike-unlocked}

I = {home — T, bike - T, bike-locked — T,
uni +— F, lecture — F, bike-unlocked — F}

0 = {(home A bike A —bike-locked, =home A uni,
(bike A bike-locked, —~bike-locked A bike-unlocked),
(bike A —bike-locked, bike-locked A —bike-unlocked),
(uni, lecture A ((bike A —bike-locked) > —bike))}

Y = lecture A bike

Identify negative conditions for v.

22/29

Positive Normal Form

[e]elele]e]]

Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V = {home, uni, lecture, bike, bike-locked, bike-unlocked}

I = {home — T, bike - T, bike-locked — T,
uni +— F, lecture — F, bike-unlocked — F}

0 = {(home A bike A bike-unlocked, =home A uni),
(bike A bike-locked, —~bike-locked A bike-unlocked),
(bike A bike-unlocked, bike-locked A —bike-unlocked),
(uni, lecture A ((bike A bike-unlocked) > —bike))}

Y = lecture A bike

Replace by positive condition V.

22/29

f Effects and Operators > 3 Tasks Positive Normal Form

[e]elele]e]]

Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V = {home, uni, lecture, bike, bike-locked, bike-unlocked}

I = {home — T, bike - T, bike-locked — T,
uni +— F, lecture — F, bike-unlocked — F}

0 = {(home A bike A bike-unlocked, —=home A uni),
(bike A bike-locked, —~bike-locked A bike-unlocked),
(bike A bike-unlocked, bike-locked A —bike-unlocked),
(uni, lecture A ((bike A bike-unlocked) > —bike))}

Y = lecture A bike

22/29

STRIPS

23/29

ormal Form STRIPS

[e] Jele]

STRIPS Operators and Planning Tasks

Definition (STRIPS Operator)
An operator o of a propositional planning task is a STRIPS operator if

m pre(o) is a conjunction of state variables, and

m eff(o) is a conflict-free conjunction of atomic effects.

Definition (STRIPS Planning Task)

A propositional planning task (V, 1,0, y) is a STRIPS
planning task if all operators o € O are STRIPS operators
and y is a conjunction of state variables.

24/29

rmal Form STRIPS

ooeo

STRIPS Operators: Remarks

m Every STRIPS operator is of the form
VA AVp, N ANy

where v; are state variables and ¢; are atomic effects.
m Often, STRIPS operators o are described
via three sets of state variables:
m the preconditions (state variables occurring in pre(0))
m the add effects (state variables occurring positively in eff(0))
m the delete effects (state variables occurring negatively in eff(0))
m Definitions of STRIPS in the literature often do not require
conflict-freeness. But it is easy to achieve and makes many things
simpler.
B There exists a variant called STRIPS with negation
where negative literals are also allowed in conditions.

25/29

ormal Form STRIPS

oooe

Why STRIPS is Interesting

m STRIPS is particularly simple, yet expressive enough
to capture general planning tasks.

m In particular, STRIPS planning is no easier
than planning in general.

®m Many algorithms in the planning literature
are only presented for STRIPS planning tasks
(generalization is often, but not always, obvious).

STanford Research Institute Problem Solver (Fikes & Nilsson, 1971) I

26/29

Summary
[Yole}

Summary

27/29

Summary
ceo

of Effects and Operators l; sks > rmal Form

Summary (1/2)

m Planning tasks compactly represent transition systems
and are suitable as inputs for planning algorithms.

m A planning task consists of a set of state variables and an initial
state, operators and goal over these state variables.

m In satisficing planning, we must find a solution
for a planning task (or show that no solution exists).

m In optimal planning, we must additionally guarantee
that generated solutions are of minimal cost.

28/29

s of Effects and Operators E > mal Form STRIPS Summary

[e]e]]

Summary (2/2)

m A positive task with flat operators is in positive normal form.

m STRIPS is even more restrictive than positive normal form,
forbidding complex preconditions and conditional effects.

m Both forms are expressive enough to capture
general propositional planning tasks.

m Transformation to positive normal form is possible
with polynomial size increase.

m Isomorphic transformations of propositional planning tasks to
STRIPS can increase the number of operators exponentially;
non-isomorphic polynomial transformations exist.

29/29

	Semantics of Effects and Operators
	

	Planning Tasks
	

	Positive Normal Form
	

	STRIPS
	

	Summary
	

