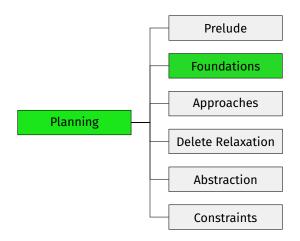
Automated Planning B2. Introduction to Planning Tasks

Jendrik Seipp

Linköping University

Content of this Course



Introduction

Introduction

- We saw in blocks world:
 n blocks ~> number of states exponential in n
- same is true everywhere we look
- known as the state explosion problem

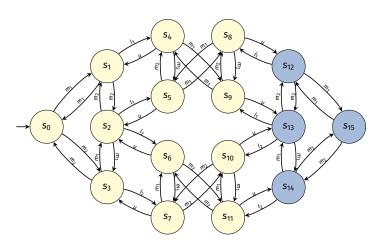
To represent transitions systems compactly, need to tame these exponentially growing aspects:

states

Introduction

- goal states
- transitions

Introduction 000



State Variables

Compact Descriptions of Transition Systems

How to specify huge transition systems without enumerating the states?

- represent different aspects of the world in terms of different (propositional) state variables
- individual state variables are atomic propositions \rightarrow a state is an interpretation of state variables
- \blacksquare n state variables induce 2^n states → exponentially more compact than "flat" representations

Example: n^2 variables suffice for blocks world with n blocks

Blocks World State with Propositional Variables

Example s(A-on-B) = F $s(A-on-C) = \mathbf{F}$ s(A-on-table) = Ts(B-on-A) = TB $s(B-on-C) = \mathbf{F}$ s(B-on-table) = Fs(C-on-A) = Fs(C-on-B) = Fs(C-on-table) = T

 \sim 9 variables for 3 blocks

Propositional State Variables

<u>Definition</u> (Propositional State Variable)

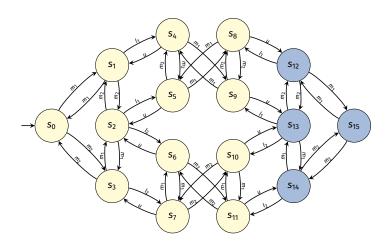
A propositional state variable is a symbol X.

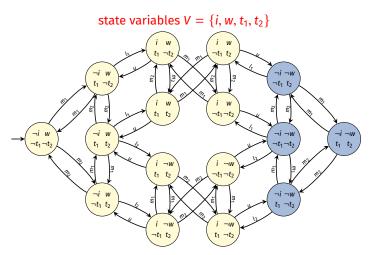
Let V be a finite set of propositional state variables.

A state s over V is an interpretation of V, i.e., a truth assignment $s: V \to \{T, F\}$.

Running Example: Compact State Descriptions

■ In the running example, we describe 16 states with 4 propositional state variables ($2^4 = 16$).





states shown by true literals

example: $\{i \mapsto \mathbf{T}, w \mapsto \mathbf{F}, t_1 \mapsto \mathbf{T}, t_2 \mapsto \mathbf{F}\} \sim i \neg w t_1 \neg t_2$

Running Example: Intuition

Intuition: delivery task with 2 trucks, 1 package, locations L and R transition labels:

- $= m_1/m_2$: move first/second truck
- $| l_1/l_2$: load package into first/second truck
- u: unload package from a truck

state variables:

- \blacksquare t_1 true if first truck is at location L (else at R)
- t₂ true if second truck is at location L (else at R)
- i true if package is inside a truck
- w encodes where exactly the package is:
 - if i true and w true: package in first truck
 - if i true and w false: package in second truck
 - if i false and w true: package at location L
 - if i false and w false: package at location R

State Formulas

State Formulas .00

Representing Sets of States

How do we compactly represent sets of states, for example the set of goal states?

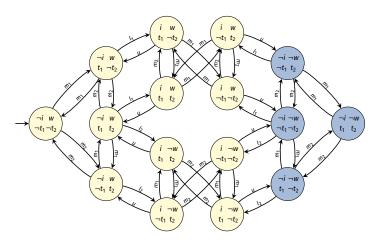
Idea: formula φ over the state variables represents the models of φ .

Definition (State Formula)

Let V be a finite set of propositional state variables.

A formula over V is a propositional logic formula using V as the set of atomic propositions.

Running Example: Representing Goal States



State Formulas 000

goal formula $\gamma = \neg i \land \neg w$ represents goal states S_{\star}

Operators and Effects

Operators Representing Transitions

How do we compactly represent transitions?

- most complex aspect of a planning task
- central concept: operators

Idea: one operator o for each transition label ℓ , describing

- in which states s a transition $s \xrightarrow{\ell} s'$ exists (precondition)
- how state s' differs from state s (effect)
- what the cost of ℓ is

Operators and Effects

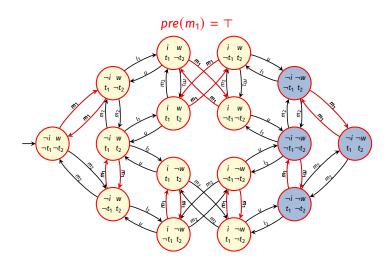
Definition (Operator)

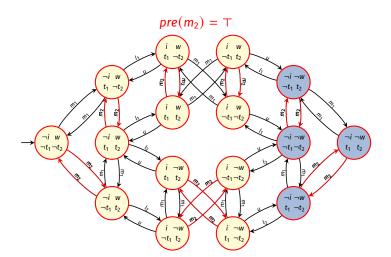
An operator o over state variables V is an object with three properties:

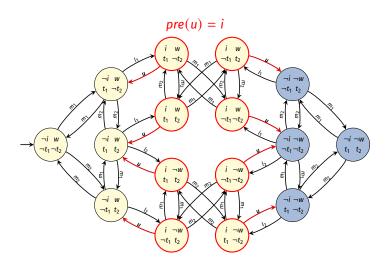
- a precondition pre(o), a formula over V
- \blacksquare an effect eff(o) over V, defined later in this chapter
- \blacksquare a cost cost(o) $\in \mathbb{R}_0^+$

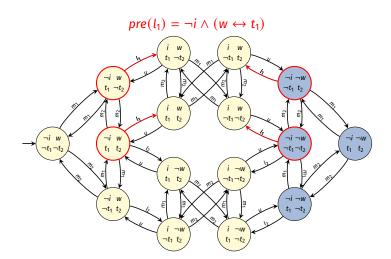
Notes:

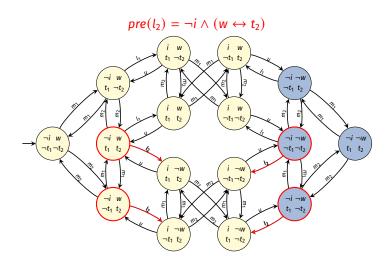
- Operators are also called actions.
- Operators are often written as triples $\langle pre(o), eff(o), cost(o) \rangle$.
- This can be abbreviated to pairs $\langle pre(o), eff(o) \rangle$ when the cost of the operator is irrelevant.











Syntax of Effects

Definition (Effect)

Effects over propositional state variables V are inductively defined as follows:

- T is an effect (empty effect).
- If $v \in V$ is a propositional state variable, then v and $\neg v$ are effects (atomic effect).
- If e and e' are effects, then $(e \land e')$ is an effect (conjunctive effect).
- \blacksquare If γ is a formula over V and e is an effect, then $(\gamma \triangleright e)$ is an effect (conditional effect).

We may omit parentheses when this does not cause ambiguity.

Example: we will later see that $((e \land e') \land e'')$ behaves identically to $(e \wedge (e' \wedge e''))$ and will write this as $e \wedge e' \wedge e''$.

Effects: Intuition

Intuition for effects:

- The empty effect T changes nothing.
- Atomic effects can be understood as assignments that update the value of a state variable.
 - v means "v := T"
 - ¬v means "v := F"
- A conjunctive effect $e = (e' \land e'')$ means that both subeffects e and e' take place simultaneously.
- A conditional effect $e = (\gamma \triangleright e')$ means that subeffect e'takes place iff γ is true in the state where e takes place.

Summary

Summary

- Propositional state variables let us compactly describe properties of large transition systems.
- A state is an assignment to a set of state variables.
- Sets of states are represented as formulas over state variables.
- Operators describe when (precondition), how (effect) and at which cost the state of the world can be changed.
- Effects are structured objects including empty, atomic, conjunctive and conditional effects.