Automated Planning

B1. Transition Systems and Propositional Logic

Jendrik Seipp

Linköping University

based on slides from the AI group at the University of Basel

Content of this Course

Next Steps

Our next steps are to formally define our problem:

- \blacksquare introduce a mathematical model for planning tasks: transition systems \sim Chapter B1
- \blacksquare introduce compact representations for planning tasks suitable as input for planning algorithms
	- \sim Chapter B2

[Transition Systems](#page-3-0)

Transition System Example

Transition systems are often depicted as directed arc-labeled graphs with decorations to indicate the initial state and goal states.

Transition Systems

Definition (Transition System)

A transition system is a 6-tuple $\mathcal{T} = \langle S, L, c, T, s_0, S_* \rangle$ where

■ S is a finite set of states,

■ *L* is a finite set of (transition) labels,

 $c:L\rightarrow \mathbb{R}^+_0$ is a label cost function,

- *T* ⊆ *S* × *L* × *S* is the transition relation,
- $s_0 \in S$ is the initial state, and
- *^S*⋆ [⊆] *^S* is the set of goal states.

We say that \mathcal{T} has the transition $\langle s, \ell, s' \rangle$ if $\langle s, \ell, s' \rangle \in \mathcal{T}$. We also write this as $\mathsf{s} \xrightarrow{\ell} \mathsf{s}'$, or $\mathsf{s} \to \mathsf{s}'$ when not interested in $\ell.$

Note: Transition systems are also called state spaces.

Deterministic Transition Systems

Definition (Deterministic Transition System)

A transition system is called deterministic if for all states *s*

and all labels *ℓ*, there is at most one state s' with s $\stackrel{\ell}{\to}$ s'.

Example: previously shown transition system

Transition System Terminology (1)

We use common terminology from graph theory:

- *s* ′ successor of *s* if *s* → *s* ′
- *s* predecessor of *s'* if $s \rightarrow s'$

Transition System Terminology (2)

We use common terminology from graph theory:

s ′ reachable from *s* if there exists a sequence of transitions

$$
s^0 \xrightarrow{\ell_1} s^1, \ldots, s^{n-1} \xrightarrow{\ell_n} s^n \text{ s.t. } s^0 = s \text{ and } s^n = s'
$$

■ Note:
$$
n = 0
$$
 possible; then $s = s'$

S⁰,..., Sⁿ is called (state) path from s to s'
\n
$$
P
$$
, P is called (label) path from s to s'

$$
\ell_1, \ldots, \ell_n
$$
 is called (label) path from s to s'
 ℓ_1, \ldots, ℓ_n

5
$$
\xrightarrow{t_1}
$$
 s^1 , ..., s^{n-1} $\xrightarrow{t_n}$ s^n is called trace from *s* to *s'*

■ length of path/trace is *n*

cost of label path/trace is $\sum_{i=1}^{n} c(\boldsymbol{\ell}_i)$

Transition System Terminology (3)

We use common terminology from graph theory:

- *s* ′ reachable (without reference state) means reachable from initial state s₀
- solution or goal path from *s*: path from *s* to some $s' \in S_{\star}$
	- if *s* is omitted, $s = s_0$ is implied $\mathcal{L}_{\mathcal{A}}$
- **transition system solvable if a goal path from** s_0 **exists**

[Example: Blocks World](#page-10-0)

Running Example: Blocks World

- \blacksquare Throughout the course, we occasionally use the blocks world domain as an example.
- In the blocks world, a number of different blocks are arranged on a table.
- Our job is to rearrange them according to a given goal.

[Transition Systems](#page-3-0) **[Example: Blocks World](#page-10-0)** [Reminder: Propositional Logic](#page-18-0) [Summary](#page-25-0)
1989 - COOOOOO REMINDER: REMINDER: REMINDER: REMINDER: REMINDER
1989 - REMINDER: REMINDER: REMINDER: REMINDER: REMINDER: REMINDER: REMINDER:

Blocks World Rules (1)

Location on the table does not matter.

Blocks World Rules (2)

At most one block may be below a block.

At most one block may be on top of a block.

Blocks World Transition System for Three Blocks

Labels omitted for clarity. All label costs are 1. Initial/goal states not marked.

 $\overline{}$

Blocks World Computational Properties

 \blacksquare Finding solutions is possible in linear time

in the number of blocks: move everything onto the table, then construct the goal configuration.

Finding a shortest solution is NP-complete given a compact description of the problem.

The Need for Compact Descriptions

- \blacksquare We see from the blocks world example that transition systems are often far too large to be directly used as inputs to planning algorithms.
- We therefore need compact descriptions of transition systems.
- For this purpose, we will use propositional logic, which allows expressing information about 2*ⁿ* states as logical formulas over *n* state variables.

What about PDDL?

- **PDDL** uses first-order logic to describe planning tasks: action schemas, variables and quantifiers, etc.
- **Most planning systems work on propositional representations.**
- Propositional tasks simplify the presentation of algorithms.
- There are compilers that translate PDDL to propositional logic: intuitively, they convert action schemas like move(?t - truck ?from - city ?to - city) to operators move(truck1, Stockholm, Linköping)

[Reminder: Propositional Logic](#page-18-0)

More on Propositional Logic

Need to Catch Up?

- \blacksquare This section is a reminder. We assume you are already well familiar with propositional logic.
- If this is not the case, we recommend the lectures on propositional logic of the Artificial Intelligence course: <https://www.ida.liu.se/~TDDC17>

Syntax of Propositional Logic

Definition (Logical Formula)

Let *A* be a set of atomic propositions.

The logical formulas over *A* are constructed by finite application of the following rules:

- **T** and \perp are logical formulas (truth and falsity).
- For all *a* ∈ *A*, *a* is a logical formula (atom).
- If φ is a logical formula, then so is $\neg \varphi$ (negation).
- If φ and ψ are logical formulas, then so are $(\varphi \vee \psi)$ (disjunction) and $(\varphi \wedge \psi)$ (conjunction).

Syntactical Conventions for Propositional Logic

Abbreviations:

- $(\varphi \rightarrow \psi)$ is short for $(\neg \varphi \lor \psi)$ (implication)
- $(\varphi \leftrightarrow \psi)$ is short for $((\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi))$ (equijunction)

parentheses omitted when not necessary:

- \blacksquare (\neg) binds more tightly than binary connectives
- (\wedge) binds more tightly than (\vee) , which binds more tightly than (\rightarrow) , which binds more tightly than (\leftrightarrow)

Semantics of Propositional Logic

Definition (Interpretation, Model)

```
An interpretation of propositions A is a function I : A \rightarrow \{T, F\}.
```
Define the notation $I \models \varphi$ (*I* satisfies φ ; *I* is a model of φ ; φ is true under *I*) for interpretations *I* and formulas φ by

I |= ⊤ *I* ̸|= ⊥ $I \models a$ iff *I*(*a*) = **T** (for all *a* ∈ *A*) $I \models \neg \varphi$ iff $I \not\models \varphi$ $I = (\varphi \vee \psi)$ iff $(I = \varphi \text{ or } I = \psi)$ $I \models (\varphi \land \psi)$ iff $(I \models \varphi \text{ and } I \models \psi)$

Note: Interpretations are also called valuations or truth assignments.

Propositional Logic Terminology (1)

- A logical formula φ is satisfiable if there is at least one interpretation *I* such that $I \models \varphi$.
- Otherwise it is unsatisfiable.
- A logical formula φ is valid or a tautology if $I \models \varphi$ for all interpretations *I*.
- A logical formula ψ is a logical consequence of a logical formula φ , written $\varphi = \psi$, if $I \models \psi$ for all interpretations *I* with $I \models \varphi$.
- Two logical formulas φ and ψ are logically equivalent, written $\varphi \equiv \psi$, if $\varphi \models \psi$ and $\psi \models \varphi$.

Question: How to phrase these in terms of models?

Propositional Logic Terminology (2)

- A logical formula that is a proposition *a* or a negated proposition ¬*a* for some atomic proposition *a* ∈ *A* is a literal.
- \blacksquare A formula that is a disjunction of literals is a clause. This includes unit clauses ℓ consisting of a single literal and the empty clause \perp consisting of zero literals.
- A formula that is a conjunction of literals is a monomial. This includes unit monomials ℓ consisting of a single literal and the empty monomial ⊤ consisting of zero literals.

Normal forms:

- negation normal form (NNF)
- conjunctive normal form (CNF)
- disjunctive normal form (DNF)

[Summary](#page-25-0)

Summary

- Transition systems are (typically huge) directed graphs that encode how the state of the world can change.
- **Propositional logic allows us to compactly describe** complex information about large sets of interpretations as logical formulas.