
Automated Planning
B1. Transition Systems and Propositional Logic

Jendrik Seipp

Linköping University

based on slides from the AI group at the University of Basel

Transition Systems Example: Blocks World Reminder: Propositional Logic Summary

Content of this Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Abstraction

Constraints

2/27

Transition Systems Example: Blocks World Reminder: Propositional Logic Summary

Next Steps

Our next steps are to formally define our problem:

introduce a mathematical model for planning tasks:
transition systems
{ Chapter B1

introduce compact representations for planning tasks
suitable as input for planning algorithms
{ Chapter B2

3/27

Transition Systems Example: Blocks World Reminder: Propositional Logic Summary

Transition Systems

4/27

Transition Systems Example: Blocks World Reminder: Propositional Logic Summary

Transition System Example
Transition systems are often depicted as directed arc-labeled graphs with
decorations to indicate the initial state and goal states.

ℓ1

ℓ1

ℓ1

ℓ1

ℓ 3
ℓ3

ℓ2

ℓ 4

ℓ 3

ℓ4

ℓ4

ℓ4

ℓ2 ℓ2

c(ℓ1) = 1, c(ℓ2) = 1, c(ℓ3) = 5, c(ℓ4) = 0

5/27

Transition Systems Example: Blocks World Reminder: Propositional Logic Summary

Transition Systems

Definition (Transition System)
A transition system is a 6-tuple T = ⟨S, L, c, T, s0, S⋆⟩ where

S is a finite set of states,

L is a finite set of (transition) labels,

c : L → Ò+
0 is a label cost function,

T ⊆ S × L × S is the transition relation,

s0 ∈ S is the initial state, and

S⋆ ⊆ S is the set of goal states.

We say that T has the transition ⟨s, ℓ, s′⟩ if ⟨s, ℓ, s′⟩ ∈ T.

We also write this as s
ℓ−→ s′, or s → s′ when not interested in ℓ .

Note: Transition systems are also called state spaces.

6/27

Transition Systems Example: Blocks World Reminder: Propositional Logic Summary

Deterministic Transition Systems

Definition (Deterministic Transition System)
A transition system is called deterministic if for all states s

and all labels ℓ , there is at most one state s′ with s
ℓ−→ s′.

Example: previously shown transition system

7/27

Transition Systems Example: Blocks World Reminder: Propositional Logic Summary

Transition System Terminology (1)

We use common terminology from graph theory:

s′ successor of s if s → s′

s predecessor of s′ if s → s′

8/27

Transition Systems Example: Blocks World Reminder: Propositional Logic Summary

Transition System Terminology (2)

We use common terminology from graph theory:

s′ reachable from s if there exists a sequence of transitions

s0 ℓ1−→ s1, . . . , sn−1 ℓn−→ sn s.t. s0 = s and sn = s′

Note: n = 0 possible; then s = s′

s0, . . . , sn is called (state) path from s to s′

ℓ1, . . . , ℓn is called (label) path from s to s′

s0 ℓ1−→ s1, . . . , sn−1 ℓn−→ sn is called trace from s to s′

length of path/trace is n
cost of label path/trace is

∑n
i=1 c(ℓ i)

9/27

Transition Systems Example: Blocks World Reminder: Propositional Logic Summary

Transition System Terminology (3)

We use common terminology from graph theory:

s′ reachable (without reference state) means
reachable from initial state s0

solution or goal path from s: path from s to some s′ ∈ S⋆
if s is omitted, s = s0 is implied

transition system solvable if a goal path from s0 exists

10/27

Transition Systems Example: Blocks World Reminder: Propositional Logic Summary

Example: Blocks World

11/27

Transition Systems Example: Blocks World Reminder: Propositional Logic Summary

Running Example: Blocks World

Throughout the course, we occasionally use
the blocks world domain as an example.

In the blocks world, a number of different blocks
are arranged on a table.

Our job is to rearrange them according to a given goal.

12/27

Transition Systems Example: Blocks World Reminder: Propositional Logic Summary

Blocks World Rules (1)

Location on the table does not matter.

≡

Location on a block does not matter.

≡

13/27

Transition Systems Example: Blocks World Reminder: Propositional Logic Summary

Blocks World Rules (2)

At most one block may be below a block.

At most one block may be on top of a block.

14/27

Transition Systems Example: Blocks World Reminder: Propositional Logic Summary

Blocks World Transition System for Three Blocks

Labels omitted for clarity. All label costs are 1. Initial/goal states not marked.
15/27

Transition Systems Example: Blocks World Reminder: Propositional Logic Summary

Blocks World Computational Properties

blocks states
1 1
2 3
3 13
4 73
5 501
6 4051
7 37633
8 394353
9 4596553

blocks states
10 58941091
11 824073141
12 12470162233
13 202976401213
14 3535017524403
15 65573803186921
16 1290434218669921
17 26846616451246353
18 588633468315403843

Finding solutions is possible in linear time
in the number of blocks: move everything onto the table,
then construct the goal configuration.

Finding a shortest solution is NP-complete
given a compact description of the problem.

16/27

Transition Systems Example: Blocks World Reminder: Propositional Logic Summary

The Need for Compact Descriptions

We see from the blocks world example that transition systems
are often far too large to be directly used as inputs
to planning algorithms.

We therefore need compact descriptions of transition systems.

For this purpose, we will use propositional logic,
which allows expressing information about 2n states
as logical formulas over n state variables.

17/27

Transition Systems Example: Blocks World Reminder: Propositional Logic Summary

What about PDDL?

PDDL uses first-order logic to describe planning tasks:
action schemas, variables and quantifiers, etc.

Most planning systems work on propositional representations.

Propositional tasks simplify the presentation of algorithms.

There are compilers that translate PDDL to propositional logic:
intuitively, they convert action schemas like
move(?t - truck ?from - city ?to - city) to operators
move(truck1, Stockholm, Linköping)

18/27

Transition Systems Example: Blocks World Reminder: Propositional Logic Summary

Reminder: Propositional Logic

19/27

Transition Systems Example: Blocks World Reminder: Propositional Logic Summary

More on Propositional Logic

Need to Catch Up?
This section is a reminder. We assume you are already
well familiar with propositional logic.

If this is not the case, we recommend the lectures on propositional
logic of the Artificial Intelligence course:
https://www.ida.liu.se/~TDDC17

20/27

https://www.ida.liu.se/~TDDC17

Transition Systems Example: Blocks World Reminder: Propositional Logic Summary

Syntax of Propositional Logic

Definition (Logical Formula)
Let A be a set of atomic propositions.

The logical formulas over A are constructed
by finite application of the following rules:

⊤ and ⊥ are logical formulas (truth and falsity).

For all a ∈ A, a is a logical formula (atom).

Ifϕ is a logical formula, then so is ¬ϕ (negation).

Ifϕ andψ are logical formulas, then so are
(ϕ ∨ψ) (disjunction) and (ϕ ∧ψ) (conjunction).

21/27

Transition Systems Example: Blocks World Reminder: Propositional Logic Summary

Syntactical Conventions for Propositional Logic

Abbreviations:

(ϕ → ψ) is short for (¬ϕ ∨ψ) (implication)

(ϕ ↔ ψ) is short for ((ϕ → ψ) ∧ (ψ → ϕ)) (equijunction)
parentheses omitted when not necessary:

(¬) binds more tightly than binary connectives
(∧) binds more tightly than (∨),
which binds more tightly than (→),
which binds more tightly than (↔)

22/27

Transition Systems Example: Blocks World Reminder: Propositional Logic Summary

Semantics of Propositional Logic

Definition (Interpretation, Model)
An interpretation of propositions A is a function I : A → {T, F}.

Define the notation I |= ϕ (I satisfiesϕ; I is a model ofϕ;
ϕ is true under I) for interpretations I and formulasϕ by

I |= ⊤
I ̸ |= ⊥
I |= a iff I(a) = T (for all a ∈ A)

I |= ¬ϕ iff I ̸ |= ϕ
I |= (ϕ ∨ψ) iff (I |= ϕ or I |= ψ)

I |= (ϕ ∧ψ) iff (I |= ϕ and I |= ψ)

Note: Interpretations are also called valuations

Note:

or truth assignments.

23/27

Transition Systems Example: Blocks World Reminder: Propositional Logic Summary

Propositional Logic Terminology (1)

A logical formulaϕ is satisfiable
if there is at least one interpretation I such that I |= ϕ.

Otherwise it is unsatisfiable.

A logical formulaϕ is valid or a tautology
if I |= ϕ for all interpretations I.

A logical formulaψ is a logical consequence
of a logical formulaϕ, writtenϕ |= ψ ,
if I |= ψ for all interpretations I with I |= ϕ.

Two logical formulasϕ andψ are logically equivalent,
writtenϕ ≡ ψ , ifϕ |= ψ andψ |= ϕ.

Question: How to phrase these in terms of models?

24/27

Transition Systems Example: Blocks World Reminder: Propositional Logic Summary

Propositional Logic Terminology (2)

A logical formula that is a proposition a or a negated proposition
¬a for some atomic proposition a ∈ A is a literal.

A formula that is a disjunction of literals is a clause.
This includes unit clauses ℓ consisting of a single literal
and the empty clause ⊥ consisting of zero literals.

A formula that is a conjunction of literals is a monomial.
This includes unit monomials ℓ consisting of a single literal
and the empty monomial ⊤ consisting of zero literals.

Normal forms:

negation normal form (NNF)

conjunctive normal form (CNF)

disjunctive normal form (DNF)

25/27

Transition Systems Example: Blocks World Reminder: Propositional Logic Summary

Summary

26/27

Transition Systems Example: Blocks World Reminder: Propositional Logic Summary

Summary

Transition systems are (typically huge) directed graphs
that encode how the state of the world can change.

Propositional logic allows us to compactly describe
complex information about large sets of interpretations
as logical formulas.

27/27

	Transition Systems
	

	Example: Blocks World
	

	Reminder: Propositional Logic
	

	Summary
	

