Automated Planning B1. Transition Systems and Propositional Logic

Jendrik Seipp

Linköping University

Our next steps are to formally define our problem:

- introduce a mathematical model for planning tasks: transition systems
 - → Chapter B1
- introduce compact representations for planning tasks suitable as input for planning algorithms
 - → Chapter B2

Transition Systems

Transition System Example

Transition systems are often depicted as directed arc-labeled graphs with decorations to indicate the initial state and goal states.

$$c(\ell_1) = 1$$
, $c(\ell_2) = 1$, $c(\ell_3) = 5$, $c(\ell_4) = 0$

Transition Systems

Definition (Transition System)

A transition system is a 6-tuple $\mathcal{T} = \langle S, L, c, T, s_0, S_{\star} \rangle$ where

- S is a finite set of states.
- L is a finite set of (transition) labels.
- $\mathbf{c}: L \to \mathbb{R}_0^+$ is a label cost function,
- $T \subseteq S \times L \times S$ is the transition relation,
- $s_0 \in S$ is the initial state, and
- \blacksquare $S_{+} \subseteq S$ is the set of goal states.

We say that \mathcal{T} has the transition $\langle s, \ell, s' \rangle$ if $\langle s, \ell, s' \rangle \in \mathcal{T}$.

We also write this as $s \xrightarrow{\ell} s'$, or $s \rightarrow s'$ when not interested in ℓ .

Note: Transition systems are also called state spaces.

<u>Definition</u> (Deterministic Transition System)

A transition system is called deterministic if for all states s and all labels ℓ , there is at most one state s' with $s \stackrel{\ell}{\to} s'$.

Example: previously shown transition system

We use common terminology from graph theory:

- \blacksquare s' successor of s if s \rightarrow s'
- \blacksquare s predecessor of s' if s \rightarrow s'

Transition System Terminology (2)

We use common terminology from graph theory:

s' reachable from s if there exists a sequence of transitions

$$s^0 \xrightarrow{\ell_1} s^1, ..., s^{n-1} \xrightarrow{\ell_n} s^n$$
 s.t. $s^0 = s$ and $s^n = s'$

- Note: n = 0 possible; then s = s'
- s^0, \ldots, s^n is called (state) path from s to s'
- ℓ_1, \ldots, ℓ_n is called (label) path from s to s'
- $\mathbf{s}^0 \xrightarrow{\ell_1} \mathbf{s}^1, \dots, \mathbf{s}^{n-1} \xrightarrow{\ell_n} \mathbf{s}^n$ is called trace from s to s'
- length of path/trace is n
- **cost** of label path/trace is $\sum_{i=1}^{n} c(\ell_i)$

Transition System Terminology (3)

We use common terminology from graph theory:

- s' reachable (without reference state) means reachable from initial state s₀
- solution or goal path from s: path from s to some $s' \in S_*$
 - if s is omitted, $s = s_0$ is implied
- \blacksquare transition system solvable if a goal path from s_0 exists

- Throughout the course, we occasionally use the blocks world domain as an example.
- In the blocks world, a number of different blocks are arranged on a table.
- Our job is to rearrange them according to a given goal.

Blocks World Rules (1)

Blocks World Rules (2)

At most one block may be on top of a block.

Blocks World Transition System for Three Blocks

Labels omitted for clarity. All label costs are 1. Initial/goal states not marked.

blocks	states	blocks	states
1	1	10	58941091
2	3	11	824073141
3	13	12	12470162233
4	73	13	202976401213
5	501	14	3535017524403
6	4051	15	65573803186921
7	37633	16	1290434218669921
8	394353	17	26846616451246353
9	4596553	18	588633468315403843

- Finding solutions is possible in linear time in the number of blocks: move everything onto the table, then construct the goal configuration.
- Finding a shortest solution is NP-complete given a compact description of the problem.

- We see from the blocks world example that transition systems are often far too large to be directly used as inputs to planning algorithms.
- We therefore need compact descriptions of transition systems.
- For this purpose, we will use propositional logic, which allows expressing information about 2ⁿ states as logical formulas over *n* state variables.

- PDDL uses first-order logic to describe planning tasks: action schemas, variables and quantifiers, etc.
- Most planning systems work on propositional representations.
- Propositional tasks simplify the presentation of algorithms.
- There are compilers that translate PDDL to propositional logic: intuitively, they convert action schemas like move(?t - truck ?from - city ?to - city) to operators move(truck1, Stockholm, Linköping)

•000000

More on Propositional Logic

Need to Catch Up?

- This section is a reminder. We assume you are already well familiar with propositional logic.
- If this is not the case, we recommend the lectures on propositional logic of the Artificial Intelligence course: https://www.ida.liu.se/~TDDC17

Syntax of Propositional Logic

Definition (Logical Formula)

Let A be a set of atomic propositions.

The logical formulas over A are constructed by finite application of the following rules:

- T and ⊥ are logical formulas (truth and falsity).
- For all $a \in A$, a is a logical formula (atom).
- If φ is a logical formula, then so is $\neg \varphi$ (negation).
- If φ and ψ are logical formulas, then so are $(\varphi \lor \psi)$ (disjunction) and $(\varphi \land \psi)$ (conjunction).

Abbreviations:

- $(\varphi \rightarrow \psi)$ is short for $(\neg \varphi \lor \psi)$ (implication)
- $(\varphi \leftrightarrow \psi)$ is short for $((\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi))$ (equijunction)

Reminder: Propositional Logic

- parentheses omitted when not necessary:
 - (¬) binds more tightly than binary connectives
 - \blacksquare (\land) binds more tightly than (\lor). which binds more tightly than (\rightarrow) , which binds more tightly than (\leftrightarrow)

Semantics of Propositional Logic

Definition (Interpretation, Model)

An interpretation of propositions A is a function $I : A \rightarrow \{T, F\}$.

Define the notation $I \models \varphi$ (I satisfies φ ; I is a model of φ ; φ is true under I) for interpretations I and formulas φ by

- I |= T
- I ≠ ⊥
- $I \models a$ iff $I(a) = \mathbf{T}$ (for all $a \in A$)
- $\blacksquare \ \ l \models \neg \varphi \qquad \text{iff} \quad l \not\models \varphi$
- $\blacksquare \ l \models (\varphi \lor \psi) \quad \text{iff} \quad (l \models \varphi \text{ or } l \models \psi)$
- $\blacksquare \ \mathit{I} \models (\varphi \land \psi) \quad \text{iff} \quad (\mathit{I} \models \varphi \text{ and } \mathit{I} \models \psi)$

Note: Interpretations are also called valuations or truth assignments.

Reminder: Propositional Logic

- \blacksquare A logical formula φ is satisfiable if there is at least one interpretation I such that $I \models \varphi$.
- Otherwise it is unsatisfiable.
- \blacksquare A logical formula φ is valid or a tautology if $I \models \varphi$ for all interpretations I.
- \blacksquare A logical formula ψ is a logical consequence of a logical formula φ , written $\varphi \models \psi$, if $I \models \psi$ for all interpretations I with $I \models \varphi$.
- \blacksquare Two logical formulas φ and ψ are logically equivalent, written $\varphi \equiv \psi$, if $\varphi \models \psi$ and $\psi \models \varphi$.

Question: How to phrase these in terms of models?

Propositional Logic Terminology (2)

- A logical formula that is a proposition a or a negated proposition $\neg a$ for some atomic proposition $a \in A$ is a literal.
- A formula that is a disjunction of literals is a clause. This includes unit clauses ℓ consisting of a single literal and the empty clause \perp consisting of zero literals.
- A formula that is a conjunction of literals is a monomial. This includes unit monomials ℓ consisting of a single literal and the empty monomial \top consisting of zero literals.

Normal forms:

- negation normal form (NNF)
- conjunctive normal form (CNF)
- disjunctive normal form (DNF)

Summary

Summary

- Transition systems are (typically huge) directed graphs that encode how the state of the world can change.
- Propositional logic allows us to compactly describe complex information about large sets of interpretations as logical formulas.