
End-to-End Classical Planning
using CP and Belief Propagation

Damien Van Meerbeeck1, Gilles Pesant2, and Jendrik Seipp1
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Classical planning is one of the original core AI research areas. It is the challenge of
finding a sequence of actions that transforms a given initial situation into one that satis-
fies a given goal description [7]. In optimal classical planning, the plan must minimize
the sum of its action costs. Most of today’s strongest planners are based on state-space
search with goal distance estimators, called heuristics. The predominant algorithm is
A∗ [9] for optimal planning [6, 16]. In this work, we leave the beaten path of state-
space search planning and instead solve planning tasks with constraint programming
(CP). We do so firstly in order to obtain a planning system that allows users to input
their plan constraints in a declarative way. Our second motivation is to use the power of
CPBP solvers [14] to obtain a system that scales better to large planning tasks.

The literature features several papers using constraint programming for planning
[17, 5, 18, 4, 8]. Following the seminal work of Kautz and Selman [11], they typically
cast the problem as a succession of fixed-length planning tasks but differ both in the
choice of constraints and in the branching strategy for the CP solver. Babaki, Pesant,
and Quimper [2] build on the work of Zanarini, Pesant, and Milano [18] to manually
derive CP models for three planning domains. With each planning object they associate
an automaton describing how actions affect its state, enforced using a REGULAR or
COSTREGULAR constraint. The main novelty is that they compare several branching
strategies and find that maxSD, an instance of counting-based search [15], performs
vastly better than the other strategies. We build our work on their approach. However,
instead of manually designing the automata and consequently the CP model, we aim to
compute them automatically from the input planning tasks thereby providing an end-to-
end approach. We also stay close in spirit to the idea behind their successful branching
heuristic by exploiting the marginal probabilities provided by the CPBP framework
[14]. So far, no CP-based planner has reached the performance of planners based on
state-space search, which is something we aim to change with this line of work.

Our Approach So Far
On a high level, our pipeline automatically transforms a given input task into a set
of automata which MiniCPBP [13] uses to model and solve the task. In more detail,
we proceed as follows. First, we use the translator component of the Fast Downward
planning system [10] to translate the input planning task, formulated in the first-order
planning domain definition language (PDDL) [12], into a ground finite-domain SAS+

task [3]. Then we construct an automaton for each variable v in the SAS+ task by
projecting the task onto v. The resulting transition system forms a deterministic finite-
state automaton that describes how the actions in the task influence the value of v.
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NOGROUP GROUP GROUP+PRUNE MANUAL

Miconic (150)
solved opt. 38 42 41 49
out of memory 60 28 28 0
out of time 52 80 81 101

Scanalyzer (41)
solved opt. (solved) 5 (11) 5 (15) 5 (21) 33 (33)
out of memory 18 18 12 0
out of time 18 18 24 8

Table 1: Per-domain aggregated planner outcomes: tasks solved optimally, tasks solved
(possibly suboptimally), runs that hit the 8 GB memory limit and runs that exceed 30
minutes of runtime.

Without further adjustments, the CP models obtained through this baseline approach
(which we call NOGROUP) will not scale to large planning tasks. One issue is the large
number of automata produced. We could combine several single-variable automata by
computing their product automaton but deciding which to combine is not trivial and
we have not attempted it yet. Another issue is that the number of ground actions in
large SAS+ planning tasks can be in the tens of thousands. Since our encoding uses
one variable per plan step, each choosing among all ground actions, we obtain very
large variable domains that are out of reach for current CP solvers. To address this, we
use two methods that can drastically reduce the domain sizes of the CP variables. First,
we group actions within each automaton that incur only parallel transitions (GROUP).
Second, we prune irrelevant actions, i.e., those that can never be part of an optimal plan,
with an off-the-shelve preprocessing tool [1] (GROUP+PRUNE).

Preliminary Experiments and Discussion
We use MiniCPBP with belief propagation, the maximum marginal branching heuristic
on the actions of the plan, and limited discrepancy search. We fix the plan length to
the length of an optimal plan, which we precomputed with the Scorpion planner [16].
(Obviously, in the final system we will need to iterate over several plan lengths.) We
consider three common planning domains: Miconic, Scanalyzer, and Floortile. Since
none of the algorithms solves any task in Floortile, we focus on results for the other two
domains here.

Table 1 compares our automated approaches to the manually designed CP models
from Babaki et al. [2] (MANUAL). We observe that our action-reduction efforts have a
positive impact on the number of tasks solved but fall short of reaching the performance
of the manual approach. Comparing the models used by GROUP+PRUNE to those of
MANUAL, we observe on average a factor 14 and 230 increase in the number of actions
for Miconic and Scanalyzer, respectively. This could explain why our approaches run
out of memory for some tasks, in contrast to MANUAL. We also observe a factor 2
increase in the number of automata, hinting at models with less of a global view.

This initial investigation already points to areas for improvement in the generation
of the automata encoding. We also plan to study CP variable-selection heuristics that
do not build the plan sequentially, in contrast to state-space search planners.
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