End-to-End Classical Planning using CP and Belief Propagation

Damien Van Meerbeeck, Gilles Pesant, and Hendrik Seipp

1. Machine Reasoning Lab, Linköping University, Sweden
2. Quossé Lab, Polytechnique Montréal, Canada

Classical Planning

- **Problem**: Finding a sequence of actions transforming an initial situation into one that satisfies a goal condition.
- **Solution**: Use CPBP solvers to solve planning tasks using *Constraint Programming* (CP).
- **Advantages**: Let users specify additional constraints on the plan in a declarative way; use the power of CPBP solvers to scale better for large planning tasks.

Input planning task

Planning task in first order planning definition language (PDDL):
- **Objects**
- **Predicates**
- **Initial and goal states**
- **Actions** with preconditions and effects on predicates

Ground finite-domain task

Use the Fast Downward planning system to translate the input task into a ground finite-domain task (SAS*).

Automata

Project the task to each variable of the SAS* task, to obtain a Factored Transition System. Additionally, group parallel actions (Group) and prune irrelevant actions (Group+Prune).

CP Model

Model of the planning task in CP:
- **Plan**: An array of integer variables with a fixed plan length.
- **Task Variables**: Regular constraint for each task variable to enforce their domain task.

Search

Solve using MiniCPBP solver with belief propagation and the maximum marginal branching heuristic on the actions of the plan.

Preliminary Results

<table>
<thead>
<tr>
<th>Planning Domain</th>
<th>Outcome</th>
<th>NoGroup</th>
<th>Group</th>
<th>Group+Prune</th>
<th>Manual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miconic (150)</td>
<td>solved opt.</td>
<td>38</td>
<td>42</td>
<td>41</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>out of memory</td>
<td>60</td>
<td>28</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>out of time</td>
<td>52</td>
<td>80</td>
<td>81</td>
<td>101</td>
</tr>
<tr>
<td>Scanalyzer (41)</td>
<td>solved (solved)</td>
<td>5 (11)</td>
<td>5 (15)</td>
<td>5 (21)</td>
<td>(33) 33</td>
</tr>
<tr>
<td></td>
<td>out of memory</td>
<td>18</td>
<td>18</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>out of time</td>
<td>18</td>
<td>18</td>
<td>24</td>
<td>8</td>
</tr>
</tbody>
</table>

Future Works

- Merging automata
- Action Space reduction
- New constraints (landmarks, operator counting, ...)

Motivation

- Solve planning tasks using *Constraint Programming* (CP).
- Let users specify additional constraints on the plan in a declarative way.
- Use the power of CPBP solvers to scale better for large planning tasks.