End-to-End Classical Planning using CP and Belief Propagation

Damien Van Meerbeeck¹, Gilles Pesant², Jendrik Seipp¹

¹ Machine Reasoning Lab, Linköping University, Sweden
 ² Quosséça Lab, Polytechnique Montréal, Canada

Classical Planning

Classical Planning is the challenge of finding a sequence of actions transforming an initial situations into one that satisfies a goal condition. In **Optimal Classical Planning**, the plan must minimize the sum of action costs.

Motivation

- Solve planning tasks using Constraint Programming (CP).
- Let users specify additional constraints on the plan in a declarative way.
- Use the power of CPBP solvers to scale better for large planning tasks.

Pipeline

Input planning task

Planning task in first order planning definition language (**PDDL**):

- Objects
- Predicates
- Initial and goal states
- Actions with preconditions and effects on predicates

Lifted actions (of unit cost):

- board(floor, passenger)
- depart(floor, passenger)
- down(from, to)
- up(from, to)

Ground finite-domain task

Use the **Fast Downward** planning system to **translate** the input task into a ground finite-domain task (**SAS**⁺).

Task Variables:

- Boarded p_0 : $\{F, T\}$
- Served $p_0 : \{F, T\}$
- Boarded $p_1 : \{F, T\}$
- Served p₁: {F, T}
 Elevator: {f₀, f₁, f₂, f₃}
- 1 | board(f_1, p_1)
 2 | depart(f_2, p_0)

Grounded actions:

0 board(f_3 , p_0)

3 depart(f_3, p_1)

- 4 down (f_1, f_0) 10 up (f_2, f_3) 5 down (f_2, f_0) 11 up (f_1, f_2) 6 down (f_2, f_1) 12 up (f_1, f_3)
- 7 down (f_3, f_0) 13 up (f_0, f_1) 8 down (f_3, f_1) 14 up (f_0, f_2)
- 9 down (f_3, f_1) 14 dp (f_0, f_2) 15 up (f_0, f_3)

Automata

Project the task to each variable of the SAS⁺ task, to obtain a **Factored Transition System**. Additionally, group parallel actions (*Group*) and prune irrelevant actions (*Group+Prune*).

CP Model

Model of the planning task in CP:

- Plan: An array of integer variables with a fixed plan length.
- Task Variables: Regular Constraint for each task variable to enforce their automaton on the plan.

Time-unfolded automaton for the Regular Constraint

Search

Solve using MiniCPBP solver with belief propagation and the maximum marginal branching heuristic on the actions of the plan.

Preliminary Results

Planning Domain	Outcome	NoGroup	Group	Group+Prune	Manual
Miconic (150)	solved opt.	38	42	41	49
	out of memory	60	28	28	0
	out of time	52	80	81	101
Scanalyzer (41)	solved opt. (solved)	5 (11)	5 (15)	5 (21)	(33) 33
	out of memory	18	18	12	0
	out of time	18	18	24	8

Future Works

Merging automatons

• Action Space reduction

$$\begin{array}{c}
 \text{up}(f_2, f_3) \\
 \text{up}(f_1, f_3) \\
 \text{up}(f_0, f_3)
\end{array}$$

• New constraints (landmarks, operator counting, ...)

