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Abstract

Recent work in classical planning has intro-
duced dedicated techniques for detecting unsolv-
able states, i.e., states from which no goal state
can be reached. We approach the problem from
a generalized planning perspective and learn first-
order-like formulas that characterize unsolvability
for entire planning domains. We show how to cast
the problem as a self-supervised classification task.
Our training data is automatically generated and la-
beled by exhaustive exploration of small instances
of each domain, and candidate features are auto-
matically computed from the predicates used to de-
fine the domain. We investigate three learning algo-
rithms with different properties and compare them
to heuristics from the literature. Our empirical re-
sults show that our approach often captures impor-
tant classes of unsolvable states with high classi-
fication accuracy. Additionally, the logical form of
our heuristics makes them easy to interpret and rea-
son about, and can be used to show that the charac-
terizations learned in some domains capture exactly
all unsolvable states of the domain.

1 Introduction

For solving planning tasks efficiently via search it is often
crucial to detect unsolvable states, i.e., states from which
the goal cannot be reached [Junghanns and Schaeffer, 1998;
Kolobov et al., 2012; Muise et al., 2012; Cserna et al., 2018].
In classical planning, unsolvable states have traditionally only
been recognized implicitly, as a byproduct of the computa-
tion of heuristics designed to estimate the cost of reaching
the goal from a given state. Most of the standard heuris-
tics are safe unsolvability estimators too, in that a state with
an infinite heuristic value is guaranteed to be unsolvable.
In recent years, there has been a renewed interest in un-
solvability detection methods [Bickstrom ef al., 2013; Hoff-
mann et al., 2014; LipovetzKy et al., 2016; Stahlberg, 2017,
Eriksson et al., 2017; Steinmetz and Hoffmann, 2017], as
witnessed by the 2016 Unsolvability International Planning
Competition [Muise and Lipovetzky, 2016; Seipp et al., 2016;
Torralba, 2016]. Many of these methods incorporate a pre-

processing phase that computes an unsolvability heuristic tai-
lored to the particular instance at hand.

In this paper, we approach the problem of unsolvability
detection from a generalized perspective, and learn charac-
terizations of unsolvable states for entire planning domains.
Although this is obviously not easier than characterizing the
unsolvable states of a single instance of the domain, the ad-
vantage is that the learned knowledge can be used for many
instances. Although deciding unsolvability for a single in-
stance is in general PSPACE-complete, many standard do-
mains have relatively simple descriptions of what constitutes
an unsolvable state, which we aim to capture with our ap-
proach.

We frame this problem in terms of a standard self-
supervised binary classification task, where training data and
labels are generated by exhaustive exploration of a few small
instances of the planning domain. The features our classifiers
use are derived automatically from the first-order predicates
and constants that describe the domain, avoiding the need for
manual feature engineering. Our approach thus follows the
footsteps of recent works that learn logic-based domain con-
trol knowledge from the observation of a few instances of the
domain [Bonet et al., 2019; Frances et al., 2021]. Whereas
these works aim at obtaining general policies, here we focus
squarely on characterizing unsolvability.

We present three different learning algorithms that learn
simple formulas in disjunctive normal form (DNF) over the
domain features. The three approaches differ in the guaran-
tees they provide and in their computational demands. We
show that the resulting functions are concise and hence fast
to evaluate. Our experiments also confirm that some domains
have simple characterizations of unsolvable states that our ap-
proaches capture successfully. Furthermore, we leverage the
interpretability of the learned formulas in order to show that
some of them are sound and complete characterizations for
the entire domain.

2 Background

In this section, we review classical planning, description logic
and its use in classical planning.

2.1 Classical Planning

We consider deterministic, fully-observable planning prob-
lems represented in a fragment of PDDL [Haslum et al.,



2019]. Namely, we consider ground PDDL planning prob-
lems defined as a tuple P = (o,.A, so,7). The function-
free vocabulary o consists of a set of constant symbols (also
called PDDL objects) and a set of predicate symbols. We
assume w.l.o.g. that o contains only predicates with arity at
most two; higher-arity symbols can be compiled into multi-
ple binary predicates in the standard manner. PDDL types
can also be compiled into unary predicates. The set of states
Sp of problem P contains all possible sets of ground atoms
over 0. We write S when P is clear from context. We call
so € S the initial state of the problem and -y the (conjunctive)
goal. A state s € S is a goal state if v C s. Each action a in
the set of ground actions A has a precondition pre(a), an add
list add(a) and a delete list del(a), each of which is a set of
ground atoms over o.

A ground action a € A is applicable in state s € S if
pre(a) C s. In that case, applying a to s results in the succes-
sor state sfa] = (s\ del(a)) Uadd(a). A sequence of actions
m = {a1,...,ay) is applicable in a state s iff for all ¢, a; is ap-
plicable in state sfa1] - - - [a;—1]. We write s[x] for the state
that results from applying 7 to s. State s’ is reachable from
state s if there is a sequence 7 such that s[7] = s’. We say
that a state is reachable in P if it is reachable from the initial
state sg. A state s is solvable if there is a goal state that is
reachable from s. A solution to the planning task, i.e., a plan,
is a sequence of actions 7 = (a1, ..., a,) that is applicable
in the initial state sy and leads to a goal state, i.e., v C so[r].

Note that each state s € S represents a first-order interpre-
tation Z(s) that assigns a truth value to all formulas over o.
We write s |= ¢ if formula ¢ is true under Z(s).

Planning domains. In this paper we refer to a generalized
planning domain as a set Q of planning problems whose vo-
cabularies all have the same predicate symbols, and possibly
share some of the constants symbols. A typical instantiation
of such a domain is given in PDDL domain files.

2.2 Description Logics

Description logics are a family of knowledge representation
formalisms based on tractable fragments of first-order logic
[Baader er al., 2004]. They build on the notions of concepts,
classes of objects that share some property, and roles, rela-
tions between these objects. Several description logics exist
in the literature; we describe the one we use next.

Syntax. Compound concepts and roles are defined induc-
tively starting from a given set of primitive concepts and
roles. Primitive concepts are unary predicates, whereas prim-
itive roles are binary predicates. Each primitive concept is a
concept, and each primitive role is a role. The universal con-
cept T and the bottom concept | are also concepts. Let C'
and C’ be concepts, and R and R’ roles. The negation —C,
the union C U C', the intersection C 1 C', the existential re-
striction AR.C, the universal restriction VR.C, and the role-
value-map R = R’ are also concepts. If a is a constant sym-
bol, the nominal {a} is a concept. The inverse role R~! and
the (non-reflexive) transitive closure role RT are also roles.

Semantics. The semantics of concepts and roles are defined
relative to a given universe of discourse A. A model M maps

each constant symbol a to an element a™ € A, each prim-

itive concept C' to a subset CM C A, and each primitive
role R to a subset RM C A x A. M extends to compound
concepts and roles as follows:

TM=A,
(-O)M = A\ CM,
(cucyM=cMuc™, (cncyM=cMnc™,
(BR.CYM ={a | 3b: (a,b) € RM Ab e CM},
(VR.OYM = {a | Vb: (a,b) € RM — b e CM},
(R=R)YM ={a|W: (a,b) € RM & (a,b) € R},
(R™HM = {(b,a) | (a,b) € RM},
(RHM = {(ag,a,) | 3ay,...,an_1 :

(ai—1,a;) € RMforalll1 <i< n}.

M =9,
{a}™ = {a™},

M
M

Complexity. The complexity K(C') of a concept or role C'
is defined as the number of nodes of the parse tree used to
represent it.

2.3 Use of Description Logics in Classical Planning

We follow several works in the literature on learning for
planning that use description logics or similar formalisms as
the foundation of first-order features useful for the design of
generalized features and policies [Martin and Geffner, 2004;
Fern et al., 2006; Frances et al., 2019; Frances et al., 2021].
The connection between a planning problem P and a cor-
responding description logic language DL(P) is straight-
forward. The unary and binary predicates of P are taken
to be primitive concepts and roles, respectively, and the uni-
verse of discourse A contains all constants in the problem,
which we always consider to denote themselves. Hence, each
state s € Sp can also be seen as a model for DL(P), where
C* = {a | Z(s) E C(a)} for primitive concepts C, and
R* = {(a,b) | Z(s) = R(a,b)} for primitive roles R.

The description language DL(P) is usually enriched with
goal modalities pg of those predicates p that are used to de-
fine the goal of the problem [Khardon, 1999]. These are, to
all effects, additional primitive concepts and roles, whose de-
notation is fixed in all states s by the atoms appearing in the
goal conjunction. We also limit nominal concepts in DL(P)
to PDDL-level constants, which are those PDDL objects that
by definition appear in all instances of the domain. Because
of this, all problems of a same planning domain share the
same description language, and we sometimes speak of the
description language of a domain.

Example. Take as example the Spanner domain, where an
agent moves along a corridor, and can pick up single-use
spanners that are scattered along the corridor. These spanners
are needed at the end of the corridor, where several nuts have
to be tightened. The corridor is one-way, hence as soon as
the agent leaves sufficiently many spanners behind, the prob-
lem becomes unsolvable. The PDDL encoding has a unary
predicate tightened and a binary predicate at, representing
the status of nuts and the position of agent, spanners and
nuts within the corridor, respectively. The PDDL types of



the original encoding can be compiled into unary predicates.
The description language corresponding to this domain will
hence have primitive concepts man, nut, spanner and tight-
ened, and a primitive role carrying. The interpretation of
these in a given state s represents sets of objects (for con-
cepts) or object pairs (for roles) that satisfy some property in
s. Compound concepts allow us to represent complex sets of
objects. The concept Jar~!.man, for instance, represents the
set of all corridor locations with an agent in them, whereas
tightened, M —tightened represents the nuts that need to be
tightened in the goal, but are not tightened in the current state.
Both concepts have syntactic complexity 4.

3 Generalized Unsolvability Heuristics

We are interested in functions that take any state s of any
instance in a given class Q of planning problems, and predict
whether s is unsolvable. The next definition generalizes the
one by Hoffmann er al. [2014]:

Definition 1. A generalized unsolvability heuristic for a class
Q of planning tasks is a function h : UpcoSp +— {0,00}. We
say that h is safe whenever h(s) = oo only if s is unsolvable,
and perfect whenever h(s) = oo iff s is unsolvable.

Example. In the Spanner domain, a state is unsolvable iff
the number of unused spanners that are carried by the agent
or that can still be picked up is smaller than the number of
nuts that still need to be tightened. Any function that returns
oo for a subset of these states is a safe unsolvability heuristic
for the domain; any function that returns oo exactly for these
states is a perfect unsolvability heuristic.

3.1 Hypothesis Space

Because of their simplicity and interpretability, we focus on
learning unsolvability heuristics represented by formulas in
disjunctive normal form (DNF) over literals from a given
space F of binary features, which can also be seen as propo-
sitional atoms. Our formulas thus have the form \/; A\; pi;,
where p;; is either a feature in J or its negation. They can be
understood as binary classifiers (a state s is unsolvable iff it
satisfies the formula) and as unsolvability heuristics i (h(s)
is oo if s satisfies the formula, and 0 otherwise).

Feature Space
Our feature space extends the one from Bonet et al. [2019] by
adding the arithmetic comparison of numerical quantities.

Definition 2. Let P = (0, A, so,~) be a planning problem.
The feature space F (P) is the smallest set containing features
|C| >0, |C| > |C'| and |C| = |C'| for any two concepts C
and C' in DL(P), and feature f, for any nullary predicate
p of 0. The truth value of these features in a state s € Sp is
given by |C*%| > 0, |C*] > |C"%|, |C*| = |C"®|, and s |= p,
respectively. The (syntactic) complexity IC(f) of each feature
f € F(P) is defined as 1 for nullary predicate features fp,
2 + K(C) for features of the form |C| > 0, and 1 + K(C) +
KC(C") for features of the form |C| > |C'| and |C| = |C"|.

Note that F(P) is infinite and contains binary features
only. These are either direct translations f, of nullary predi-
cates p from the domain vocabulary or binary values based on

counts |C'| of the number of objects that satisfy some property
C in a given state, where C'is represented in the description
language of the problem. When P is clear from context, we
simply use F. Note that F is well-defined for all domains
represented in PDDL,; the features it contains are tailored to
the domain, but they are instance-independent, that is, well-
defined in all states of all instances of the domain. This is
key for generalization. Arithmetic comparison features such
as |C| > |C’| and |C| = |C"| are a significant addition to the
feature grammar used by Bonet et al. [2019] and in related
work. In Spanner, for example, they could be used to com-
pare the number of carried spanners with the number of nuts
that need to be tightened.

3.2 Learning the Heuristics

We now present three different methods for learning unsolv-
ability heuristics. All of them require two inputs: (1) a finite
set F' of candidate features, and (2) a training set T of states
labeled as “solvable” or “unsolvable”. We denote with T+
the set of all states in T that are unsolvable, and with T~ the
set of those that are solvable.

The set F' of candidate features that we use in the exper-
iments is the finite subset of F that contains features with
syntactic complexity at most k. The methods we present,
however, do not depend on how F' is obtained. As discussed
below, our methods have an inductive bias towards formulas
that use simple features. This can be seen as a model regu-
larization mechanism to increase the chance of generalizing
from training instances to unseen planning problems. Addi-
tionally, simpler features are usually much easier to interpret.

The T-PERFECT Heuristic

We first consider a classifier that perfectly discriminates all
unsolvable states from all solvable states in the training set T
with a DNF formula over literals from F' that has minimum
complexity. Here, we measure formula complexity as the sum
of the complexities of all distinct features involved in the for-
mula. Such a classifier might not exist if the features in F
are not expressive enough. But when it does exist for a large
enough training set, it is likely that it generalizes perfectly for
the domain. We name this classifier T-PERFECT, and call the
DNF formula that it finds o1 pgreecr-

For fixed training set T and candidate features F’, the com-
putation of T-PERFECT reduces to finding a set of features
F* C F with minimum complexity such that each pair of
states s € TT, t € T~ can be distinguished by at least one
feature f € F* (thatis, f* # f*). Formula ©1.pgrrecr is then

PT-PERFECT = \/ /\ Lf,57

se€T+ feF*

where L . is the literal that describes the value of f in s, i.e.,
the literal f, if f is true in s, and the literal - f otherwise.
We solve the problem of finding the set F™* with minimum
complexity via a simple compilation to a Weighted Max-SAT
problem ®(F, T+, T~). The problem ®(F, T, T~) has a
propositional variable select(f) for each candidate feature
f € F, asoft clause —select(f) with weight equal to the
complexity of f for each feature f € F, and a hard clause
Vjzpe select(f) for each pair of states s € T+, ¢t e T .



The resulting Max-SAT problem thus has |F'| variables and
|F| +|T*| - |T~| clauses. Therefore, learning times grow in
the worst case quadratically with the size of T and exponen-
tially with the size of F.

The T-SAFE Heuristic

Since T-PERFECT aims at perfect classification over the
training set, it is bound to fail in domains where our feature
space is not expressive enough to characterize unsolvability.
A better alternative in that case is to aim at capturing some
subclasses of unsolvable states by giving up on completeness,
but not soundness.

To do this, the approach that we call T-SAFE follows a
similar idea as T-PERFECT, but considers unsolvable states
s € T¥ in isolation, looking for a propositional formula
¢s over features in F’ that distinguishes s from all solvable
states in T~ and has minimum complexity. Because ¢, is
a Boolean function required to be true for only one input,
if it exists it can be represented with a conjunction of lit-
erals. This is a special case of the optimization problem
that T-PERFECT solves: while T-PERFECT separates two
sets of states, T-SAFE separates a single state from a set of
states. More formally, T-SAFE finds a minimum-complexity
set I'* C F such that for each state ¢ € T, some feature in
F* distinguishes s from ¢. Note that this set /'* can be com-
puted by solving the Max-SAT problem ®(F, T+ T~) that
we defined above, but replacing T+ by the singleton set {s}.

If F’* exists, then ¢ = /\feF* Ly ; otherwise ¢, is unde-
fined. The DNF formula or.g.pe that characterizes T-SAFE
is then the disjunction of the conjunctions ¢, for those states
s € TT where ¢, is defined. Note that (po7_gars is guaranteed
to be safe (i.e., have no false positive) over the training set T.

Our implementation of T-SAFE considers each unsolvable
state s € T™ individually and therefore solves | T | Max-SAT
problems, each of which has |F'| variables and |F| + |T~|
clauses. Thus, learning times have the same asymptotic
growth as T-PERFECT. As an optimization, we skip comput-
ing clauses ¢, for unsolvable states s that are already discrim-
inated by some previously-computed clause. An advantage
of T-SAFE is that it can be used as an anytime algorithm: the
set of DNF terms computed at any moment is a discriminator
over the set of unsolvable states seen up until then.

The DECISIONTREE Heuristic
We finally consider unsolvability heuristics in the form of
a binary decision tree [Breiman et al., 1984], a well-known
classification method that is easy to interpret and fast to train.
In such a tree, inner nodes are labeled with a feature f € F,
edges with truth values, and leaf nodes with either “solvable”
or “unsolvable”. To predict whether a given state s is solvable
or not, we traverse the tree by following at each node labeled
with f the edge that corresponds to the truth value of f in s
until we reach a leaf node, which then gives us the answer.
To learn a decision tree from training data, we use the stan-
dard CART algorithm [Breiman er al., 1984]. CART grows
the tree in a greedy manner, starting with a single node that
predicts the most common class, then at each iteration select-
ing the single feature that best splits the remaining data ac-
cording to some information-theoretical measure, until some
maximum depth is reached. The overall time for learning

the decision tree is linear in the number |F'| of features and
quadratic in the size of T. Because the learning algorithm is
greedy, however, the learned tree is not guaranteed to be the
one that best classifies the training data.

For each domain, we choose the tree that performs
best on the training set (F1 score) in a 10-fold cross-
validation that evaluates different combinations of maxi-
mum tree depth (1, ..., 10) and maximum feature complexity
(1,...,maxscp K(f)). We break ties by preferring shallow
trees and trees with simple features.

3.3 Learning Pipeline

To sum up, our learning pipeline consists of three steps: state
labeling, feature generation, and heuristic learning.

State labeling. Taking as input a PDDL domain and some
PDDL problems for the domain, we explore the (reachable
part of the) state space of each instance by running a breadth-
first search from its initial state. We add all visited states to
the training set T, and label them as solvable if a goal state is
reachable from them, and unsolvable otherwise.

Feature generation. Taking as input a PDDL domain, the
set T, and two constants k and n, we first generate up to n de-
scription logic concepts with syntactic complexity at most k,
prioritizing concepts with lower complexity. Then, we gener-
ate the set I’ of all Boolean features in our feature space that
can be derived from those concepts and also have syntactic
complexity of at most k.

Unsolvability heuristic learning. Taking the features in F’
and the labeled states in T, we compute a DNF formula over
atoms in F' with one of the algorithms described above.

The entire pipeline is automated, and domain knowledge
is only required for generating or selecting the problem in-
stances that are taken as input to the first pipeline step. We
describe this process in the next section.

4 Datasets

Before our empirical analysis, we describe the datasets used
in our experiments. These are a contribution in their own
right and were designed with the goal of being useful for
other researchers. To generate the datasets, we need to se-
lect domains, problems from each domain, states from each
problem, and then compute feature valuations for these states.

Domains. We consider six domains from previous Inter-
national Planning Competitions (IPC): Barman, Childsnack,
Hiking, Nomystery, Spanner and Woodworking. We use
these domains because they contain unsolvable states and
there are PDDL generators to create new instances of con-
trolled size for them. Two of the domains, Hiking and No-
mystery, contain predicates with arity 3. While it would be
possible to reformulate the domain, we choose to simply ig-
nore these predicates.

Problems. To label the states, we need instances that are
(1) small enough to be explored completely with a breadth-
first search, and (2) are as diverse as possible, to maximize
the chances of generalization. Since IPC tasks are usually
too large for (1), we use PDDL generators to generate new
tasks. We choose suitable sets of (low) parameter values for



Training Test
[F| kP TF| T [P] |TF] T

Barman 83081 10 16 4110 4836 16 500 500
Childsnack 80617 12 13 2630 2542 12 500 500
Hiking 75638 13 22 457 3866 22 500 500
Nomystery 71719 16 24 677 633 24 500 500
Spanner 68417 15 18 74 318 18 163 500

Woodworking 40749 9 41 4954 4482 41 500 500

Table 1: Training and test sets. |F'| is the number of generated fea-
tures, k is the maximum feature complexity attained. For both sets,
|P|, |T*| and |T~| show, resp., the number of instances used to
generate the set, and the number of unsolvable and solvable states.

each generator parameter (controlling the number of objects,
locations, etc.) and generate tasks for all combinations of
values. We keep the tasks that can be fully explored within
30 minutes and 4 GiB. We partition them into training and
test sets such that both sets have roughly the same size, both
contain instances with small and large state spaces, and in
both sets each generator parameter has at least two different
values. Table 1 provides an overview of the datasets.

States. For each domain we choose at most 10K states from
the state spaces of the training set tasks to train on. We try to
select states from the tasks in a balanced way: if the training
set has n tasks, we randomly sample at most SK/n unsolv-
able and 5K/n solvable states from each task. We prune from
T+ and T~ states with a feature valuation equal to that of
some other state in the same set. The test set is constructed
similarly, and contains 1K states per domain. An important
aspect of our state selection procedure is that we only keep
those unsolvable states that can be reached from a solvable
state by applying a single action. We do this because these are
the states that one would like to identify when using an un-
solvability heuristic as a forward-search pruning mechanism,
and because representing this subset of unsolvable states can
sometimes be easier than representing all of them.

Features. Finally, we construct a binary valuation matrix
that any learning approach can use as input: each column is
a feature f, each row is a state s, and each matrix entry holds
the binary denotation of f in s. The last column stores the
state label. We prune from the matrix duplicate columns, cor-
responding to redundant features, preferring always the fea-
ture with smaller complexity, ties broken arbitrarily.

S Experiments

We now evaluate our algorithms on the datasets described
above. As any inductive learning approach, our algorithms
are prone to generalization error: even with perfect accuracy
on the training set, they might classify unseen states incor-
rectly. We estimate this error by computing two standard
classification metrics over a set of unseen test states: pre-
cision (how many of the states predicted as unsolvable are
indeed unsolvable) and recall (how many of the unsolvable
states are predicted as such). A safe unsolvability heuristic
has precision 1; a perfect one has precision and recall of 1.

5.1 Experiment Setup

The methods T-PERFECT and T-SAFE use the Open-WBO
Weighted Max-SAT solver [Martins et al., 2014] and the DE-
CISIONTREE algorithm uses the Scikit-learn machine learn-
ing library [Pedregosa er al., 2011]. For all domains, we limit
the feature complexity by k=16 and the number of concepts
by n=80K in the feature generation step (see Section 3.3).
We give each method a maximum of five hours to learn an
unsolvability heuristic. We run T-SAFE as an anytime al-
gorithm, but it only reaches the time limit for Barman and
Nomystery. All source code, benchmarks and datasets are
available online.!

5.2 Domain-Independent Heuristics

The main focus of our work is to find out whether we can
learn domain-dependent unsolvability heuristics that accu-
rately characterize unsolvable states over whole domains.
However, apart from this theoretical question, we are also
interested in evaluating how such heuristics compare to ex-
isting domain-independent heuristics. The left part of Ta-
ble 2 shows the recall on our test dataset for some heuristics
from the literature: the causal graph heuristic h°“ [Helmert,
2004], the context-enhanced additive heuristic h°E* [Helmert
and Geffner, 2008], the state-equation heuristic hSFQ [Bonet,
2013], the A™ heuristic for m € {1,2,3} [Haslum and
Geffner, 2000], and k-consistency [Béckstrom et al., 2013]
for k € {1,2,3}. Except for hC and h®EA, these heuristics
are safe and hence guaranteed to have precision 1. Since the
two unsafe heuristics have precision 1 on our test set, we only
report recall for all of these heuristics.

Note that the data in Table 2 is obtained on small problem
instances. Some of the heuristics are impractical to be used
for larger tasks. For example, h? is very expensive to evaluate
and rarely used in practice. We defer the comparison with
more sophisticated unsolvability heuristics to a stage where
we can directly compare their pruning power in a search on
larger instances. This is because some of these heuristics,
such as clause learning [Steinmetz and Hoffmann, 2017], are
online learning approaches, while others, such as those based
on abstraction heuristics [Seipp et al., 2016; Torralba ef al.,
2016], would yield perfect results on our small instances.

5.3 Domain Analyses

The right part of Table 2 presents the precision and recall of
our methods on the test states, together with the size and max-
imum feature complexity of the DNFs. We next discuss the
results for some of the domains.

Barman. In the Barman domain, a robot barman prepares
cocktails with the help of shot glasses and a shaker. Unsolv-
able states in this domain are related to incorrect combina-
tions of drinks in the shaker, which prevent the barman from
preparing the right cocktail and, somewhat counterintuitively,
prevent it from emptying the shaker as well. Of the standard
heuristics that we test, A2 and h? capture all unsolvable states
in our test set, h' and hCEA capture 88% of them, and the rest
have low or zero recall. Among our heuristics, T-PERFECT is

'https://doi.org/10.5281/zenodo.4740386
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k-consistency

T-PERFECT

T-SAFE

DECISIONTREE

RCC RCEA BSEQ Rl b2 p3 k=1 k=2 k=3

prec recCL &k t

prec rec C L k t

prec trec C L k t

Barman 0.00 0.88 0.39 0.88 1.00 1.00 0.00 0.00 0.00 - —-—=-- - - 0970361118 9 5h 0970992856 8 6s
Childsnack  0.58 0.58 0.09 0.58 0.94 1.00 0.00 0.27 0.27 - —-——-—-— - - 100100 7 911 1h 091098 16 32 11 10s
Hiking 0.00 1.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 1.001.00 11 827m 1.001.00 1 1 8Im 100100 1 1 8 Is
Nomystery  0.00 0.53 0.00 0.31 0.91 1.00 0.00 0.00 0.83 - —-=-- - - 087012223917 5h 0.65092 1 112 1s
Spanner 0.05 0.05 0.00 0.05 0.13 0.31 0.00 0.000.01 1.001.00 1 113 5m 1.001.00 1 1134m 1.001.00 1 113 Is
Woodworking 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 098 1.00 1 1 8 50s 098100 1 1 82m 098100 1 1 9 6s

Table 2: Left: recall of standard heuristics on test data. Right: precision (prec) and recall (rec) of generalized unsolvability heuristics on test
data. C, L, k and t denote the number of clauses, number of literals, max. complexity of any literal, and learning time, respectively.

unable to obtain a formula in less than five hours, and T-SAFE
computes a formula that does not generalize correctly, show-
ing imperfect precision. Although DECISIONTREE has no
guarantees of being safe on the training set, it finds a classi-
fier with both high precision and recall.

Childsnack. In the Childsnack domain, sandwiches need to
be prepared for a number of children, some of which are aller-
gic to gluten. The key for that is to reserve enough gluten-free
ingredients to serve the gluten-allergic children. It is easy to
manually find a perfect characterization of unsolvable states
that is within the hypothesis space of our classifiers, but the
complexity of some of the required features (13) is higher
than what our feature generator was able to generate before
hitting the 80K concept limit that we use, ruling out the possi-
bility of our algorithms learning such a characterization. De-
spite this, our T-SAFE algorithm still finds a formula that has
perfect precision and recall over the test set. DECISIONTREE
achieves high accuracy, but is not safe, whereas T-PERFECT
times out after five hours while running the Max-SAT solver.
Of the standard heuristics that we test, only k2 and h3 show
similar performance to T-SAFE, capturing 94% and 100% of
the unsolvable states in our test set, respectively. The other
heuristics have recall of at most 58%.

Hiking. In the Hiking domain, some hikers walk along the
different legs of a circular hiking route. Before walking a leg,
one of them needs to drive and set up a camping tent at the
leg endpoint. A Hiking state is unsolvable when none of the
available cars is parked in any of the locations with an agent.
Interestingly, T-PERFECT, T-SAFE and DECISIONTREE all
converge to the following DNF formula:

@ = |Jat_person.(3at_car . T)| =0

The formula says that a state is unsolvable iff the number of
agents at a location with a car is 0, which indeed characterizes
all unsolvable states in the domain (hence the perfect preci-
sion and recall of our algorithms). Of the standard heuris-
tics that we tested, the three critical path heuristics A" and
hCEA have the same predictive power, whereas the rest of the
heuristics fail to capture any unsolvable state.

Spanner. In Spanner, already introduced above, our three
algorithms again learn the same formula ¢:

¢ = |loose Ui 3at. (3link™.(3at™".man)) | > |usable|

The inner concept Jat. (Jlink*.(3at~" .man)) denotes the set
of all spanners that the agent left behind, i.e., that are no

longer reachable. The concept loose denotes the set of all
nuts that have yet to be tightened. Since both sets are al-
ways disjoint, ¢ will evaluate to true iff the number of loose
nuts is larger than the number of spanners that is usable (i.e.,
has not yet been discarded) and reachable. The formula can
be proven a perfect characterization of all unsolvable states
in the domain. This result and the simplicity of the formula
are in stark contrast with the fact that Spanner is consistently
hard for all the heuristic approaches in the left part of Ta-
ble 2. Only h? captures a significant fraction of the unsolv-
able states in our test set (31%), whereas the other approaches
capture only between O and 13%. This is no surprise, as
Spanner is a well-known example showing the limitations
of delete-relaxed heuristics in problems with consumable re-
sources [Haslum and Geffner, 2001]. The accuracy of our
methods illustrates the advantages of a first-order approach.

6 Conclusions

We studied the problem of learning unsolvability heuristics
that work for entire classes of planning problems, from the
exploration of a few small instances of that class. Our heuris-
tics are simple logical and arithmetical combinations of fea-
tures that are defined in the same language that is used to
specify the planning task and can be generated without man-
ual intervention through the exhaustive application of a stan-
dard description-logics grammar. We presented three differ-
ent algorithms, each with different properties regarding op-
timality, classification power and learning time. Our evalu-
ation of these algorithms on a number of standard domains
shows that the logical characterizations of unsolvability that
they learn not only often have strong predictive power, but in
some cases can be proven perfect for the entire domain. This
is remarkable, as many of the existing heuristics fail to detect
many unsolvable states in our dataset.
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