Decoupled Search for the Masses: A Novel Task Transformation for Classical Planning

David Speck^{1,2}

Daniel Gnad¹

LINKOPING UNIVERSIT

uversit Basel

¹Linköping University, Sweden ²University of Basel, Switzerland

Motivation

- Fully automated
- imes Alternative state representation \rightsquigarrow Specialized search algorithms

Iniversit f Basel

Motivation

- Fully automated
- Task transformation ~>> Standard search algorithms ?

- Factoring $\mathcal{F} = \langle C, \mathcal{L} \rangle$ of vars \mathcal{V}
 - Based on causal structure
 - One center $C \subseteq \mathcal{V}$
 - Many leaves \mathcal{L} : $L_1, \ldots, L_n \subseteq \mathcal{V}$

Satisficing Planning

- Factoring $\mathcal{F} = \langle C, \mathcal{L} \rangle$ of vars \mathcal{V}
 - Based on causal structure
 - One center $C \subseteq \mathcal{V}$
 - Many leaves \mathcal{L} : $L_1, \ldots, L_n \subseteq \mathcal{V}$
- Decoupled state $s^{\mathcal{D}}$ is a pair
 - Single center state
 - Set of leaf states

Universit of Basel LINKÖPING UNIVERSITY

- Factoring $\mathcal{F} = \langle C, \mathcal{L} \rangle$ of vars \mathcal{V}
 - Based on causal structure
 - One center $C \subseteq \mathcal{V}$
 - Many leaves \mathcal{L} : $L_1, \ldots, L_n \subseteq \mathcal{V}$
- Decoupled state $s^{\mathcal{D}}$ is a pair
 - Single center state
 - Set of leaf states
 - → Set of states from original task
 - \sim Cross-product of leaf states

- Factoring $\mathcal{F} = \langle C, \mathcal{L} \rangle$ of vars \mathcal{V}
 - Based on causal structure
 - One center $C \subseteq \mathcal{V}$
 - Many leaves \mathcal{L} : $L_1, \ldots, L_n \subseteq \mathcal{V}$
- Decoupled state $s^{\mathcal{D}}$ is a pair
 - Single center state
 - Set of leaf states
 - → Set of states from original task
 - ∽→ Cross-product of leaf states
- Saturated decoupled state $s^{\mathcal{D}}_*$
 - All leaf states reachable by leaf only operators
 - by leaf-only operators

- Factoring $\mathcal{F} = \langle C, \mathcal{L} \rangle$ of vars \mathcal{V}
 - Based on causal structure
 - One center $C \subseteq \mathcal{V}$
 - Many leaves \mathcal{L} : $L_1, \ldots, L_n \subseteq \mathcal{V}$
- Decoupled state $s^{\mathcal{D}}$ is a pair
 - Single center state
 - Set of leaf states
 - → Set of states from original task
 - ∽→ Cross-product of leaf states
- Saturated decoupled state $s^{\mathcal{D}}_*$
 - All leaf states reachable by leaf-only operators
- Search over decoupled states

Decoupled Search

Satisficing Planning

- Factoring $\mathcal{F} = \langle C, \mathcal{L} \rangle$ of vars \mathcal{V}
 - Based on causal structure
 - One center $C \subseteq \mathcal{V}$
 - Many leaves \mathcal{L} : $L_1, \ldots, L_n \subseteq \mathcal{V}$
- Decoupled state $s^{\mathcal{D}}$ is a pair
 - Single center state
 - Set of leaf states
 - → Set of states from original task
 - \rightsquigarrow Cross-product of leaf states
- Saturated decoupled state $s^{\mathcal{D}}_*$
 - All leaf states reachable by leaf-only operators
- Search over decoupled states

$$\begin{array}{c} \hline p_1 \\ p_2 \\ \hline l_1 \\ \hline l_2 \\ \hline p_1 \\ \hline p_2 \\ \hline l_2 \\ \hline p_1 \\ \hline p_2 \\ \hline p_1 \\ \hline p_1 \\ \hline p_2 \\ \hline p_1 \hline \hline p_1 \\ \hline p_1 \hline \hline p_1 \\ \hline p_1 \hline \hline p_1 \hline$$

- Variables: $\mathcal{V} = \{t, p_1, p_2\}$
- Operators: $\mathcal{O} = \{ drive, load, unload \}$

3/10

Decoupled Search

Satisficing Planning

- Factoring $\mathcal{F} = \langle C, \mathcal{L} \rangle$ of vars \mathcal{V}
 - Based on causal structure
 - One center $C \subseteq \mathcal{V}$
 - Many leaves \mathcal{L} : $L_1, \ldots, L_n \subseteq \mathcal{V}$
- Decoupled state $s^{\mathcal{D}}$ is a pair
 - Single center state
 - Set of leaf states
 - → Set of states from original task
 - \rightsquigarrow Cross-product of leaf states
- Saturated decoupled state $s^{\mathcal{D}}_*$
 - All leaf states reachable by leaf-only operators
- Search over decoupled states

$$\begin{array}{c} \begin{array}{c} \hline \\ p_1 \end{array} \begin{array}{c} p_2 \end{array} \begin{array}{c} \hline \\ l_2 \end{array} \begin{array}{c} \hline \\ p_1 \end{array} \begin{array}{c} \hline \\ p_2 \end{array} \end{array} \end{array}$$

- Variables: $\mathcal{V} = \{t, p_1, p_2\}$
- Operators: $\mathcal{O} = \{ drive, load, unload \}$

•
$$\mathcal{F} = \langle \{t\}, \{\{p_1\}, \{p_2\}\} \rangle$$

Leaf-only operators: load and unload

Decoupled Search

Satisficing Planning

- $\blacksquare \ {\sf Factoring} \ {\cal F} = \langle C, {\cal L} \rangle \ {\sf of} \ {\sf vars} \ {\cal V}$
 - Based on causal structure
 - One center $C \subseteq \mathcal{V}$
 - Many leaves \mathcal{L} : $L_1, \ldots, L_n \subseteq \mathcal{V}$
- Decoupled state $s^{\mathcal{D}}$ is a pair
 - Single center state
 - Set of leaf states
 - → Set of states from original task
 - \rightsquigarrow Cross-product of leaf states
- Saturated decoupled state $s^{\mathcal{D}}_*$
 - All leaf states reachable by leaf-only operators
- Search over decoupled states

$$p_1 p_2 l_1 - l_2 [p_1] [p_2]$$

- Variables: $\mathcal{V} = \{t, p_1, p_2\}$
- Operators: $\mathcal{O} = \{ drive, load, unload \}$
- $\mathcal{F} = \langle \{t\}, \{\{p_1\}, \{p_2\}\} \rangle$
- Leaf-only operators: load and unload

$$\begin{array}{|c|c|c|c|} \mathcal{I}^{\mathcal{F}}: & t = l_1 \\ \hline l_1 & l_2 & t \\ \hline p_1 & 1 & 0 & 0 \\ p_2 & 1 & 0 & 0 \\ \end{array}$$

University of Basel

Decoupled Search

Satisficing Planning

- Factoring $\mathcal{F} = \langle C, \mathcal{L} \rangle$ of vars \mathcal{V}
 - Based on causal structure
 - One center $C \subseteq \mathcal{V}$
 - Many leaves \mathcal{L} : $L_1, \ldots, L_n \subset \mathcal{V}$
- Decoupled state $s^{\mathcal{D}}$ is a pair
 - Single center state
 - Set of leaf states
 - → Set of states from original task
 - → Cross-product of leaf states
- Saturated decoupled state $s_*^{\mathcal{D}}$
 - All leaf states reachable by leaf-only operators
- Search over decoupled states

$$p_1 p_2 l_1 - l_2 [p_1] [p_2]$$

- Variables: $\mathcal{V} = \{t, p_1, p_2\}$
- Operators: $\mathcal{O} = \{ drive, load, unload \}$
- $\mathcal{F} = \langle \{t\}, \{\{p_1\}, \{p_2\}\} \rangle$

- saturate -

 $\mathcal{I}^{\mathcal{F}}: t = l_1$ $\mathcal{I}^{\mathcal{F}}: t = l_1$

 $\frac{l_1 l_2 t}{p_1 1 \ 0 \ 0} \left\| \frac{l_1 l_2 t}{p_1 1 \ 0 \ 1} \right\|$

 $p_2 1 0 0 || p_2 1 0 1$

Leaf-only operators: load and unload н.

3/10

Decoupled Search

Satisficing Planning

- Factoring $\mathcal{F} = \langle C, \mathcal{L} \rangle$ of vars \mathcal{V}
 - Based on causal structure
 - One center $C \subseteq \mathcal{V}$
 - Many leaves \mathcal{L} : $L_1, \ldots, L_n \subset \mathcal{V}$
- Decoupled state $s^{\mathcal{D}}$ is a pair
 - Single center state
 - Set of leaf states
 - Set of states from original task
 - Cross-product of leaf states $\sim \rightarrow$
- Saturated decoupled state $s_*^{\mathcal{D}}$
 - All leaf states reachable by leaf-only operators
- Search over decoupled states

 $p_1 p_2 (l_1)$ l_2 p_1 p_2

- Variables: $\mathcal{V} = \{t, p_1, p_2\}$
- Operators: $\mathcal{O} = \{ drive, load, unload \}$
- $\mathcal{F} = \langle \{t\}, \{\{p_1\}, \{p_2\}\} \rangle$
- Leaf-only operators: load and unload

$$\begin{array}{c|c} \hline \text{saturate} & \neg \\ \hline \mathcal{I}^{\mathcal{F}}: \ t = l_1 \\ \hline l_1 \ l_2 \ t \\ \hline p_1 \ 1 \ 0 \ 0 \\ p_2 \ 1 \ 0 \ 0 \end{array} \\ \hline \begin{array}{c} \mathcal{I}^{\mathcal{F}}: \ t = l_1 \\ \hline l_1 \ l_2 \ t \\ \hline p_1 \ 1 \ 0 \ 1 \\ p_2 \ 1 \ 0 \ 1 \end{array} \\ \hline \begin{array}{c} \mathcal{I}^{\mathcal{F}}: \ t = l_2 \\ \hline l_1 \ l_2 \ t \\ \hline p_1 \ 1 \ 0 \ 1 \\ p_2 \ 1 \ 0 \ 1 \end{array} \\ \hline \begin{array}{c} \mathcal{I}^{\mathcal{D}}: \ t = l_2 \\ \hline l_1 \ l_2 \ t \\ \hline p_1 \ 1 \ 0 \ 1 \\ p_2 \ 1 \ 0 \ 1 \end{array} \\ \hline \begin{array}{c} \mathcal{I}^{\mathcal{D}}: \ t = l_2 \\ \hline l_1 \ l_2 \ t \\ \hline p_1 \ 1 \ 0 \ 1 \\ \hline p_2 \ 1 \ 0 \ 1 \end{array} \\ \hline \end{array} \\ \hline \end{array}$$

University of Basel

JNIVERSIT

3/10

University of Basel

LINKÖPING UNIVERSITY

Decoupled Search

Satisficing Planning

- Factoring $\mathcal{F} = \langle C, \mathcal{L} \rangle$ of vars \mathcal{V}
 - Based on causal structure
 - One center $C \subseteq \mathcal{V}$
 - Many leaves \mathcal{L} : $L_1, \ldots, L_n \subseteq \mathcal{V}$
- Decoupled state $s^{\mathcal{D}}$ is a pair
 - Single center state
 - Set of leaf states
 - → Set of states from original task
 - \rightsquigarrow Cross-product of leaf states
- Saturated decoupled state $s^{\mathcal{D}}_*$
 - All leaf states reachable by leaf-only operators
- Search over decoupled states

- Variables: $\mathcal{V} = \{t, p_1, p_2\}$
- Operators: $\mathcal{O} = \{ drive, load, unload \}$
- $\mathcal{F} = \langle \{t\}, \{\{p_1\}, \{p_2\}\} \rangle$
- Leaf-only operators: load and unload

Input: SAS $^+$ Planning Task $\Pi = \langle \mathcal{V}, \mathcal{I}, \mathcal{G}, \mathcal{O} \rangle$

David Speck, Daniel Gnad - Decoupled Search for the Masses

Input: SAS⁺ Planning Task
$$\Pi = \langle \mathcal{V}, \mathcal{I}, \mathcal{G}, \mathcal{O} \rangle$$

Compute: Factoring $\mathcal{F} = \langle C, \mathcal{L} \rangle$ of \mathcal{V}

University of Basel LINKÖPING UNIVERSITY

David Speck, Daniel Gnad - Decoupled Search for the Masses

University of Basel LINKÖPING UNIVERSITY

Universit of Basel

Embodies decoupled search ~> Potential exponentially smaller search space

No specialized algorithms ~> Past and future planning techniques work out of the box

Universit of Basel

Variables:

- $\mathcal{F} = \langle \{t\}, \{\{p_1\}, \{p_2\}\} \rangle$
- \mathcal{V}^{dec} : *t* and v_{s^L} for each leaf state

Decoupled Transformation

 $\blacksquare \mathcal{D}^{dec}$: d_{s^L} for each leaf state

 l_2 p_1 p_2

Decoupled Transformation

Leaf dynamics ~>> Axioms!

Variables:

- $\blacksquare \mathcal{F} = \langle \{t\}, \{\{p_1\}, \{p_2\}\} \rangle$
- \mathcal{V}^{dec} : *t* and v_{s^L} for each leaf state
- $\blacksquare \mathcal{D}^{dec}$: d_{s^L} for each leaf state

 $l_2) p_1 p_2$ $t \mid p_1 \mid p_2 \mid l_1$ $\mathcal{A}(\mathcal{I}^{dec})$: \mathcal{T}^{dec} : $t = l_1$ Val Val $d_{\{*\}}$ $v_{\{*\}}$ (p_1, l_1) (p_1, l_1) 1 (p_1, l_2) 0 | (p_1, l_2) $(p_1,t) \quad \mathbf{0} \quad | \quad (p_1,t)$ (p_2, l_1) 1 | (p_2, l_1) (p_2, l_2) (p_2, l_2) 0 (p_2,t) (p_2,t) 0

University of Basel

LINKÖPING UNIVERSITY

2

 \mathcal{T}^{a}

University

Decoupled Transformation

Leaf dynamics ~>> Axioms!

Variables:

- $\blacksquare \mathcal{F} = \langle \{t\}, \{\{p_1\}, \{p_2\}\} \rangle$
- $\blacksquare \mathcal{V}^{dec}$: *t* and v_{s^L} for each leaf state
- $\blacksquare \mathcal{D}^{dec}$: d_{s^L} for each leaf state

Axioms:

- Frame: $d_{s^L} \leftarrow v_{s^L}$
- Leaf-only ops: load & unload

t p	$1 p_2 l_1$	
$\mathcal{A}(\mathcal{I}$	^{rdec}):	
$ec: t = l_1$		
$_{\{*\}}$ Val	$d_{\{*\}}$ Val	
(p_1, l_1) 1	(p_1, l_1) 0	
(p_1, l_2) 0	(p_1, l_2) O	
$(p_1,t) = 0$	(p_1,t) 0	
(p_2, l_1) 1	(p_2, l_1) O	
(p_2, l_2) 0	(p_2, l_2) O	
$(p_2,t) = 0$	(p_2,t) 0	

5 / 10

Decoupled Transformation

Leaf dynamics ~>> Axioms!

Variables:

- $\blacksquare \mathcal{F} = \langle \{t\}, \{\{p_1\}, \{p_2\}\} \rangle$
- $\blacksquare \mathcal{V}^{dec}$: *t* and v_{s^L} for each leaf state
- $\blacksquare \mathcal{D}^{dec}$: d_{s^L} for each leaf state

Axioms:

- Frame: $d_{s^L} \leftarrow v_{s^L}$
- Leaf-only ops: load & unload

UNIVERSITY

Jniversit of Basel

extend

 \mathcal{T}^{de}

v

5/10

Decoupled Transformation

Leaf dynamics ~>> Axioms!

Variables:

- $\blacksquare \mathcal{F} = \langle \{t\}, \{\{p_1\}, \{p_2\}\} \rangle$
- \mathcal{V}^{dec} : *t* and v_{s^L} for each leaf state
- \mathcal{D}^{dec} : d_{s^L} for each leaf state

Axioms:

- Frame: $d_{s^L} \leftarrow v_{s^L}$
- Leaf-only ops: load & unload

1	$1 p_2 l_1$	
$\mathcal{A}(\mathcal{I}$	^{rdec}):	
$c: t = l_1$		
} Val	$d_{\{\}}$ Val	
$(1, l_1)$ 1	(p_1, l_1) 1	
(l_1, l_2) 0	(p_1, l_2) 0	
(1,t) 0	(p_1,t) 1	
(l_2, l_1) 1	(p_2, l_1) 1	
(l_2, l_2) 0	(p_2, l_2) O	
(2,t) 0	(p_2,t) 1	
		,

University of Basel

Decoupled Transformation

Leaf dynamics ~>> Axioms!

Variables:

- $\blacksquare \mathcal{F} = \langle \{t\}, \{\{p_1\}, \{p_2\}\} \rangle$
- \mathcal{V}^{dec} : *t* and v_{s^L} for each leaf state
- $\blacksquare \mathcal{D}^{dec}$: d_{s^L} for each leaf state

Axioms:

- Frame: $d_{s^L} \leftarrow v_{s^L}$
- Leaf-only ops: load & unload

Operators

drive

University of Basel

Variables:

- $\blacksquare \mathcal{F} = \langle \{t\}, \{\{p_1\}, \{p_2\}\} \rangle$
- \mathcal{V}^{dec} : *t* and v_{s^L} for each leaf state

Decoupled Transformation

 $\blacksquare \mathcal{D}^{dec}$: d_{s^L} for each leaf state

Axioms:

- Frame: $d_{s^L} \leftarrow v_{s^L}$
- Leaf-only ops: load & unload

Operators

drive

$\mathcal{A}(\mathcal{I}$	^{rdec}):	$\mathcal{A}(s)$:				
\mathcal{I}^{dec} : $t = l_1$		<i>s</i> : $t = l_2$				
$v_{\{*\}}$ Val	$d_{\{*\}}$ Val	$v_{\{*\}}$ Val	$d_{\{*\}}$ Val			
(p_1, l_1) 1	(p_1, l_1) 1	(p_1, l_1) 1	(p_1, l_1) 0			
(p_1, l_2) 0	(p_1, l_2) 0	(p_1, l_2) O	(p_1, l_2) O			
(p_1,t) 0	(p_1,t) 1	(p_1,t) 1	(p_1,t) 0			
(p_2, l_1) 1	(p_2, l_1) 1	(p_2, l_1) 1	(p_2, l_1) 0			
(p_2, l_2) O	(p_2, l_2) 0	(p_2, l_2) 0	(p_2, l_2) 0			
(p_2,t) 0	(p_2,t) 1	(p_2,t) 1	(p_2,t) 0			
ex	$\frac{1}{drive}(l_1)$	(l_2)				

University of Basel

Variables:

- $\mathcal{F} = \langle \{t\}, \{\{p_1\}, \{p_2\}\} \rangle$
- \mathcal{V}^{dec} : *t* and v_{s^L} for each leaf state

Decoupled Transformation

 $\blacksquare \mathcal{D}^{dec}$: d_{s^L} for each leaf state

Axioms:

- Frame: $d_{s^L} \leftarrow v_{s^L}$
- Leaf-only ops: load & unload

Operators

drive

$\mathcal{A}(\mathcal{I})$	(dec):	$\mathcal{A}($	<i>s</i>):			
\mathcal{I}^{dec} : $t = l_1$		<i>s</i> : $t = l_2$				
$v_{\{*\}}$ Val	$d_{\{*\}}$ Val	$v_{\{*\}}$ Val	$d_{\{*\}}$ Val			
(p_1, l_1) 1	(p_1, l_1) 1	(p_1, l_1) 1	(p_1, l_1) 1			
(p_1, l_2) 0	(p_1, l_2) 0	(p_1, l_2) O	(p_1, l_2) O			
(p_1,t) 0	(p_1,t) 1	(p_1,t) 1	(p_1,t) 1			
(p_2, l_1) 1	(p_2, l_1) 1	(p_2, l_1) 1	(p_2, l_1) 1			
(p_2, l_2) O	(p_2, l_2) 0	(p_2, l_2) 0	(p_2, l_2) 0			
(p_2,t) 0	(p_2,t) 1	(p_2,t) 1	(p_2,t) 1			
$\underline{-\text{extend}}_{\text{drive}(I_1, I_2)} \underline{-} \text{extend} \underline{-}$						

University of Basel

Variables:

- $\mathcal{F} = \langle \{t\}, \{\{p_1\}, \{p_2\}\} \rangle$
- \mathcal{V}^{dec} : *t* and v_{s^L} for each leaf state

Decoupled Transformation

 $\blacksquare \mathcal{D}^{dec}$: d_{s^L} for each leaf state

Axioms:

- Frame: $d_{s^L} \leftarrow v_{s^L}$
- Leaf-only ops: load & unload

Operators

drive

$\mathcal{A}(\mathcal{I})$	^{rdec}):	$\mathcal{A}($	<i>s</i>):			
\mathcal{I}^{dec} : $t = l_1$		s: $t = l_2$				
$v_{\{*\}}$ Val	$d_{\{*\}}$ Val	$v_{\{*\}}$ Val	$d_{\{*\}}$ Val			
(p_1, l_1) 1	(p_1, l_1) 1	(p_1, l_1) 1	(p_1, l_1) 1			
(p_1, l_2) 0	(p_1, l_2) 0	(p_1, l_2) O	(p_1, l_2) 1			
(p_1,t) 0	(p_1,t) 1	(p_1,t) 1	(p_1,t) 1			
(p_2, l_1) 1	(p_2, l_1) 1	(p_2, l_1) 1	(p_2, l_1) 1			
(p_2, l_2) O	(p_2, l_2) 0	(p_2, l_2) 0	(p_2, l_2) 1			
(p_2,t) 0	(p_2,t) 1	(p_2,t) 1	(p_2,t) 1			
$\underline{-\text{extend}}_{\text{drive}(I_1, I_2)} \underline{-} \underline{+} \text{extend} \underline{-}$						

University of Basel

Variables:

- $\blacksquare \mathcal{F} = \langle \{t\}, \{\{p_1\}, \{p_2\}\} \rangle$
- \mathcal{V}^{dec} : *t* and v_{s^L} for each leaf state

Decoupled Transformation

 $\blacksquare \mathcal{D}^{dec}$: d_{s^L} for each leaf state

Axioms:

- Frame: $d_{s^L} \leftarrow v_{s^L}$
- Leaf-only ops: load & unload

Operators

drive

$\mathcal{A}(\mathcal{I}$	^{rdec}):	$\mathcal{A}(s)$:				
\mathcal{I}^{dec} : $t = l_1$		s: $t = l_2$				
$v_{\{*\}}$ Val	$d_{\{*\}}$ Val	$v_{\{*\}}$ Val	$d_{\{*\}}$ Val			
(p_1, l_1) 1	(p_1, l_1) 1	(p_1, l_1) 1	(p_1, l_1) 1			
(p_1, l_2) O	(p_1, l_2) 0	(p_1, l_2) O	(p_1, l_2) 1			
(p_1,t) 0	(p_1,t) 1	(p_1,t) 1	(p_1,t) 1			
(p_2, l_1) 1	(p_2, l_1) 1	(p_2, l_1) 1	(p_2, l_1) 1			
(p_2, l_2) O	(p_2, l_2) 0	(p_2, l_2) 0	(p_2, l_2) 1			
(p_2,t) 0	(p_2,t) 1	(p_2,t) 1	(p_2,t) 1			
$ \underline{ extend} \underbrace{drive}_{drive}(l_1, l_2) _{extend} \underbrace{ drive}_{drive}(l_1, l_2) _{extend} \underbrace{ drive}_{drive}$						

University of Basel

Isomorphic State Spaces

- One-to-one mapping
 - $ightarrow \,$ Decoupled states ightarrow unextended states of $\Pi^{dec}_{\mathcal{F}}$
- Similar relationship
 - \rightsquigarrow Saturated decoupled states \rightleftharpoons extended states of $\Pi^{dec}_{\mathcal{F}}$
- Theorem: Isomorphic state spaces!

Universit of Basel LINKÖPING UNIVERSITY

Isomorphic State Spaces

- One-to-one mapping
 - \rightsquigarrow Decoupled states ightarrow unextended states of $\Pi_{\mathcal{F}}^{dec}$
- Similar relationship
 - \rightsquigarrow Saturated decoupled states \rightleftharpoons extended states of $\Pi^{dec}_{\mathcal{F}}$
- Theorem: Isomorphic state spaces!

 \rightsquigarrow Search algorithms applied on $\Pi_{\mathcal{F}}^{dec}$ behave identically to specialized counterparts

Optimizations and Related Work

■ All operators and leaves are handled equally ~→ Exploit specific operator structures

Optimizations and Related Work

- All operators and leaves are handled equally ~→ Exploit specific operator structures
- Most important: Conclusive leaf L
 - After applying any operator: only a single leaf state of L is true

Optimizations and Related Work

- All operators and leaves are handled equally ~→ Exploit specific operator structures
- Most important: Conclusive leaf L
 - After applying any operator: only a single leaf state of *L* is true
 - \rightsquigarrow Use variables L instead of v_{sL} variables (factored leaf representation)

7/10

Optimizations and Related Work

- All operators and leaves are handled equally ~→ Exploit specific operator structures
- Most important: Conclusive leaf L
 - After applying any operator: only a single leaf state of *L* is true
 - \rightarrow Use variables L instead of v_{sL} variables (factored leaf representation)

Related Work - Miura & Fukunaga (ICAPS 2017):

- Transforming a planning task into a more concise form using axioms
- ~> A weaker form of a single conclusive leaf
- ~>> Special form of decoupled search
- → We generalize it in multiple dimensions!

University of Basel

Experiments - Size and Time of Transformation

Satisficing IPC Benchmark: 2106 tasks

Experiments - Size and Time of Transformation

Satisficing IPC Benchmark: 2106 tasks

Experiments – Planning Performance

Satisficing IPC Benchmark: 2106 tasks

		$GBFS(h^{FF}, PO)$				
Doma	in	dec	sas	gh	ts	
airpor	t	12	14	11	13	
data-net		9	10	5	11	
floortile11		14	8	17	8	
nomystery		16	9	19	10	
tetris		9	14	11	2	
transport14		20	9	20	20	
Sum	1059	944	912	980	915	

dec: Decoupled Transformation *gh*: Specialized Decoupled Search (Gnad & Hoffmann 2018) *sas*: Original SAS⁺ Task *ts*: Factored Transition Systems (Torralba & Sievers 2019)

Universit of Basel

UNIVERSITY

Experiments – Planning Performance

Satisficing IPC Benchmark: 2106 tasks

		$GBFS(h^{FF}, PO)$				LAMA	
Domai	in	dec	sas	gh	ts	dec	sas
airport	:	12	14	11	13	12	11
data-n	et	9	10	5	11	10	13
floortile11		14	8	17	8	19	7
nomystery		16	9	19	10	18	12
tetris		9	14	11	2	5	14
transp	ort14	20	9	20	20	20	17
Sum	1059	944	912	980	915	962	942

dec:Decoupled Transformationgh: Specialized Decoupled Search (Gnad & Hoffmann 2018)sas:Original SAS⁺ Taskts: Factored Transition Systems (Torralba & Sievers 2019)

David Speck, Daniel Gnad - Decoupled Search for the Masses

Universit of Basel

Experiments – Planning Performance

Satisficing IPC Benchmark: 2106 tasks

dec:

	G	$GBFS(h^{FF}, PO)$				LAMA	
Domain	dec	sas	gh	ts	dec	sas	
airport	12	14	11	13	12	11	
data-net	9	10	5	11	10	13	
floortile11	14	8	17	8	19	7	
nomystery	16	9	19	10	18	12	
tetris	9	14	11	2	5	14	
transport14	4 20	9	20	20	20	17	
		•				•	
Sum 1059	9 944	912	980	915	962	942	

Miura & Fukunaga Factoring (*mf*):

- Effective on 311 of 2106 tasks
 - → Single conclusive leaf
- Same coverage as sas
- Max speed-up factor: 242

Decoupled Transformation gh: Specialized Decoupled Search (Gnad & Hoffmann 2018) sas: Original SAS⁺ Task *ts*: Factored Transition Systems (Torralba & Sievers 2019)

Conclusions

Summary

- Novel task transformations mimicking decoupled search
- Encoding leaf dynamics of decoupled search as axioms
- Transformed task's state space Decoupled state space
- Planners can now be automatically decoupled leading to competitive performance

Conclusions

Summary

- Novel task transformations mimicking decoupled search
- Encoding leaf dynamics of decoupled search as axioms
- Transformed task's state space Decoupled state space
- Planners can now be automatically decoupled leading to competitive performance

Future Work

- Reduction of transformed task size: e.g., irrelevance pruning
- Preserve costs: optimal planning
- Other reduction techniques as task transformations: symmetry breaking, partial-order

10/10

References I

• Gnad, Daniel and Jörg Hoffmann (2018). "Star-Topology Decoupled State Space Search". In: AlJ 257, pp. 24–60.

• Torralba, Álvaro and Silvan Sievers (2019). "Merge-and-Shrink Task Reformulation for Classical Planning". In: *Proc. IJCAI 2019*, pp. 5644–5652.

