
Finding Matrix Multiplication Algorithms with Classical Planning
Extended Abstract

David Speck, Paul Höft, Daniel Gnad, and Jendrik Seipp
Department of Computer and Information Science, Linköping University

{david.speck, paul.hoft, daniel.gnad, jendrik.seipp}@liu.se

Abstract— Matrix multiplication is a fundamental operation
of linear algebra, with applications ranging from quantum
physics to artificial intelligence. Given its importance, enormous
resources have been invested in the search for faster matrix
multiplication algorithms. Recently, this search has been cast
as a single-player game. By learning how to play this game
efficiently, the newly-introduced AlphaTensor reinforcement
learning agent discovers many new faster algorithms. In this
paper, we show that finding matrix multiplication algorithms
can also be cast as a classical planning problem. Based on
this observation, we introduce a challenging benchmark suite
for classical planning and evaluate state-of-the-art planning
techniques on it. We analyze the strengths and limitations of
different planning approaches in this domain and show that we
can use classical planning to find lower bounds and concrete
algorithms for matrix multiplication.

I. INTRODUCTION

In the age of big data and deep learning the demand for
efficient computation is higher than ever. One particularly
important operation that is crucial for many applications
is the multiplication of matrices. Many fields in indus-
try and research depend on matrix multiplication, ranging
from weather simulations, via quantum physics, to computer
graphics and machine learning. Given the ubiquity of matrix
multiplication (MM), great effort has been spent on deriving
more efficient algorithms [1], [2], [3], [4], [5]. In this
context, more efficient means that an algorithm uses fewer
multiplications, which are the critical operations. Even a
minor reduction of these operations for the multiplication of
small matrices will result in huge savings of compute time
and energy. This is because (1) the multiplication of large
matrices can be composed of algorithms for smaller ones,
and (2) given the sheer number of multiplications needed
for example to train a neural network, boosting this basic
operation can tremendously speed up the overall process.

Finding more efficient MM algorithms is extremely chal-
lenging, since minimizing the number of multiplications
is an NP-complete problem [6]. Recently, [5] presented a
novel approach to MM algorithm discovery based on casting
the problem as a single-player game. The action space of
this game is vast, with over 227 actions for two 3 × 3
matrices, which is orders of magnitude larger than that
of the game Go with hundreds of actions. By training a
reinforcement learning agent, AlphaTensor, they established
faster algorithms for several matrix sizes.

In this work, we propose to model the search for MM
algorithms as a classical planning problem. Similarly to

1

1
1

1
1

1
1

1

b11
b12
b21
b22

a11a12a21a22

c11 c12 c21 c22

Fig. 1. Initial tensor T2,2,2 of a matrix multiplication task C = AB of
two 2 × 2 matrices. The highlighted cells indicate which entries to read
from the input matrices A and B and where to write the result into the C
matrix. For example, c11 = a11b11 + a12b21.

previous work on MM discovery [7], [5], we restrict the
solution space to MM over modular arithmetic in Z2, so
shorter algorithms could possibly exist for Z that cannot be
discovered using our encoding. We show the correctness of
our model and evaluate a variety of planning techniques on
the MM discovery problem. In contrast to [5], today’s off-
the-shelf planners fail to uncover novel algorithms (with a
tiny fraction of [5]’s compute power). However, already with
the current (non-tailored) state of the art in planning, we can
derive non-trivial lower bounds and find MM algorithms that
are structurally different from the textbook algorithm.

For full details, we refer to our main paper [8].

II. MATRIX MULTIPLICATION AS CLASSICAL PLANNING

Similar to [5], the underlying idea of our encoding is that
a state represents a tensor Tm,n,p and actions describe how to
update that tensor by selecting the bits that are swapped. We
can then specify a planning problem Πm,n,p that describes
the search for MM algorithms of two matrices with sizes m×
n and n×p, respectively. Such a problem can be described by
a tensor Tm,n,p with |Tm,n,p| = m2 ·n2 ·p2 entries. Hence, we
use |Tm,n,p| propositional state variables V in the planning
model to represent every possible assignment of zeros and
ones to the tensor. The initial state describes which entries
to read from the input matrices and where to write the result
(cf. Fig. 1). This is specified by true state variables. In the
unique goal state, all variables are false, which means that
exactly the required calculations have been performed. To
encode the algorithm steps, we define an operator o for each
possible choice of the three vectors u = u(o), v = v(o), and
w = w(o), of which Tm,n,p is composed. The sizes of u, v,
and w are m·n, n·p, and m·p respectively, which is reflected
in the number of operators. The operators update the current
state s, i.e., the tensor Ts, in such a way that the successor
state s′ represents the tensor Ts′ = Ts−u(o)⊗v(o)⊗w(o).

U =


1 0 1 0 1 1 0
0 0 0 0 1 0 1
0 1 0 0 0 1 0
1 1 0 1 0 0 1



V =


1 1 0 1 0 1 0
0 0 1 0 0 1 0
0 0 0 1 0 0 1
1 0 1 0 1 0 1



W =


1 0 0 1 1 0 1
0 0 1 0 1 0 0
0 1 0 1 0 0 0
1 1 1 0 0 1 0



m1 = (a11 + a22) (b11 + b22)

m2 = (a21 + a22)b11

m3 = a11(b12 + b22)

m4 = a22(b21 + b11)

m5 = (a11 + a12)b22

m6 = (a21 + a11)(b11 + b12)

m7 = (a12 + a22)(b21 + b22)

c11 = m1 +m4 +m5 +m7

c12 = m3 +m5

c21 = m2 +m4

c22 = m1 +m2 +m3 +m6

Fig. 2. Decomposition (left) for a matrix multiplication problem T2,2,2 of
two 2× 2 matrices and the corresponding Z2-Strassen algorithm (right).

Consider the MM task T2,2,2. The planning problem Π2,2,2

modeling this task has 64 binary variables, where the initial
state represents the tensor shown in Figure 1. A possible plan
π = ⟨o1, . . . , o7⟩ for Π2,2,2 is represented by the matrices of
Figure 2 (left). Each operator oi corresponds to the vectors
u = u(o), v = v(o), and w = w(o) of the i-th column of
the matrix U, V, and W. The shown plan is optimal and
describes Strassen’s algorithm, illustrated in Figure 2 (right).

Similar to the TensorGame described by [5], which ex-
presses a reinforcement learning problem, the planning prob-
lem models the decomposition of a tensor in a sequential
manner. Every solution to one of our planning problems
describes a concrete matrix multiplication algorithm.

III. EXPERIMENTS

We evaluated a variety of planning approaches on the MM
benchmark suite to investigate which techniques perform
well on the challenging problem of finding algorithms for
MM. This includes the dual best-first width search planner
(Dual-BFWS) from the International Planning Competition
2018 [9], the lifted SAT-based planner LiSAT [10], the
symbolic search planner Symk [11], and the heuristic search
planner Scorpion [12]. For each MM planning task, we ran
the considered planning algorithms on a single CPU core
with a time limit of 10 hours and a memory limit of 80 GB.
All our source code and data are available online [13].

The results for different matrix sizes are shown in Figure 3.
We distinguish between satisficing planners (which find any
solution) and optimal planners (which guarantee shortest
plans). The satisficing planners are capable of finding MM
algorithms up to size Π3,3,3, but none that is shorter than
the textbook algorithm. The optimal planners can prove non-
trivial lower bounds for many instances. Most remarkably is
the symbolic search planner Symk, which proves that indeed
no algorithm exists for Π2,2,2 that is better than Strassen’s.

IV. CONCLUSIONS

We showed that finding algorithms for matrix multiplica-
tion can be modeled as a classical planning problem in a
sound and complete way. Our results show that we can use

M
at

ri
x

Si
ze

s

Satisficing Optimal Rank

D
–B

FW
S

L
A

M
A

H
C

+
h

G
C

L
if

te
d

SA
T

A
∗
+

h
bl

in
d

A
∗
+

h
PD

B

L
if

te
d

SA
T

Sy
m

bo
lic

B
ou

nd
s

Te
xt

bo
ok

2 1 2 ∗4 ∗4 ∗4 ∗9 ∗4 ∗4 ∗4 ∗4 4 4
1 2 3 ∗6 ∗6 ∗6 ∗6 4 ∗6 1 ∗6 6 6
1 3 2 ∗6 ∗6 ∗6 ∗8 4 ∗6 1 ∗6 6 6
2 1 3 ∗6 ∗6 ∗6 ∗6 4 ∗6 1 ∗6 6 6
2 2 2 ∗8 ∗8 ∗8 − 3 5 1 7 7 8
1 3 3 ∗9 ∗9 ∗9 − 3 4 1 7 7/9 9
3 1 3 ∗9 ∗9 ∗9 − 3 4 1 7 7/9 9
2 2 3 ∗12 ∗12 ∗12 − 3 3 1 3 7/11 12
2 3 2 ∗12 ∗12 ∗12 − 3 4 1 3 7/11 12
2 3 3 − ∗18 ∗18 − 2 2 − 3 7/15 18
3 2 3 − ∗18 ∗18 − 2 2 − 3 7/15 18
3 3 3 − − ∗27 − 2 − − − 19/23 27

Fig. 3. Solution lengths of MM tasks found by various planning algorithms.
Entries with asterisks indicate the length of a found plan describing an
algorithm, all other entries show proved lower bounds. With "–" we indicate
that no solution or lower bound could be found. The two right columns serve
as a reference for the rank of the decomposition problem with the lower
and upper bounds, and the Textbook algorithm.

planning to find concrete algorithms and prove non-trivial
bounds. This is remarkable considering the small resources
of ten hours we used, compared to several years of CPU
and GPU time of other works [4], [5]. We believe that this
work lays a new foundation for research in this domain and
hope that it will encourage researchers from the planning
community to join us in this quest.

REFERENCES

[1] V. Strassen, “Vermeidung von divisionen.” Journal für die reine
und angewandte Mathematik, vol. 264, pp. 184–202, 1973. [Online].
Available: http://eudml.org/doc/151394

[2] J. D. Laderman, “On algorithms for minimizing the number of
multiplications in matrix products,” Ph.D. dissertation, New York
University, USA, 1976.

[3] M. Bläser, “On the complexity of the multiplication of matrices of
small formats,” Journal of Complexity, vol. 19, no. 1, pp. 43–60, 2003.

[4] M. J. H. Heule, M. Kauers, and M. Seidl, “Local search for fast matrix
multiplication,” in Proc. SAT 2019, 2019, pp. 155–163.

[5] A. Fawzi, M. Balog, A. Huang, T. Hubert, B. Romera-Paredes,
M. Barekatain, A. Novikov, F. J. R. Ruiz, J. Schrittwieser, G. Swirszcz,
D. Silver, D. Hassabis, and P. Kohli, “Discovering faster matrix
multiplication algorithms with reinforcement learning,” Nature, vol.
610, no. 7930, pp. 47–53, 2022.

[6] J. Håstad, “Tensor rank is NP-complete,” in International Colloquium
on Automata, Languages, and Programming. Springer, 1989, pp.
451–460.

[7] M. J. Heule, M. Kauers, and M. Seidl, “New ways to multiply 3×3-
matrices,” Journal of Symbolic Computation, vol. 104, pp. 899–916,
2021.

[8] D. Speck, P. Höft, D. Gnad, and J. Seipp, “Finding matrix multiplica-
tion algorithms with classical planning,” in Proc. ICAPS 2023, 2023.

[9] G. Francès, H. Geffner, N. Lipovetzky, and M. Ramiréz, “Best-first
width search in the IPC 2018: Complete, simulated, and polynomial
variants,” in IPC-9 Planner Abstracts, 2018, pp. 23–27.

[10] D. Höller and G. Behnke, “Encoding lifted classical planning in
propositional logic,” in Proc. ICAPS 2022, 2022, pp. 134–144.

[11] D. Speck, R. Mattmüller, and B. Nebel, “Symbolic top-k planning,”
in Proc. AAAI 2020, 2020, pp. 9967–9974.

[12] J. Seipp, T. Keller, and M. Helmert, “Saturated cost partitioning for
optimal classical planning,” JAIR, vol. 67, pp. 129–167, 2020.

[13] D. Speck, P. Höft, D. Gnad, and J. Seipp, “Code and data for the
ICAPS 2023 paper “Finding Matrix Multiplication Algorithms with
Classical Planning”,” https://doi.org/10.5281/zenodo.7731696, 2023.

