
Cost Partitioning for Multiple Sequence Alignment
Mika Skjelnes, Daniel Gnad and Jendrik Seipp

Linköping University, Sweden
firstname.lastname@liu.se

Abstract. Multiple Sequence Alignment (MSA) is a fundamental
problem in computational biology that is used to understand the evo-
lutionary history of protein, DNA, or RNA sequences. An optimal
alignment for two sequences can efficiently be found using dynamic
programming, but computing optimal alignments for more sequences
continues to be a hard problem. A common method to solve MSA
problems is A∗ search with admissible heuristics, computed from
subsets of the input sequences. In this paper, we consider MSA from
the perspective of cost partitioning and relate the existing heuristics
for MSA to uniform cost partitioning and post-hoc optimization, two
well-known techniques from the automated planning literature. We
show that the MSA heuristics are bounded by uniform cost partition-
ing and that post-hoc optimization yields strictly dominating heuris-
tics. For a common benchmark set of protein sequences and a set of
DNA sequences, we show that the theoretical dominance relations
between the heuristics carry over to practical instances.

Introduction
The Multiple Sequence Alignment (MSA) problem is the task of op-
timally aligning a set of character sequences based on a pairwise
character alignment cost [16]. An alignment is a modification of the
sequences where gaps are inserted into a sequence to offset its tail,
so that all sequences have the same length. The cost of an align-
ment is computed by summing up the individual character alignment
costs across the characters at the same index over all sequence pairs.
Figure 1 shows an example. MSA is a central problem in molecular
biology and is relevant, among others, for research of relationships
in protein structure and evolutionary studies [1].

MSA can be solved optimally with dynamic programming [17],
but this method becomes impractical as the number of sequences
grows. Hence, a typical approach to solve MSA is based on solving
selected subproblems with dynamic programming, and combining
the solutions of these subproblems to form an admissible heuristic
[18]. This heuristic is then used to guide an A∗ search [6] for solving
the full problem. Since their introduction in 1998, the strongest ad-
missible heuristics for MSA are hall,k and hone,k [16]. Both dominate
the hpair heuristic [12], which sums over all pairwise alignment costs.

We build upon previous research [22] on relating the hall,k and
hone,k heuristics to the concept of cost partitioning. Cost partitioning
is the state-of-the-art approach in optimal classical planning to com-
bine heuristics admissibly [31, 15, 20, 5, 27]. By distributing the cost
of each transition label across the heuristics, we can sum the heuris-
tic estimates while guaranteeing admissibility. Cost partitioning has
been studied extensively and various methods have been developed
for partitioning transition label costs [7, 8, 14, 13, 15, 19, 23, 25, 28].
For some of these methods, dominance relationships have been es-

S

s1: T T A
s2: G C
s3: A C

A

A1: T T – A
A2: – G – C
A3: A – C –

Figure 1: Three sequences S and an alignment A thereof.

tablished, i.e., theoretical guarantees that one method will always
yield an overall heuristic value at least as high as the one of the other,
when applied to the same set of heuristics [25].

To establish a framework for our theoretical contributions, we
view MSA problems as shortest-path searches in transition systems.
We introduce cost components, which enable us to formally describe
how to compute the costs of transitions in MSA transition systems
and to establish a connection to abstraction heuristics, such as pro-
jections to subsets of sequences.1 This allows us to reason about con-
ditions under which summing over such heuristics is admissible. We
show that, when using the same collection of heuristics, hall,k and
hone,k are equal to uniform cost partitioning (UCP) [15], which di-
vides the cost of each transition label uniformly among the heuristics
for which the label is relevant. For post-hoc optimization (PhO) [19],
which computes a weight for each heuristic using linear program-
ming and uses the weighted sum as the overall heuristic value, we
prove that it strictly dominates hall,k.2 Another advantage of UCP
and PhO is that they can handle arbitrary collections of heuristics,
in contrast to the established MSA heuristics hall,k and hone,k, which
are defined for a fixed collection. This added flexibility can further
improve the overall heuristic, which we confirm empirically.

We evaluate the post-hoc optimization heuristic on a core bio-
informatics benchmark set of protein sequences called BAliBase
[30], as well as a set of randomly generated DNA sequences. Our
results confirm empirically that cost partitioning is indeed promising
for MSA, with post-hoc optimization yielding higher heuristic values
than the previous state-of-the-art heuristics.

Multiple Sequence Alignment

Given a set of sequences S = {s1, . . . , sn} over some alphabet Σ,
an alignment of S is a matrix An×m over alphabet Σ′ = Σ ∪ {–},
such that the following conditions hold: (1) m ≥ maxsi∈S |si|, (2)
no column j consists of only the gap character “–”, and (3) removing
all gap occurrences from any row i in A yields the original sequence
si. The cost of an alignment is the summed pairwise substitution

1 Cost components are an alternative view of factored operators [22].
2 Riesterer [22] already hypothesized that there is a dominance relation be-

tween hPhO and hall,k without providing a proof.

cost sub : Σ′ × Σ′ → N+
0 of each two characters per column in the

alignment across all columns. The concrete substitution cost function
is problem-specific, and can be based on biological knowledge or
empirical data.

Example 1. Given sequences S = {s1, s2, s3} where s1 = TTA,
s2 = GC, s3 = AC, we can construct an alignment A with rows
A1 = TT-A, A2 = -G-C, A3 = A-C-, visualized in Figure 1. We
will use S and A as our running example.

Formally, the alignment costs of two rows of an alignment, respec-
tively the full alignment, are defined as follows.

Definition 1 (Pair Score). Let si, sj ∈ S, with i ̸= j, be two se-
quences over alphabet Σ, and A an alignment of S. Then the pair
score of si and sj in A is

C(A, i, j) =

m∑
k=1

sub(aik, ajk).

Definition 2 (Alignment Score). The alignment score, or sum of
pairs score of alignment A is

C(A) =
∑

1≤i<j≤n

C(A, i, j).

We also define a score function for an alignment column.

Definition 3 (Column Score). The column score of a column C of
alignment A is defined as

C(C) =
∑

1≤i<j≤n

sub(Ci, Cj).

The goal of MSA is to find an optimal alignment A, i.e., one where
for all alignments A′ : C(A) ≤ C(A′).

Example 2. Consider sequences S, and alignment A from the
running example. The pair score of A1 and A2 is C(A, 1, 2) =
sub(T,−) + sub(T,G) + sub(−,−) + sub(A,C). The alignment
score of A is C(A, 1, 2) + C(A, 1, 3) + C(A, 2, 3).

MSA as Shortest-Path Search
Previous work has established that an MSA task can be seen as a
shortest-path search problem in a weighted transition system [e.g.,
16]. However, this connection has so far been left implicit in the lit-
erature. We make this perspective explicit by defining the transition
system for an MSA task and showing how the cost of a path in this
transition system corresponds to the cost of an alignment. Figure 2
visualizes the transition system for the running example.

Definition 4 (Transition System). A transition system T is a directed
labeled graph given by a finite set of states S(T), a finite set of labels

L(T), a set T (T) of labeled transitions s ℓ−→ s′ with s, s′ ∈ S(T)
and ℓ ∈ L(T), an initial state s0(T), and a set S∗(T) of goal states.

For an MSA task with n sequences s1, . . . sn, we obtain the cor-
responding transition system T as follows. The states S(T) are the
vertices in an n-dimensional lattice graph G of size |s1 + 1| × · · · ×
|sn + 1|. The initial state s0(T) is at the origin ⟨0, . . . , 0⟩, and the
single goal state s∗ is at coordinate ⟨|s1|, . . . , |sn|⟩.

There is a transition s
ℓ−→ s′ between state s = ⟨x1, x2, . . . , xn⟩

and state s′ = ⟨x′
1, x

′
2, . . . , x

′
n⟩ if, and only if, between the two states

Figure 2: Transition system for the running example, where three se-
quences of length 3 (x axis), 2 (y axis) and 2 (z axis) need to be
aligned. A shortest path from the initial state in the front top left to
the goal state at the back lower right defines an MSA. To avoid clut-
ter, we omit most transitions. Only for the top left and bottom right
cube, we show all transitions. Dashed transitions make progress in
more than one sequence at a time.

there is at most a single step of progress in every dimension, and in at
least one dimension one step of progress is made. Formally, this is the
case if 0 ≤ x′

i −xi ≤ 1 for all i = 1 . . . n, and
∑n

i=1(x
′
i −xi) > 0.

In transition systems for other search tasks, each transition is di-
rectly labeled with the cost of taking that transition, or with a tran-
sition label that indirectly defines the cost. For MSA tasks, however,
the definition of alignment costs requires us to associate each transi-
tion label with a set of cost components.

Definition 5 (Cost Components). Let si and sj be two sequences in
an MSA task. Then the cost component Ci,j

⟨x1,x2⟩→⟨x′
1,x

′
2⟩

has the cost

c(Ci,j

⟨x1,x2⟩→⟨x′
1,x

′
2⟩
) of the interaction between sequences si and sj

from positions ⟨x1, x2⟩ to ⟨x′
1, x

′
2⟩, where 0 ≤ x′

k − xk ≤ 1 for all
k ∈ {1, 2}, and

∑2
k=1(x

′
k − xk) > 0.

Using this definition, we label each transition t ∈ T (T) with
the set of cost components Ct relevant for t, formally Ct =
{Ci,j

⟨x1,x2⟩→⟨x′
1,x

′
2⟩

| si, sj ∈ S, (x1 ̸= x′
1) ∨ (x2 ̸= x′

2), i < j}.
This corresponds to associating each transition t with the set of sub-
stitution costs for the corresponding column of the alignment.

Definition 6 (Paths and Goal Paths). Let T be a transition system. A
path from s ∈ S(T) to s′ ∈ S(T) is a sequence of transitions from

T (T) of the form π = ⟨s0 ℓ1−→ s1, s1
ℓ2−→ s2, . . . , sn−1 ℓn−→ sn⟩,

where s0 = s and sn = s′. A path is a goal path if s0 = s0 and sn

is a goal state of T .

Intuitively, each goal path in the transition system is an alignment.
Each step in the goal path corresponds to one column in the final
alignment matrix. As such, each step makes progress on a subset of
the sequences S′ ⊆ S by aligning the characters at their current po-
sitions. For the remaining sequences, the step inserts a gap in the
corresponding column of the alignment. The cost of each transition
is the column score of the column formed by the transition, or equiv-
alently, the sum of the cost components of the transition.

s4

s3

ℓ
=

{
C

1 ,C
2 ,C

3 }

s2

s1 s3

{
C

1 ,C
2 }

s2

s1

Figure 3: Cost component decomposition of label ℓ in the transition
system of the full task (left), and the transition system TP1 for pattern
P1 = {s1, s2, s3} (right).

{C1}s2

s1

{C2}s2

s3

{C3}s2

s4

Figure 4: Transition systems TP2 , TP3 , TP4 for patterns P2 =
{s1, s2}, P3 = {s2, s3}, P4 = {s2, s4}, respectively. We only show
cost components stemming from label ℓ in Figure 3.

Example 3. Consider sequences S = {s1, . . . , s4} (not the running
example), transition system T induced by the MSA task of aligning
S, and transition t = ⟨0, 0, 0, 0⟩ → ⟨0, 1, 0, 0⟩ ∈ T (T). Then t is
labeled with the set of cost components ℓ = {C1, C2, C3}, where
C1 = C1,2

⟨0,0⟩→⟨0,1⟩, C2 = C2,3
⟨0,0⟩→⟨1,0⟩ and C3 = C2,4

⟨0,0⟩→⟨1,0⟩.
Figure 3 visualizes the cost components of t in T , and in the
transition system T{s1,s2,s3} induced by the MSA task of aligning
{s1, s2, s3}. Figure 4 shows the cost decomposition of ℓ in T{s1,s2},
T{s2,s3}, and T{s2,s4}.

Definition 7 (Cost Functions). A cost function for transition system
T is a function cost : L(T) → R+

0 . In the case of MSA transition
systems, where each transition is labeled with a set of cost compo-
nents, the cost of a transition t is the sum of its cost components. The
cost of a path π in T is the sum of its transition costs.

A cheapest goal path π in T defines an MSA solution and we use
h∗
T (s0(T)) to refer to its cost. Each transition ti ∈ π corresponds to

column Ci in the resulting alignment A.

Example 4. Consider sequences S and alignment A from the run-
ning example. Aligning the first character of sequence s1 with the
first character of sequence s3, and inserting a gap for sequence s2,
results in the first column of alignment A. This corresponds to taking
the transition ⟨0, 0, 0⟩ → ⟨1, 0, 1⟩ in the induced transition system.
The cost of this transition is the column score of col, which is the first
column ⟨T-A⟩T of A: C(col) = sub(T,−)+sub(T,A)+sub(−, A).

Pattern Database Heuristics for MSA
Now, we can solve MSA by finding a cheapest goal path π in the
induced transition system T . In principle, one could use uninformed
search algorithms like uniform cost search to find cheapest paths.
However, the enormous size of T , which has

∏
s∈S(|s| + 1) states

11

10

9

8

7

6

5

4

3

6

3

0

G

T

3

3

6

T

3

3

6

A

3

3

2

C 3

3

4 3

3

4 3

3

4

3 3 3

3

3

Figure 5: Abstraction of the full transition system in Figure 2, induced
by the task of aligning sequences s1 and s2 in the running example.
For each abstract state, we show its optimal goal distance.

for sequences S, makes such blind approaches infeasible for realis-
tic MSA tasks. Instead, we turn to heuristic search and use A∗ to
explore the state space guided by an admissible heuristic. This ap-
proach guarantees that the found paths are optimal.

The most prominent way of obtaining an admissible heuristic for
MSA transition system T is to select a subset of sequences P ⊆ S
such that the transition system T ′ for aligning P is small enough to
be explored exhaustively [16]. This approach is closely related to the
concept of abstraction and projection in heuristic search [4]. More
precisely, each subset P can be seen as a pattern and aligning the se-
quences in the pattern is similar to finding a shortest path in the MSA
transition system projected to the dimensions present in P . Comput-
ing the costs of optimal goal paths in such a projection gives rise to a
pattern database heuristic, which are widely used in heuristic search
[2, 3]. However, due to the way costs are defined for MSA, we cannot
define MSA projections by homomorphic abstraction as is common
for heuristic search tasks [24]. Instead, we define the projection to P
as the transition system that we obtain for the sequences P . This is
identical to removing all cost components that involve sequences not
in P when we project the full MSA lattice to the dimensions in P .

Definition 8 (Pattern Database Heuristics for MSA). Let P =
{s1, . . . , sk} be a subset of the sequences S in an MSA task with
transition system T . Then we call P a pattern and let the projection
TP refer to the MSA transition system for aligning P . The states of
TP are characterized by what progress has been made in aligning
the sequences of P . The cost of a transition tP ∈ T (TP) is defined
as follows. Let t be the transition in T that induces tP . Then t is la-
beled by cost components Ct and tP is labeled by cost components
CtP = {Ci,j

⟨x1,x2⟩→⟨x′
1,x

′
2⟩

| si, sj ∈ P} ⊆ Ct. For a state s, we

define hP (s) as the cost of a cheapest goal path in TP starting in
state s|P , where s|P is obtained by projecting s to the sequences in
P . Where convenient, we write hP (s) as hs1,...,sk (s).

Example 5. In our running example, consider the subproblem of
aligning P = {s1, s2}. Figure 5 shows the induced transition system
TP for this abstraction and the goal distance of each abstract state in
TP . For example, for the initial state s0 of the full task, the heuristic
estimate we obtain from TP is hs1,s2(s0) = h∗

T ′(s0|P) = 11.

Instead of using a single pattern database heuristic, we can com-
bine multiple heuristics to obtain a more informed estimate. This is
also done by the two state-of-the-art MSA heuristics hall,k and hone,k.
They both select sequence subsets and compute heuristics over the
induced abstractions [16]. As such, they can be seen as examples for
pattern database heuristics. The hall,k heuristic computes the sum of

abstract goal distances obtained from all k-fold patterns. To ensure
admissibility, the sum is divided by the number of k-fold patterns in
which two sequences si, sj appear together, which amounts to

(
n−2
k−2

)
patterns.

Definition 9 (hall,k). Given an MSA task with n sequences S =
{s1, . . . , sn} and a natural number k such that 2 ≤ k ≤ n, the
hall,k heuristic is defined as

hall,k(s) =
1(

n−2
k−2

) ∑
1≤x1<···<xk≤n

hsx1
,...,sxk (s).

Computing all k-folds can however be too computationally de-
manding. The hone,k heuristic can be faster to compute than hall,k, as
it only solves two larger subproblems hsx1

,...,sxk and h
sxk+1

,...,sxn ,
in addition to all pairs of patterns obtained by taking exactly one se-
quence from each of the two larger subproblems.

Definition 10 (hone,k). Given an MSA task with n sequences S =
{s1, . . . , sn}, and a natural number k such that 2 ≤ k ≤ n, the
hone,k heuristic is defined as

hone,k(s) = hsx1
,...,sxk + h

sxk+1
,...,sxn +

k∑
i=1

n∑
j=k+1

h
sxi

,sxj .

As hone,k only considers collections of pattern database heuristics
whose sum is admissible [16], scaling the estimate is unnecessary.

Cost Partitioning
Cost Partitioning is a prominent technique from the classical plan-
ning and heuristic search literature, which allows to sum heuristic
estimates while preserving admissibility [31, 15]. A cost partition-
ing distributes the cost of each transition label among the component
heuristics, so that the sum of costs per label is not greater than the
original cost.

Definition 11 (Cost Partitioning). Given a tuple of n heuristics
H = ⟨h1, . . . , hn⟩ for transition system T with cost function c, the
cost functions C = ⟨c1, . . . , cn⟩ form a cost partitioning for H if∑n

i=1 ci(ℓ) ≤ c(ℓ) for all ℓ ∈ L(T). The resulting cost-partitioned
heuristic is hC(s) =

∑n
i=1 hi(ci, s), where hi(ci, s) is the heuristic

value of hi for state s evaluated under cost function ci.

Computing an optimal cost partitioning [15, 21] over abstrac-
tion heuristics is possible in polynomial time, but still usually pro-
hibitively expensive in practice [27]. Instead, we turn to computa-
tionally less demanding algorithms for computing cost partitionings,
which we introduce next. In the definitions below, we say that an
abstraction heuristic hi uses a label ℓ if ℓ induces a state-changing
transition in Ti, the transition system underlying hi.

Definition 12 (Uniform Cost Partitioning). A uniform cost parti-
tioning (UCP) distributes the cost of each label ℓ evenly among all
heuristics that use ℓ [15]. Formally, cost function ci for heuristic hi

is defined as

ci(ℓ) =

{
c(ℓ)

|{h∈H|h uses ℓ}| if hi uses ℓ,

0 otherwise.

We refer to the resulting uniform cost-partitioned heuristic as
hUCP. A more sophisticated cost partitioning algorithm, called post-
hoc optimization (PhO) [19], uses a linear program (LP) to compute
a weight wi for each heuristic hi ∈ H such that the weighted sum of
heuristic estimates is maximized while remaining admissible.

Definition 13 (Post-Hoc Optimization). For a given state s ∈ S(T),
post-hoc optimization solves the following LP:

hPhO(s) = maximize
n∑

i=1

wi · hi(s) s.t.∑
hi∈H:hi uses ℓ

wi ≤ 1 for all ℓ ∈ L(T)

wi ≥ 0 for all hi ∈ H.

The resulting post-hoc optimization cost partitioning is the tuple C =
⟨w1 · c1, . . . , wn · cn⟩, where ci(ℓ) = c(ℓ) if hi uses ℓ and ci(ℓ) = 0
otherwise.

Previous work established several dominance and non-dominance
relationships between cost partitioning algorithms [25].

Definition 14 (Dominance). Heuristic h dominates heuristic h′ if
h(s) ≥ h′(s) for all states s ∈ S(T). The dominance is strict if
there is a state s such that h(s) > h′(s).

There is no dominance relation between hUCP and hPhO, i.e., there
are example transition systems T and states s, s′ ∈ S(T), where
hUCP(s) > hPhO(s) and hPhO(s

′) > hUCP(s
′) [25]. Below, we estab-

lish equality and dominance relations between the MSA heuristics
and cost-partitioned heuristics.

Additive MSA Abstractions
The notion of cost components allows us to identify how different
projections share costs on their labels. We will next show that this
is essential to reason about admissibility of the sum over pattern
database heuristics for MSA. When summing up costs across sev-
eral projections, we can connect the occurrence of cost components
directly to admissibility: if a cost component C appears in at most
one projection P ∈ P , then the respective heuristics are additive,
i.e., their sum is admissible.

Definition 15 (Additive Pattern Collection). A collection of pat-
tern database heuristics P is additive iff for all states s ∈ S(T) :
hP(s) :=

∑
P∈P hP (s) ≤ h∗

T (s).

First, we prove that every cost component can appear at most once
along every solution.

Proposition 1. Let T be the transition system induced by an MSA
task and π a goal path in T . Then every cost component C is part of
at most one transition label in π.

Proof. Without loss of generality, let C = Ci,j

⟨x1,x2⟩→⟨x′
1,x

′
2⟩

be part
of the label for transition t in π. By definition, t makes progress on
si or sj , i.e., x′

1 > x1 ∨ x′
2 > x2. Since every transition system T

induced by an MSA task is acyclic, the progress made from x1 to
x′
1 (resp. x2 to x′

2) cannot be undone, so C cannot appear again on
π.

With this, across the solutions of a set of transition systems TP ,
we know that if a cost component C appears more than once, then its
cost is over-counted when combining the solutions, i.e., when sum-
ming up the heuristics. Thus, if every cost component appears only
on labels of a single pattern database heuristic from a collection P ,
then the collection is additive.

Proposition 2. Let P be a pattern collection. If for every cost com-
ponent C there exists at most one pattern P ∈ P such that C appears
in the induced transition system TP , then P is additive.

Proof. Let πP denote a solution for TP of a pattern P ∈ P . Then,
because every cost component C appears in at most one projection
P , the set of solutions {πP | P ∈ P ′} of any subset P ′ ⊆ P
consider C no more than once. Hence, the heuristic values hP for all
P ∈ P ′ can be summed up, leading to an admissible heuristic.

A pattern collection that uses patterns with cost components in
common is not necessarily additive by itself, but a heuristic that
scales the contribution of the patterns appropriately is admissible.
To elaborate this further we define the concept of conflicts.

Definition 16. Two patterns P1 and P2 conflict if there is a cost
component C that exists in both TP1 and TP2 .

We will use the notion of conflicts to argue why pattern collec-
tions are additive. We do so by reasoning about sequences that are
shared between patterns, which is simpler than reasoning about the
occurrence of cost components.

Proposition 3. Two patterns P1 and P2 conflict iff |P1 ∩ P2| ≥ 2.

Proof. If |P1 ∩P2| ≥ 2, then P1 and P2 have at least two sequences
s1 and s2 in common. Thus, there exist cost components of the form
C1,2

⟨x1,x2⟩→⟨x′
1x

′
2⟩

that label transitions in both projections, so P1 and
P2 are in conflict. For the other direction, observe that if there exists
a cost component C that appears in both TP1 and TP2 , then by defini-
tion these two patterns have at least two sequences in common.

We extend the notion of conflicts to pattern collections.

Definition 17. A pattern collection P is conflicting if there exist two
distinct patterns Pi, Pj ∈ P that conflict.

With this, we have a criterion for admissibility based on conflicts.

Proposition 4. If a pattern collection P is not conflicting, then hP

is admissible.

Proof. As P is not conflicting, no cost component C exists in more
than one projection TPi induced by the patterns Pi ∈ P . Thus, over
all solutions πi for all TPi , each cost component is counted at most
once.

We also introduce a notion for when all patterns in the pattern
collection have two sequences in common.

Definition 18 (Strictly-Conflicting MSA Pattern Collection). A pat-
tern collection P is strictly conflicting iff |

⋂
P∈P P | ≥ 2.

This allows us to consider minimal pattern subsets P ′ ⊆ P that all
share at least two sequences, which relates to the number of shared
occurrences of cost components.

Uniform Cost Partitioning over MSA Abstractions
We redefine the UCP algorithm for MSA abstractions.

Definition 19. (MSA UCP) The MSA UCP algorithm distributes
each cost component C over patterns P = {P1, . . . , Pn} by intro-
ducing cost functions ci for heuristics hi, where

ci(C) =

{
c(C)

|{P ′∈P|C exists in TP ′}| if C exists in TP ,

0 otherwise.

The resulting MSA UCP heuristic is defined as

hP
UCP(s) =

∑
Pi∈P

hPi(ci, s|Pi
),

where hPi uses the cost function ci for all cost components.

Theorem 5. hP
UCP is admissible.

Proof. For the given pattern collection P = {P1, . . . , Pn},
each cost component C is distributed over patterns P1, . . . Pn as
c1(C), . . . , cn(C), so that

∑
i=1,...,n ci(C) = 1. Since any solution

for every projection TPi uses C at most once (Proposition 1), C never
contributes more to the heuristic value than its original costs.

From now on, we use the notation hall,k
UCP and hone,k

UCP to refer to hP
UCP

where the pattern collection P corresponds to the patterns considered
by the hall,k and hone,k heuristics, respectively. We will use the same
notation for hP

PhO, introduced below.
We now show that hP

UCP is equal to hall,k and hone,k, for a suitable
choice of patterns.

Proposition 6. hone,k
UCP = hone,k.

Proof. Let S = {s1, . . . , sn} be a set of sequences, k a natu-
ral number with 2 ≤ k ≤ n, and P a pattern collection con-
sisting of P1 with |P1| = k, P2 = S \ P1 and all patterns in
P ′ =

⋃
si∈P1,sj∈P2

{si, sj}. Then every cost component C exists
in at most one pattern P ∈ P because P is non-conflicting. As a
consequence, the full cost of each cost component C is used in the
pattern Pi in which C exists. This leads to the full heuristic value per
pattern, whose sum is equal to hone,k.

Proposition 7. hall,k
UCP = hall,k.

Proof. Consider sequences S = {s1, . . . , sn}, a natural number k
with 2 ≤ k ≤ n and the pattern collection P of all k-folds. Then
each cost component of the form Ci,j , where 1 ≤ i < j ≤ n,
exists in exactly

(
n−2
k−2

)
patterns. As a result, every cost component

in each pattern Pi, where i = 1, . . . ,
(
n
k

)
, will contribute 1

(n−2
k−2)

of

its associated cost. Therefore, we can rewrite the heuristic value per
pattern as hPi (s)

(n−2
k−2)

for a given state s and obtain

hall,k
UCP (s) =

(nk)∑
i=1

hPi(s)(
n−2
k−2

) =
1(

n−2
k−2

) (nk)∑
i=1

hPi(s) = hall,k(s).

Post-hoc Optimization over MSA Abstractions

We reformulate the linear-programming encoding of post-hoc opti-
mization from Definition 13 to define a PhO algorithm for MSA ab-
stractions.3

Definition 20 (MSA PhO). Given pattern collection P =
{P1, . . . , Pn} and state s, we define the LP of MSA PhO as follows:

hP
PhO(s) = maximize

n∑
i=1

wi · hPi(s) s.t.∑
Pi∈P′

wi ≤ 1 for all maximal strictly conflicting P ′ ⊆ P

wi ≥ 0 for all Pi ∈ P.

Theorem 8. hP
PhO is admissible.

3 This is a refinement of the MSA PhO LP by Riesterer [22].

Proof. Each cost component C which exists in all patterns Pi of a
maximal strictly conflicting pattern collection P does not exist in any
pattern from P \ P ′. With the constraint

∑
Pi∈P′ wi ≤ 1, for every

cost component C used in heuristic hi induced by Pi ∈ P , we get∑
Pi∈P wi · c(C) ≤ c(C). Thus, the LP constraints ensure that the

contribution of each cost component C does not exceed its original
cost.

We now have the tools to formally relate the hall,k heuristic to post-
hoc optimization. We start by proving that hall,k is a cost partitioning
heuristic, and that it is dominated by post-hoc optimization.

Theorem 9. hall,k
PhO dominates hall,k.

Proof. Consider the pattern collection P = {P1, . . . , P(nk)
} consist-

ing of all
(
n
k

)
k-fold patterns from the set of n sequences S. We show

that setting all wi =
1

(n−2
k−2)

yields a valid solution for the MSA PhO

LP. The claim follows because this solution cannot have a higher ob-
jective value than an optimal solution.

Showing that hall,k is equal to this solution requires only the defi-
nition of hall,k and simple arithmetic:

hall,k(s) =

∑(nk)
i=1 h

Pi(s)(
n−2
k−2

) =

(nk)∑
i=1

1(
n−2
k−2

)hPi(s) =

(nk)∑
i=1

wi · hPi(s)

To see that hall,k(s) =
∑(nk)

i=1 wi · hPi(s) forms a valid solution to
the MSA PhO LP, observe that it satisfies both sets of LP constraints:

• each pair of sequences appears in exactly
(
n−2
k−2

)
patterns. There-

fore, the number of strictly conflicting patterns for each sequence
is

(
n−2
k−2

)
and we have

∑
Pi∈P′ wi =

(
n−2
k−2

)
1

(n−2
k−2)

= 1, which

satisfies the first set of LP constraints, and
• 0 <

(
n−2
k−2

)
⇒ wi =

1

(n−2
k−2)

≥ 0, which satisfies the second set of

constraints of the LP.

There are even states in MSA tasks where hall,k
PhO is strictly greater

than hall,k.

Proposition 10. The dominance relation between hall,k
PhO and hall,k is

strict.

Proof. There is an MSA task4 with five sequences and
the pattern collection consisting of all

(
5
3

)
= 10 3-folds

P = {P1, . . . , P10}, such that the 10 heuristic estimates
for state s are ⟨12, 12, 12, 6, 10, 10, 6, 10, 10, 4⟩. Then
hall,k(s) = 12+12+12+6+10+10+6+10+10+4

3
= 92

3
< 32 =

(12 · 0.5 + 12 · 0.5 + 12 · 0 + 6 · 0 + 10 · 0.5 + 10 · 0.5 + 6 · 0 +
10 · 0.5 + 10 · 0.5 + 4 · 0) = hPhO(s).

In experiments we verify that this strict relationship holds for Bal-
iBase tasks. Next, we observe that MSA PhO is comparable to hone,k.

Theorem 11. hone,k
PhO = hone,k.

Proof. The pattern collection P is non-conflicting, therefore the op-
timal solution to the LP will set wi = 1 for i = 1, . . . , n. Thus the
heuristic value will be equal to that of hone,k.

Experiments
For our experiments, we use the code by Riesterer [22], which in-
tegrates hPhO and hall,k into a Java implementation of A∗ search for
4 This is the smallest BAliBase benchmark instance we could find to show

this strict dominance.

101 102 103

1

1.02

1.04

1.06

hall,3 (higher for 0 tasks)

h
al

l,
3

Ph
O

(h
ig

he
rf

or
29

6
ta

sk
s)

h(s0)

Figure 6: Per-instance ratio of initial-state heuristic value of hall,3
PhO over

hall,3, as a function of the absolute value of hall,3.

101 102 103

1

1.02

1.04

1.06

hall,3 (higher for 0 tasks)

h
al

l,2
+3

Ph
O

(h
ig

he
rf

or
42

2
ta

sk
s)

h(s0)

Figure 7: Per-instance ratio of initial-state heuristic value of hall,2+3
PhO

over hall,3, as a function of the absolute value of hall,3.

MSA problems called MSASolver.5 Our main goal for the evaluation
is to confirm our theoretical results on the dominance of post-hoc
optimization over hall,k. Hence, we focus on initial-state heuristic
values throughout our analysis. To conduct the experiments, we use
the Lab Python package [26]. Each task is run on an AMD Ryzen 7
PRO 5850U CPU, with 30 minutes runtime and 20 GiB memory lim-
its. We evaluate both heuristics on two benchmark sets, which we de-
scribe next. All code, benchmarks and experiment data are available
online [29].

BAliBase

The BAliBase benchmark collection contains multiple sets of in-
stances of protein sequences [30]. We use the full benchmark set
consisting of 898 instances, each with 4–419 sequences and up to
1382 characters. In our evaluation, we obtained results for all in-
stances with at most six sequences, which is a general restriction of
MSASolver. Out of the full benchmark set, 128 instances satisfy this
condition.

Random DNA Sequences

We increase the size of our benchmark set to enable a more sys-
tematic evaluation by generating 900 instances consisting of ran-
dom DNA sequences. These contain the nucleotide characters A,C,G

5 MSASolver is available at https://github.com/matthatem/MSASolver. It has
been developed for research on parallel external-memory search [9, 10].

https://github.com/matthatem/MSASolver

and T. For every number of 4–6 sequences and lengths from 1–100
characters, we generate three random character sequences. Besides
increasing the size of our benchmark set, the pairwise substitution
costs in DNA sequences is very different from the costs in the pro-
tein sequences of BAliBase, so we obtain more diverse benchmarks
as well.

Results

We have shown above that hall,k
PhO strictly dominates hall,k. Here, we

want to experimentally confirm this result by comparing the two
heuristics on both benchmark sets. Our evaluation considers two set-
tings: first, we compare both approaches when using the same set of
patterns, namely all projections of size three. Besides this, we show
results for hall,3 in relation to post-hoc optimization with all patterns
of sizes two and three, which we denote by hall,2+3

PhO . The latter exem-
plifies the flexibility of post-hoc optimization, which, in contrast to
hall,k, supports arbitrary pattern collections.

The observations are similar on both benchmark sets. We see that
hall,3

PhO yields a higher heuristic value than hall,3 frequently, with an
increase of up to 5% when considering the DNA sequences. On
the BAliBase instances, the advantage of post-hoc optimization is
smaller, with a maximum improvement of 0.07%. As expected, hall,3

never yields higher estimates than hall,3
PhO .

The plots in Figures 6 and 7 show the improvement of post-hoc
optimization over hall,3 on the DNA sequences, where the different
heuristic values can be nicely visualized. Each point in a plot repre-
sents one MSA instance, where the x-value is the heuristic value of
hall,3 and the y-value is the ratio of hall,3

PhO over hall,3. So values greater
than y = 1 indicate that hall,3

PhO obtains a higher heuristic value.
In Figure 6, we compare both heuristics on the same pattern collec-

tion that consists of all projections of size three. Here, hall,3
PhO yields a

higher heuristic value in 296 out of the 900 instances. In Figure 7 we
highlight that post-hoc optimization can be computed over arbitrary
pattern collections. We observe that this flexibility indeed pays off
and the heuristic improves over hall,k in 422 instances. This indicates
the potential of the more versatile cost partitioning methods. For fu-
ture work, we hypothesize that the pattern selection can be tailored
for specific cost partitioning methods, so that higher heuristic values
can be achieved, e.g., by finding a good middle ground between the
collections used in hall,k and hone,k.

Conclusions
We have established novel theoretical connections between existing
heuristics for MSA and cost partitioning. We introduced cost compo-
nents to reason about the transition costs of specific interactions be-
tween two sequences. Using this concept, we adapted uniform cost
partitioning and post-hoc optimization, two well-known cost parti-
tioning methods from automated planning, and developed two new
heuristics hUCP and hPhO respectively. We showed that these two
heuristics are admissible and established that, for pattern collections
consisting of all k-folds, hUCP is hall,k and that hPhO strictly dom-
inates hall,k. Furthermore, we showed that both heuristics dominate
hone,k if using the same pattern collection as hone,k. In our experimen-
tal evaluation, we verified that the dominance relationship between
hall,k and hPhO is not merely a theoretical curiosity, but that these dif-
ferences do frequently have an impact on the initial heuristic value.
Finally, our experiments also highlighted that the flexibility of hPhO

allows the heuristic to yield even higher heuristic values in many in-
stances, when not restricted to the pattern collections of hall,k.

For future work, we will investigate by what factor this difference
in initial heuristic value, and differences tied to the cost partition-
ing algorithms themselves, carry over to the actual search with A∗.
This includes other techniques applied during search, too, such as de-
ciding when to recompute cost partitionings, which is necessary for
post-hoc optimization [11]. We also want to investigate more cost-
partitioned heuristics for MSA, such as saturated cost partitioning
[25] and saturated post-hoc optimization [28], as well as preprocess-
ing techniques for pattern collections. For instance, can we show that
a pattern collection P will never achieve a higher heuristic value than
a collection P ′ when employing a specific cost partitioning method?
In particular, we have already found that for four sequences, we can
disregard up to 80% of the candidate pattern collections that are sub-
sets of all 2-folds and 3-folds. The question is whether this can be
generalized to any number of sequences.

Acknowledgements
This work was supported by the Wallenberg AI, Autonomous Sys-
tems and Software Program (WASP) funded by the Knut and Alice
Wallenberg Foundation and by TAILOR, a project funded by the EU
Horizon 2020 research and innovation programme under grant agree-
ment no. 952215.

References
[1] H. Carrillo and D. Lipman. The multiple sequence alignment problem

in biology. SIAM Journal on Applied Mathematics, 48(5):1073–1082,
1988.

[2] J. C. Culberson and J. Schaeffer. Pattern databases. Computational
Intelligence, 14(3):318–334, 1998.

[3] S. Edelkamp. Planning with pattern databases. In Proc. ECP 2001,
pages 84–90, 2001.

[4] A. Felner, R. Korf, and S. Hanan. Additive pattern database heuristics.
JAIR, 22:279–318, 2004.

[5] S. Franco, Á. Torralba, L. H. S. Lelis, and M. Barley. On creating com-
plementary pattern databases. In Proc. IJCAI 2017, pages 4302–4309,
2017.

[6] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions on Systems
Science and Cybernetics, 4(2):100–107, 1968.

[7] P. Haslum, B. Bonet, and H. Geffner. New admissible heuristics for
domain-independent planning. In Proc. AAAI 2005, pages 1163–1168,
2005.

[8] P. Haslum, A. Botea, M. Helmert, B. Bonet, and S. Koenig. Domain-
independent construction of pattern database heuristics for cost-optimal
planning. In Proc. AAAI 2007, pages 1007–1012, 2007.

[9] M. Hatem and W. Ruml. External memory best-first search for multiple
sequence alignment. In Proc. AAAI 2013, pages 409–416, 2013.

[10] M. Hatem, E. Burns, and W. Ruml. Solving large problems with heuris-
tic search: General-purpose parallel external-memory search. JAIR, 62:
233–268, 2018.

[11] P. Höft, D. Speck, and J. Seipp. Sensitivity analysis for saturated post-
hoc optimization in classical planning. In Proc. ECAI 2023, pages
1044–1051, 2023.

[12] T. Ikeda and H. Imai. Fast A* algorithms for multiple sequence align-
ment. Genome Informatics, 5:90–99, 1994.

[13] E. Karpas and C. Domshlak. Cost-optimal planning with landmarks. In
Proc. IJCAI 2009, pages 1728–1733, 2009.

[14] M. Katz and C. Domshlak. Optimal additive composition of abstraction-
based admissible heuristics. In Proc. ICAPS 2008, pages 174–181,
2008.

[15] M. Katz and C. Domshlak. Optimal admissible composition of abstrac-
tion heuristics. AIJ, 174(12–13):767–798, 2010.

[16] H. Kobayashi and H. Imai. Improvement of the A* algorithm for mul-
tiple sequence alignment. Genome Informatics, 9:120–130, 1998.

[17] S. B. Needleman and C. D. Wunsch. A general method applicable to
the search for similarities in the amino acid sequence of two proteins.
Journal of Molecular Biology, 48(3):443–453, 1970.

[18] J. Pearl. Heuristics: Intelligent Search Strategies for Computer Problem
Solving. Addison-Wesley, 1984.

[19] F. Pommerening, G. Röger, and M. Helmert. Getting the most out of
pattern databases for classical planning. In Proc. IJCAI 2013, pages
2357–2364, 2013.

[20] F. Pommerening, M. Helmert, G. Röger, and J. Seipp. From non-
negative to general operator cost partitioning. In Proc. AAAI 2015,
pages 3335–3341, 2015.

[21] F. Pommerening, T. Keller, V. Halasi, J. Seipp, S. Sievers, and
M. Helmert. Dantzig-Wolfe decomposition for cost partitioning. In
Proc. ICAPS 2021, pages 271–280, 2021.

[22] M. Riesterer. Cost partitioning techniques for multiple sequence align-
ment. Master’s thesis, University of Basel, 2018.

[23] J. Seipp and M. Helmert. Diverse and additive Cartesian abstraction
heuristics. In Proc. ICAPS 2014, pages 289–297, 2014.

[24] J. Seipp and M. Helmert. Counterexample-guided Cartesian abstraction
refinement for classical planning. JAIR, 62:535–577, 2018.

[25] J. Seipp, T. Keller, and M. Helmert. A comparison of cost partitioning
algorithms for optimal classical planning. In Proc. ICAPS 2017, pages
259–268, 2017.

[26] J. Seipp, F. Pommerening, S. Sievers, and M. Helmert. Downward Lab.
https://doi.org/10.5281/zenodo.790461, 2017.

[27] J. Seipp, T. Keller, and M. Helmert. Saturated cost partitioning for op-
timal classical planning. JAIR, 67:129–167, 2020.

[28] J. Seipp, T. Keller, and M. Helmert. Saturated post-hoc optimization for
classical planning. In Proc. AAAI 2021, pages 11947–11953, 2021.

[29] M. Skjelnes, D. Gnad, and J. Seipp. Code and data for the ECAI 2024
paper “Cost Partitioning for Multiple Sequence Alignment”. https://doi.
org/10.5281/zenodo.13268801, 2024.

[30] J. D. Thompson, F. Plewniak, and O. Poch. BAliBASE: a benchmark
alignment database for the evaluation of multiple alignment programs.
Bioinformatics, 15(1):87–88, 01 1999.

[31] F. Yang, J. Culberson, R. Holte, U. Zahavi, and A. Felner. A general
theory of additive state space abstractions. JAIR, 32:631–662, 2008.

https://doi.org/10.5281/zenodo.790461
https://doi.org/10.5281/zenodo.13268801
https://doi.org/10.5281/zenodo.13268801

	Introduction
	Multiple Sequence Alignment
	MSA as Shortest-Path Search
	Pattern Database Heuristics for MSA
	Cost Partitioning
	Additive MSA Abstractions
	Uniform Cost Partitioning over MSA Abstractions
	Post-hoc Optimization over MSA Abstractions
	Experiments
	BAliBase
	Random DNA Sequences
	Results

	Conclusions

