
Correlation Complexity of Classical Planning Domains

Jendrik Seipp and Florian Pommerening and Gabriele Röger and Malte Helmert
University of Basel
Basel, Switzerland

{jendrik.seipp,florian.pommerening,gabriele.roeger,malte.helmert}@unibas.ch

Abstract
We analyze how complex a heuristic function must be to di-
rectly guide a state-space search algorithm towards the goal.
As a case study, we examine functions that evaluate states
with a weighted sum of state features. We measure the com-
plexity of a domain by the complexity of the required fea-
tures. We analyze conditions under which the search algo-
rithm runs in polynomial time and show complexity results
for several classical planning domains.

Introduction
Recently, potential heuristics (Pommerening et al. 2015)
have been introduced as a new class of heuristics for clas-
sical planning. A potential heuristic is defined by specifying
a numerical (possibly negative) weight for every fact of a
planning task. The heuristic value of a state is then simply
the sum of weights of the facts that are present in that state.
Potential heuristics can be viewed as linear combinations
of trivial indicator functions, where each indicator function
tests whether a certain fact is present in the given state.

Due to their simple structure, potential heuristics can
be evaluated very efficiently. Of course, the quality of
their heuristic estimates critically depends on the choice of
weights. In past work, finding suitable weights has been cast
as an optimization problem with encouraging results (Pom-
merening et al. 2015; Seipp, Pommerening, and Helmert
2015).

However, it is clear that for challenging planning tasks,
such simple potential heuristics cannot be truly informative,
as complex interactions between different state variables
cannot be adequately captured. Fortunately, the idea can be
readily generalized by considering indicator functions for
more complex state features than individual facts. An ob-
vious generalization is to test for the presence of a set (or
conjunction) of facts, similar to the generalization from the
hmax heuristic to Haslum and Geffner’s hm heuristics (2000)
or to the generalization from atomic to general projections in
pattern database (PDB) heuristics [e.g., Edelkamp 2001].

It is easy to see that with such a generalization, arbitrary
heuristics can be expressed as potential heuristics: in the ex-
treme case, we can introduce a separate feature for every sin-
gle state s and set its weight to the actual cost-to-goal h∗(s)
of that state. Again, this is analogous to the hm heuristics,
which converge to h∗ as m increases to the number of facts

of the planning task, and to PDB heuristics, which similarly
converge to h∗ as the set of pattern variables grows to in-
clude all variables. However, it is equally easy to see that in
all three cases, the size of the representation explodes, and
the heuristics become unmanageable on their way to perfec-
tion.

This raises the question how complex these heuristics
need to become in order to faithfully capture the critical in-
teractions between state variables. Many planning domains
are known to admit polynomial domain-specific solution al-
gorithms [e.g., Helmert 2003]. Perhaps “simple” heuristics
only considering conjunctions of 2 or 3 facts are already
highly accurate in these “simple” domains?

Unfortunately, there is bad news in the literature: Helmert
and Mattmüller (2008) showed that hm and (single) PDB
heuristics based on conjunctions of bounded size give rise to
arbitrarily bad heuristics in all domains they studied. How-
ever, they also showed that additive heuristics based on mul-
tiple PDBs can be significantly more accurate. This is not
just good news for PDBs but also for potential heuristics,
which are additive combinations of simpler heuristics by
definition.

So just how complex does a potential heuristic have to be
so that solving a planning task becomes simple? Following
in Hoffmann’s (2005) footsteps, we formalize this question
by considering per-domain results for the state space topol-
ogy of planning tasks. Hoffmann studied the search space
topology of a fixed heuristic, namely the optimal delete re-
laxation heuristic h+. Delete relaxation heuristics are rarely
perfect but frequently good: to quantify this, Hoffmann fo-
cused on the size of local minima in the state space to dis-
tinguish “easy” from “difficult” domains for h+.

In contrast, potential heuristics can be as accurate as we
wish, at a cost in heuristic complexity. To reflect this degree
of control, in our theoretical analysis we are more demand-
ing with state space topology, looking for heuristics that ex-
hibit no local minima at all. The question, then, is how com-
plex – measured in the size of the conjunctions required –
a potential heuristic needs to be in order to have no local
minima.1

1Throughout the paper, by “local minimum” we mean any state
which does not have a successor with lower heuristic value. This
includes states within heuristic plateaus.

In this paper, we study this complexity measure for a num-
ber of well-known planning domains. It turns out that the
results are very encouraging, motivating further study of po-
tential heuristics with conjunctive features. We believe that
this outcome is also relevant to researchers with no particu-
lar interest in potential heuristics, or even heuristic search.

At its core, the complexity measure we introduce de-
scribes how tightly interrelated different aspects of a plan-
ning task are, and to what extent these aspects can be con-
sidered separately. Within planning as heuristic search, such
a measure is clearly relevant for approaches such as plan-
ning with pattern databases (Edelkamp 2001; Haslum et al.
2007; Pommerening, Röger, and Helmert 2013), critical-
path heuristics (Haslum and Geffner 2000; Haslum, Bonet,
and Geffner 2005), semi-relaxed plan heuristics (Keyder,
Hoffmann, and Haslum 2014), conjunctive landmarks (Key-
der, Richter, and Helmert 2010), or flow heuristics with
merges (Bonet and van den Briel 2014). However, we think
that such a measure of “interrelatedness” can be equally use-
ful for non-heuristic planning approaches, such as factored
planning (Brafman and Domshlak 2013), planning with de-
cision diagrams [e.g., Torralba 2015], and compilations to
SAT [e.g., Rintanen 2012; Suda 2014].

The general idea of measuring the degree of interrelated-
ness between state variables of a planning task is not new.
In a line of research with very similar motivations to ours,
Chen and Giménez (2007; 2009) studied several notions
of width for planning tasks, where low width implies low
complexity of planning. In the same spirit, Lipovetzky and
Geffner (2012) also introduced a notion of width (different
from those of Chen and Giménez) and exploited it to ef-
ficiently solve a large number of standard planning bench-
marks. We return to this work towards the end of the paper,
where we discuss the relationship between our complexity
measure and the existing notions of width.

Planning Formalism
We consider SAS+ (Bäckström and Nebel 1995) planning
tasks Π = 〈V,O, sI, s?〉, where V is a finite set of state vari-
ables, O is a finite set of operators, sI is the initial state, and
s? is the goal.

Each state variable v ∈ V has a finite domain dom(v). A
pair 〈v, d〉 with v ∈ V and d ∈ dom(v) is called a fact. A
set of facts is consistent if all contained facts belong to dif-
ferent variables. A consistent set of facts p is called a partial
variable assignment. We write vars(p) to denote the set of
variables to which the facts in p belong. For v ∈ vars(p)
we write p[v] to denote the value d ∈ dom(v) for which
〈v, d〉 ∈ p. If vars(p) = V , p is called a state.

The initial state sI is a state, and the goal s? is a partial
variable assignment. A state s is consistent with partial vari-
able assignment p if p ⊆ s. A state s is a goal state if it
is consistent with the goal s?. In some contexts, we refer to
partial variable assignments as (state) features and say that a
state has the feature F if it is consistent with F .

Each operator o ∈ O is given as a pair o =
〈pre(o), eff(o)〉, where the precondition pre(o) and the effect
eff(o) are partial variable assignments. Operator o is appli-

cable in state s if s is consistent with pre(o). In this case,
o may be applied in s, yielding the successor state sJoK de-
fined by sJoK[v] = eff(o)[v] for all v ∈ vars(eff(o)) and
sJoK[v] = s[v] for all other variables v. We write succ(s)
for the set of all successor states of s, i.e., succ(s) = {sJoK |
o ∈ O is applicable in s}. Our focus in this paper is on plan-
ning algorithms that do not provide quality guarantees for
the plans they find, and hence we do not consider operator
costs.

For a state s, an s-plan 〈o1, . . . , on〉 is a finite sequence of
operators such that sJo1KJo2K . . . JonK is a goal state. We say
that s is solvable if an s-plan exists and unsolvable other-
wise. The task Π is solvable if the initial state sI is solvable.
A state s is reachable if 〈V,O, sI, s〉 is solvable. Finally, a
heuristic is a function mapping states to Z ∪ {∞}.

Potential Heuristics
Potential heuristics were introduced by Pommerening et
al. (2015) as linear combinations of indicator functions,
where each indicator function tests if a given fact is con-
tained in the evaluated state. We generalize the definition
to allow conjunctive state features. Throughout the paper,
we write indicator functions using Iverson brackets (Knuth
1992).

Definition 1 (potential heuristic). Let Π be a planning task,
let F be a set of state features of Π, and let w : F → Z ∪
{∞}.

The potential heuristic with features F and weight func-
tion w is the function ϕ mapping each state s of Π to the
integer

ϕ(s) =
∑
F∈F

w(F)[F ⊆ s].

Note that we limit the definition to integer or infinite
weights because these are sufficient for our purposes and
simplify presentation. In other contexts, it may be preferable
to permit arbitrary real-valued weights.

We measure the level of complexity of a potential heuris-
tic by the size of the largest conjunction it uses as a feature,
which we call its dimension.

Definition 2 (dimension). A potential function with features
F has dimension maxF∈F |F |.

Rephrasing what we said earlier using this terminology,
previous work introduced potential heuristics of dimension
1, while we consider arbitrary dimensions.

The dimension of a potential heuristic is not the only nat-
ural way to measure its complexity. Alternative, more fine-
grained measures include the number of features or the sum
of features sizes. We choose to focus on the dimension be-
cause our results do not require more fine-grained measures
and because dimension is a natural analogue to well-known
parameters of other heuristics, such as the parameter m in
the hm heuristics and the pattern size in PDB heuristics.

For tasks with n state variables, potential heuristics of di-
mension d can be evaluated in time O(nd). In the common
case where a family of planning tasks has a fixed bound on
the number of effects in each operator, this can be improved
toO(nd−1) with incremental computations, i.e., when asked

to compute the heuristic value of a state given its parent state,
generating operator and parent heuristic value. (To see this,
note that if an operator changes k state variables, then only
features involving at least one of these k state variables and
hence at most d− 1 other state variables need to be consid-
ered. The total number of such features can be bounded by
2k · (n − k)d−1, which is O(nd−1) for constant k.) In par-
ticular, in this case potential heuristics of dimension 1 can
be incrementally computed in constant time and potential
heuristics of dimension 2 can be incrementally computed in
time O(n).

State Space Topology
We want to study potential heuristics without local minima.
To formalize this, we must first clarify what we mean by
having no local minima. A tentative definition might be:
“every non-goal state has a successor with lower heuristic
value”. However, this is too strict: in a finite state space, such
a definition implies that there is a strictly descending path to-
wards a goal state from every state, which is impossible to
satisfy if the task has any unsolvable states.

Hence, we only require that solvable states have succes-
sors with lower heuristic value. To avoid a heuristic search
algorithm from getting trapped in an unsolvable region of
the state space, we also require that unsolvable successors s′
of a solvable state s never have a lower heuristic value than
s.

A second problem is that planning tasks often include
“impossible” states that violate physical constraints, such
as two blocks being stacked on top of each other in the
Blocksworld domain. It would be unnecessarily restrictive to
require that the state space topology is also well-behaved for
such impossible states. However, there is in general no sim-
ple way to distinguish possible from impossible states with-
out complicating the definition of planning tasks. A simple
remedy is to restrict attention to reachable states.
Definition 3 (alive). A state is alive if it is solvable, reach-
able, and not a goal state.

We can now introduce two criteria that together imply ab-
sence of local minima.
Definition 4 (descending). A heuristic h is descending if all
alive states have an improving successor. In symbols, for all
states s:

s alive =⇒ ∃s′ ∈ succ(s) : h(s′) < h(s).

Definition 5 (avoiding dead ends). A heuristic h avoids dead
ends if all improving successors of alive states are solvable.
In symbols, for all states s and s′:

s alive ∧ s′ ∈ succ(s) ∧ h(s′) < h(s) =⇒ s′ solvable.

Given these two properties typical heuristic search algo-
rithms for satisficing planning are guided directly towards
the goal. We give a formal proof for simple hill-climbing
(Algorithm 1).
Theorem 1. Let h be a descending, dead-end avoid-
ing heuristic for a planning task Π. Let L = h(sI) −
mins∈S h(s), where S is the set of all states of Π.

Algorithm 1 Simple hill-climbing.
s← sI
π ← 〈〉
while s is no goal state do

improvement← false
for s′ ∈ succ(s), in any order do

if h(s′) < h(s) then
improvement← true
append o ∈ O with sJoK = s′ to π
s← s′

break
if improvement is false then

fail
return π

Then simple hill-climbing with h solves Π after at most
L state expansions if Π is solvable and returns with failure
after at most L state expansions if Π is unsolvable.

Proof: Consider the case where Π is solvable. For the while
loop, we show the loop invariant that s is reachable and
solvable. Reachability is trivial. For solvability, s is initially
solvable, and in every iteration of the loop, the chosen state
s′ is solvable because s is alive (because it is not a goal state
and due to the loop invariant, it is reachable and solvable),
s′ is an improving successor of s and h avoids dead ends.

We next show that the algorithm terminates by returning a
plan (rather than failing or not terminating). Because h is de-
scending, an improving state is always found inside the for
loop, so the while loop never fails. Moreover, the while loop
must finish with a bounded number of iterations because
h(s) decreases in every iteration and hence the sequence of
expanded states never repeats. This proves that the algorithm
terminates and also establishes the stated bound on L. (Note
that h(s) is an integer and hence must decrease by at least 1
in every iteration.)

In the case where Π is unsolvable, simple hill-climbing
fails as soon as there is no more successor with lower heuris-
tic value. As in the previous case, h(s) cannot decrease more
than L times, bounding the number of steps. �

The same result holds, with the same proof, for steepest
ascent hill-climbing, a variant of hill-climbing that always
moves to a successor s′ minimizing the h value.

In the case where Π is solvable, the result also extends
to the three most common satisficing planning algorithms:
standard greedy best-first search a.k.a. eager greedy search
(Russell and Norvig 2003), greedy best-first search with
deferred evaluation a.k.a. lazy greedy search (Richter and
Helmert 2009) and enforced hill-climbing (Hoffmann and
Nebel 2001). To see this, observe that for descending, dead-
end avoiding heuristics applied to solvable planning tasks,
eager search expands the same states as steepest ascent hill-
climbing, enforced hill-climbing expands the same states
as simple hill-climbing, and lazy search evaluates the same
states as simple hill-climbing.

We conclude this section by looking in a bit more depth
at the requirement of avoiding dead ends. A special case
in which this property holds for all heuristics are tasks

where no solvable states have unsolvable successors. Hoff-
mann (2005) calls such planning tasks harmless. A common
special case of harmless planning tasks are undirected tasks,
where s ∈ succ(s′) iff s′ ∈ succ(s).

Instead of heuristics that avoid dead ends, one can make
the stricter requirement of recognizing dead ends (Hoffmann
2005), i.e., requiring h(s) = ∞ for all unsolvable states.
This stricter property is not needed for Theorem 1, but if it
is given and the heuristic is known to be safe (i.e., h(s) =∞
guarantees that the state is unsolvable), then the equiva-
lent of the theorem for enforced hill-climbing, eager greedy
search and lazy greedy search also holds in the case of un-
solvable planning tasks.

Instead of strengthening the requirement of avoiding dead
ends, one could also consider the weaker requirement that
unsolvable states are never among the best successors (mini-
mizing h) of solvable states. This weaker requirement would
still be sufficient for establishing a result like Theorem 1
for steepest ascent hill-climbing and eager greedy search,
but not for simple or enforced hill-climbing or lazy greedy
search.

Correlation Complexity
We now put the pieces of the previous two sections together:
correlation complexity measures how complex a potential
heuristic must be to obtain a favorable state space topology.

Definition 6 (correlation complexity of a planning task).
The correlation complexity of a planning task Π is the min-
imum dimension d of all descending, dead-end avoiding po-
tential heuristics for Π.

The correlation complexity of a planning task is trivially
bounded from above by the number of state variables n: in
the worst case, we can define a feature with weight h∗(s) for
every state s, and because |s| = n, such a potential heuris-
tic has dimension n. In particular, this guarantees that the
correlation complexity of planning tasks is well-defined.

The definition can be extended to planning domains,
which for the purposes of this paper are simply (usually in-
finite) sets of planning tasks.

Definition 7 (correlation complexity of a planning domain).
The correlation complexity of a planning domain is the max-
imal correlation complexity of all planning tasks in the do-
main, or∞ if no maximum exists.

If a domain has low correlation complexity, this is a sign
that no complex interactions between variables need to be
considered in order to solve planning tasks in this domain.
Hence, low correlation complexity is an indication that a
planning domain is “easy”.

A formal tractability result for planning in such a do-
main does not immediately follow because Definition 7 does
not guarantee that a low-dimension potential heuristic for a
given planning task is easy to construct – it only guarantees
that such a potential heuristic exists. Moreover, planning do-
mains with low correlation complexity can have exponen-
tially long plans. For example, it is easy to construct “binary
counter” tasks (Θi)i≥1 with correlation complexity 1 where
Θi requires plans of length 2i to solve. In the absence of

such complications, low correlation complexity indeed im-
plies tractability.

Theorem 2. Let D be a planning domain with correlation
complexity d <∞, and let p be a polynomial such that given
Π ∈ D with encoding size n,

1. a descending, dead-end avoiding potential heuristic ϕΠ

of dimension d can be computed in time p(n), and
2. feature weights are polynomially bounded: |w(F)| ≤
p(n) for all features F of ϕΠ.

Then plan generation inD can be solved in polynomial time.

Proof: A task with encoding size n has at most n state vari-
ables, and hence ϕΠ has no more than O(nd) features. To-
gether with the bound on the individual weights, it follows
that |ϕΠ(s)| ≤ O(nd)p(n) for all states s, and hence the
difference between the heuristic values of any two states is
bounded by a polynomial in n.

The result follows with Theorem 1, as L is bounded by a
polynomial in n, and each heuristic evaluation can be per-
formed in time O(nd), which is also polynomial in n. �

Properties of Potential Heuristics
In the rest of the paper, we study the correlation complexity
of some common planning domains. Towards this end, we
first establish some general properties of potential heuristics,
concluding in two criteria to show that a task has correlation
complexity at least 2. We begin with a result that is related
to the incremental computation of potential heuristics.

Theorem 3. Let ϕ be a potential heuristic for a planning
task Π. Let s be a state of Π, let o be an operator applicable
in s, and let s′ = sJoK. Then:

ϕ(s′)−ϕ(s) =
∑
F∈F

vars(F)∩vars(eff(o)) 6=∅

w(F)([F ⊆ s′]−[F ⊆ s])

Proof: All other features are either present in both s and s′
or absent in both s and s′. Their weights cancel out in the
difference. �

Consider a heuristic h and an operator o applicable in a
state s. We say that o is good in s under h if h(sJoK) < h(s)
and bad in s under h otherwise. We say that a planning task
is in normal form if vars(eff(o)) ⊆ vars(pre(o)) for all op-
erators o [cf. Pommerening and Helmert 2015]. It is easy to
see that for tasks in normal form, whether or not an operator
is good under a potential heuristic of dimension 1 does not
depend on the state s: either o improves the heuristic value
in all states where it is applicable, or it does so in no state.
Hence, for potential heuristics of dimension 1 we can speak
of good or bad operators without referring to a specific state.

We say that operator o is critical in planning task Π if
there exists an alive state s such that every s-plan includes o.
(In other words, o is an action landmark in some alive state.)

Theorem 4. Let ϕ be a descending potential heuristic of
dimension 1 for a planning task Π in normal form.

If o is critical in Π, then o is good under ϕ.

Proof: Because o is critical, there exists an alive state s from
which every s-plan includes o. Because ϕ is descending,
there exists a sequence of operator applications that reach
a goal state from s and decrease the heuristic value in every
step. All operators applied in this sequence must be good,
and one of them must be o. �

If o has an inverse operator o′ (i.e., sJoKJo′K = s for some
state s), then o and o′ cannot both be good: if going from s to
sJoK decreases the heuristic value, then returning from sJoK
to s by applying o′ must increase it to the original value.
Together with Theorem 4 we obtain the first criterion for
showing that a task cannot have correlation complexity 1.

Theorem 5. Let Π be a planning task in normal form, and
let o and o′ be critical operators of Π that are inverses of
each other. Then Π has correlation complexity at least 2.

Proof: Assume the contrary: there exists a descending po-
tential heuristic ϕ of dimension 1. From the previous theo-
rem, o and o′ are both good under ϕ. Inverse operators can-
not both be good: a contradiction. �

For the second criterion, we need the notion of dangerous
operators. Operator o is dangerous in task Π if there exists an
alive state s in which o is applicable and sJoK is unsolvable.

Theorem 6. Let Π be a planning task in normal form, and
let o be an operator that is critical and dangerous in Π. Then
Π has correlation complexity at least 2.

Proof: Assume the contrary: there exists a descending po-
tential heuristic ϕ of dimension 1 that avoids dead ends.
Since o is critical, it is good under ϕ (Theorem 4). But o
is also dangerous and hence leads from an alive to an un-
solvable state. By the definition of avoiding dead ends, this
means that o cannot be good: a contradiction. �

Spanner
We now begin our case studies of planning domains. In the
Spanner domain (IPC 2014), an agent has to walk to a gate
along a chain of m locations l1–l2–. . . –lm, with the gate at
lm. At the gate there are n nuts that the agent has to tighten
with n single-use spanners that it must pick up along the
way. The agent can only move towards the gate, not back-
wards.

Lemma 1. Spanner has correlation complexity at least 2.

Proof: Consider a task with two locations l1, l2 and one
spanner at l1. Walking from l1 to l2 is critical, but dangerous.
(Walking before picking up the spanner leads to an unsolv-
able state.) The result follows with Theorem 6. �

Theorem 7. Spanner has correlation complexity 2.

Proof: Let Π be a Spanner task with n spanners and m lo-
cations. For any location li let Si be the number of spanners
at all locations lj with j < i. Walking to location li while
carrying fewer than Si spanners leads to an unsolvable state.

The following weight function defines a descending,
dead-end avoiding potential heuristic ϕ of dimension 2 for

Π. The result then follows with the preceding lemma.

w({〈agent, li〉}) =

i∑
k=1

(Sk − 1)

w({〈agent, li〉, 〈carry-spannerj , yes〉}) = m− i
w({〈carry-spannerj , yes〉}) = −m
w({〈tightenedj , yes〉}) = −m− 1

for all 1 ≤ i ≤ m and 1 ≤ j ≤ n
We show that ϕ is descending and avoids dead ends by

showing that the heuristic difference induced by picking up a
spanner or tightening a nut is always negative and the poten-
tial difference induced by walking from li−1 to li is negative
iff the agent is carrying Si spanners.

Picking up spanner j at location li changes the potential
by m− i−m = −i < 0.

Tightening nut j is always done in location lm and
changes the potential by−m−1− (−m)− (m−m) = −1.

Walking from li−1 to li while carrying s spanners changes
the potential by

∑i
k=1(Sk − 1)−

∑i−1
k=1(Sk − 1) + s((m−

i)−(m−(i−1))) = Si−s−1 which is negative iff s ≥ Si.
�

Gripper
In the Gripper domain (IPC 1998), a robot with two grip-
pers has to move n balls from room A to room B. It can
pick up and drop balls in either room and move between the
two rooms. The robot always starts in room A and the goal
is always to transport all balls to room B. In a SAS+ rep-
resentation there is a variable specifying the position of the
robot r ∈ {A,B} and variables for the position of each ball
bi ∈ {A,B,G1, G2} for 1 ≤ i ≤ n. G1 and G2 stand for
the two grippers.
Lemma 2. Gripper has correlation complexity at least 2.
Proof: In a Gripper task with more than 2 balls, moving
from A to B and moving from B to A are both critical oper-
ators, and they are inverses of each other. The result follows
with Theorem 5. �

Theorem 8. Gripper has correlation complexity 2.
Proof: The following weight function defines a descending,
dead-end avoiding potential heuristic of dimension 2 for the
Gripper task with n balls. The result then follows with the
preceding lemma.

w({〈r,B〉}) = 1

w({〈bi, A〉}) = 8

w({〈bi, Gj〉}) = 4

w({〈r,B〉, 〈bi, Gj〉}) = −2

for i ∈ {1, . . . , n} and j ∈ {1, 2}
The heuristic avoids dead ends because Gripper is undi-

rected and hence harmless. To show that the heuristic is de-
scending, we show by case distinction that every reachable
non-goal state has an improving successor.

If the robot is in room A and can pick up a ball,
picking it up changes the potential by −w({〈bi, A〉}) +

w({〈bi, Gj〉}) = −8 + 4 = −4. If there is no ball to
pick up, but the robot has g > 0 balls in its grippers, mov-
ing to room B changes the potential by w({〈r,B〉}) − g ·
w({〈r,B〉, 〈bi, Gj〉}) = 1− 2g < 0. If there are no balls to
pick up and no balls in the grippers, the state is a goal state.

If the robot is in room B and has a ball in one of
its grippers, dropping a ball changes the potential by
−w({〈bi, Gj〉}) − w({〈r,B〉, 〈bi, Gj〉}) = −4 − (−2) =
−2. If it does not have a ball in its grippers, moving to room
A changes the potential by −w({〈r,B〉}) = −1. �

We remark that steepest ascent hill climbing with the
given potential heuristic produces an optimal plan because
picking up a ball in room A (improvement by 4) and drop-
ping a ball in room B (improvement by 2) are always pre-
ferred to moving to the other room (improvement by 1).

VisitAll
In VisitAll (IPC 2011) an agent has to visit all vertices of a
graph. In a SAS+ encoding of the tasks there is a Boolean
variable for each vertex indicating whether the vertex has
been visited and a variable storing the position of the agent.

VisitAll tasks are not in normal form but we can transform
them to normal form by replacing each operator walk-A-
B with two operators: one for the case where B is already
visited and one to visit B for the first time. The transformed
domain has the same states and successor state relation and
hence has the same correlation complexity as the original
one.
Lemma 3. VisitAll has correlation complexity at least 2.
Proof: Consider a task with a chain of four locations (l1–
l2–l3–l4) and initial location l2. Consider the following two
alive states s and s′: in both states, l2 and l3 are the locations
that have already been visited. In s, the agent is at l2. In
s′, it is at l3. From s, we see that walk-to-visited-l2-l3 is
critical; from s′, we see that its inverse walk-to-visited-l3-l2
is critical. The result follows with Theorem 5. �

Theorem 9. VisitAll has correlation complexity 2.
Proof: Let Π be a task with n locations l1, . . . , ln forming a
connected graph. (If the graph is unconnected, the task is un-
solvable.) Let d(i, j) be the shortest path distance between li
and lj . The following weight function defines a descending,
dead-end avoiding potential function of dimension 2 for Π:

w({〈visited-li, no〉, 〈pos, lj〉}) = d(i, j)2i for all i, j.

The result then follows with the preceding lemma.
The function avoids dead ends because VisitAll is harm-

less. To show that it is descending, we consider a non-goal
state where the unvisited location with the highest index is
lm. Moving one step in the direction of lm decreases the po-
tential by at least 2m −

∑
1≤i<m 2i = 2. �

We remark that even though the construction uses ex-
ponential weights, it leads to a polynomial planning algo-
rithm because singly exponential numbers require only lin-
ear space to represent (hence computing the heuristic is not
expensive), and the length of the generated plan is at worst
quadratic in the number of locations. (It never takes more
than n steps to reach another previously unvisited location.)

Blocksworld
In Blocksworld [e.g., Slaney and Thiébaux 2001] there are
stacks of n blocks that must be rearranged from an initial
to a goal configuration. We assume the following standard
SAS+ encoding for the domain formulation without an ex-
plicit hand: for each block A there is a Boolean variable
clear-A denoting whether another block can be stacked on
top of A and a variable pos-A that specifies what is below
A. The possible values of pos-A are one value B for each
other block B and the special value T for being on the table.
Operators move a clear block from one block onto another,
from a block onto the table, or from the table onto a block.
Lemma 4. Blocksworld has correlation complexity at
least 2.

Proof: Consider a task with initial stateA–B–D–C (A is on
top of the tower) and goalA–B–C–D. MovingA fromB to
the table and its inverse are critical. We apply Theorem 5. �
Theorem 10. Blocksworld has correlation complexity 2.

Proof: Let Π be a Blocksworld task with blocks B where
sG is a goal state. We call the position of any block A in
sG its target position GA (which may be the table). If a
block is in its target position, it is correctly placed, other-
wise misplaced. For each tower in sG, we number the blocks
from top to bottom, i.e., the top block B of each tower has
level(B) = 1, the block directly below it has level 2, etc.
We call a block B controlled by a block A if B is anywhere
below A in a tower of sG. We say a block is done in a state if
it and all blocks that are below it in sG are correctly placed.

Blocksworld is undirected, and hence avoiding dead ends
is trivial. The following weight function defines a descend-
ing potential heuristic of dimension 2 for Π. The result then
follows with the preceding lemma.

Atomic features for all blocks A ∈ B:

w({〈pos-A, X〉}) = 2 for all X ∈ B \ {A}, X 6= GA

w({〈pos-A, T 〉}) =

{
−1 if GA = T

1 otherwise

Conjunctive features for all blocks A,B ∈ B where B is
controlled by A and all X ∈ dom(pos-B) with X 6= GB :

w({〈pos-A, GA〉, 〈pos-B, X〉}) = 2level(A)

In words, the conjunctive features punish situations where
block A is correctly placed while block B controlled by A
is misplaced. We now show that every reachable non-goal
state s has an improving successor s′.

If all not-done blocks are on the table in s, consider a not-
done blockAwhereGA is done. MovingA ontoGA reduces
the heuristic value by w({〈pos-A, T 〉}) = 1.

Otherwise, s has a tower of at least two blocks such that
the top block A is not done. Let B denote the block below
A. Consider state s′ reached by moving A onto the table.

IfA is misplaced in s, then the atomic features change the
heuristic value byw({〈pos-A, T 〉})−w({〈pos-A, B〉}) in s′,
which is−1 or−3 and hence an improvement. The conjunc-
tive features can only change if A is correctly placed in s′,
which implies GA = T . Then A controls no other blocks,

000

001

010

011

100

101

110

111

Figure 1: State space of a planning task with correlation
complexity 3. The task has three binary variables v1, v2

and v3, and a node with label xyz represents the state
{〈v1, x〉, 〈v2, y〉, 〈v3, z〉}. Each edge represents an operator
with three preconditions and one effect. The initial state is
000 and the only goal state is 100.

and hence no conjunctive feature becomes true. Conjunctive
features related to blocks controlling A may become false,
but this only improves the heuristic value further.

If A is correctly placed in s, the part of the heuristic value
that is due to atomic features increases by 1 when going from
s to s′. The change from conjunctive features is

∆ =
∑

correctly placed C∈B
C controls A

2level(C) −
∑

misplaced D∈B
A controls D

2level(A).

A controls at least one misplaced block D because A is not
done in s, and hence the right sum is at least 2level(A). The
left sum is at most

∑level(A)−1
i=1 2i = 2level(A) − 2, where the

maximum is attained if all blocks controllingA are correctly
placed in s. We get ∆ ≤ (2level(A) − 2) − 2level(A) = −2.
This compensates the increase of 1 from the atomic features:
s′ is an improving successor. This completes the proof. �

Similar to VisitAll, the potential heuristics give rise to
a polynomial planning algorithm despite the exponential
weights. It is easy to verify that hill-climbing with these
potential heuristics moves each block at most two times
(steepest ascent hill-climbing) or three times (simple hill-
climbing).

Tasks with Higher Correlation Complexity
All the domains we studied so far have correlation complex-
ity 2. The natural question is whether there are tasks with
higher correlation complexity. We now answer this ques-
tion in the affirmative by giving an example of a planning
task with correlation complexity 3. The state space of the
example task is shown in Figure 1. We obtained this task
by mimicking the construction of the reflected binary code,
also known as Gray code (Gray 1953). Gray code is based on
nested layers of reflections, and because of these reflections,
intuitively speaking, the state changes that need to be made
in the example task in one half of the state space are exactly
the opposite of the state changes that need to be made in the
other half. This makes the “correct” operator to take heavily
dependent on context and hence potential heuristics of low
dimension cannot give sufficient guidance for this task.

Lemma 5. The planning task in Figure 1 has correlation
complexity at least 3.

Proof: Any descending potential function for the task has
to strictly decrease along the (unique) optimal plan. As the
heuristic values are linear combinations of weights, each
step in the plan yields a linear constraint over weights that
is a necessary condition for a given potential function to be
descending. For example, for the first step, we get the con-
straint

w0?? + w?0? + w??0 + w00? + w0?0 + w?00

> w0?? + w?0? + w??1 + w00? + w0?1 + w?01.

Here,w0?? denotes the weight for the feature {〈v1, 0〉},w0?1

denotes the weight for the feature {〈v1, 0〉, 〈v3, 1〉}, etc.
Using basic algebra or a solver for linear programs, we

can verify that there is no solution that satisfies all con-
straints. �

Intuitively, the reason why potential heuristics of dimen-
sion 2 are not sufficient for the example is that one has to
consider the values of both v1 and v2 to decide whether v3

should be changed from 0 to 1 to advance towards the goal,
or whether the opposite transition is needed. Moreover, this
dependency on v1 and v2 cannot be expressed by linear com-
binations of v1 and v2 because the correct decision is gov-
erned by their exclusive-or combination, v1 ⊕ v2.

Theorem 11. The planning task in Figure 1 has correlation
complexity 3.

Proof: As mentioned in Section , the correlation complexity
of a planning task is bounded from above by the number of
state variables in the task. The result then follows with the
preceding lemma. �

This result concludes our case studies. In the following
sections, we compare correlation complexity to related con-
cepts from the literature.

Relation to Persistent Hamming Width
Chen and Giménez (2007) introduced four related concepts
for measuring the width of a planning task. Width is an indi-
cator of complexity: they describe a planning algorithm that
finds solutions for solvable planning tasks in time that scales
exponentially (only) in the width of the task.

The most general of the width concepts considered by
Chen and Giménez is persistent Hamming width. A planning
task has persistent Hamming width k if it is unsolvable, or if
from every reachable non-goal state s, it is possible to reach
a state s′ where the set of satisfied goals in s′ is a strict su-
perset of the set of satisfied goals in s, and none of the states
on the path from s to s′ differs from s in more than k state
variables.

Unlike correlation complexity, which is defined for all
planning tasks, persistent Hamming width is undefined for
solvable planning tasks where an unsolvable state can be
reached. The planning algorithm described by Chen and
Giménez is incomplete when applied to such tasks. How-
ever, for planning domains with bounded width, it is a com-
plete polynomial-time planning algorithm.

The work by Chen and Giménez resembles the state space
topology study of Hoffmann (2005) in the sense that it mea-
sures how much work a search algorithm must perform to
compensate for inaccuracies of a heuristic. (Even though
Chen and Giménez do not explicitly consider heuristics,
their search algorithm behaves similarly to enforced hill-
climbing using a heuristic counting the number of unsat-
isfied goals.) In contrast, correlation complexity measures
how complex a heuristic must be in order to guide a search
algorithm directly to the goal. As the main purpose of the
search component in a heuristic search algorithm is to com-
pensate for inaccuracies of the heuristic, needing more com-
plex heuristics vs. needing more search can be viewed as two
faces of the same coin.

It is not hard to find examples where correlation complex-
ity and persistent Hamming width widely disagree on the
“difficulty” of a planning domain. This is to be expected: in
both cases, the intuition is that low complexity means that
solutions can be found efficiently (in the case of correlation
complexity with the added difficulty that low complexity
only means that accurate potential heuristics of low dimen-
sion exist, but does not tell us how to construct them). The
converse is not necessarily true: if a domain has high per-
sistent Hamming width (for example), this does not imply
that planning is hard in this domain, only that the particular
algorithm considered by Chen and Giménez might not be
suitable for it.

A simple example of disagreement between the two mea-
sures are domains with reachable dead ends, like the Span-
ner domain (Section). It has correlation complexity 2, but no
well-defined persistent Hamming width. On tasks with more
than one spanner, the algorithm by Chen and Giménez will
fail because it tries to achieve one of the goals as quickly
as possible, which means picking up only one spanner and
reaching a dead end.

The two measures can also disagree in domains with-
out dead ends. As an example, consider a family of plan-
ning tasks where the n-th task encodes an n-ary binary
counter counting backwards. We can encode this task with
n state variables {vn−1, . . . , v0}, all with domain {0, 1}, set
to 1 initially and required to be 0 in the goal. The state
{〈vn−1, dn−1〉, . . . , 〈v0, d0〉} represents the counter value∑n−1

i=0 di2
i, and there are n operators that encode decre-

menting the counter by 1. (Each operator encodes one of
the cases of 0, . . . , n− 1 carries.)

The correlation complexity for all these tasks is 1: us-
ing weight 2i for the feature {〈vi, 1〉} results in the perfect
heuristic. The persistent Hamming width of the n-th task is
n: from the state representing the counter value 2n−1, all n
state variables must be changed to make progress towards
the goal.

In a later paper, Chen and Giménez (2009) generalized
persistent Hamming width to macro persistent Hamming
width, which additionally allows the use of macros com-
puted on the fly that temporarily pass through states whose
Hamming distance from the current state is larger than k.
This modification leads to tractability results for some do-
mains where no such results could be obtained for persis-
tent Hamming width, such as a formulation of Blocksworld

with an explicit arm. However, adding macros does not in-
fluence the overall greediness of the approach (trying to
achieve each individual goal as quickly as possible), and
hence the modified algorithm still gets trapped in dead ends
in the Spanner domain. It also does not improve over per-
sistent Hamming width in the binary counter domain, al-
though it does lead to tractability in a formulation of Tow-
ers of Hanoi, where it generates (compact representations
of) exponentially long plans in polynomial time (Chen and
Giménez 2009).

Relation to Serialized Iterated Width
Lipovetzky and Geffner (2012; 2014) also introduced a no-
tion of width for planning tasks. Very roughly speaking, ac-
cording to their definition a planning task has width k if in-
teractions between at most k facts must be considered in or-
der to solve a planning task. Lipovetzky and Geffner observe
that optimal solutions to a planning task can be found in time
that is only exponential in the width of the task.

Most of the commonly considered planning domains do
not admit polynomial-time optimal planning algorithms un-
less P = NP (Helmert 2003), and consequently most plan-
ning domains do not have bounded width. To the best of
our knowledge, no examples of planning domains with
bounded width have been described in the literature. How-
ever, Lipovetzky and Geffner observe that many common
benchmark domains have bounded width when restricted to
the case where the goal is a single fact, and that many of
them can be solved by serialization, focusing on one goal
fact at a time. (This does not contradict the previously men-
tioned complexity result because such serialized solutions
are not necessarily optimal, even if the plans for the indi-
vidual goal facts are.) Based on this observation, they intro-
duce the Serialized Iterated Width algorithm, which achieves
polynomial runtime on a wide range of benchmark domains.

This notion of width and the Serialized Iterated Width al-
gorithm do not give rise to polynomial algorithms in cases
like the Spanner domain (Section) that require global re-
source reasoning. Spanner tasks with n spanners have width
Θ(n) and cannot be serialized in the sense of Lipovetzky and
Geffner, as focusing on one subgoal at a time and solving
it optimally necessarily leads to a dead end. Similarly, the
binary counter example from the previous section requires
unbounded width to be solved with the Serialized Iterative
Width algorithm: this is generally true for planning tasks
where an exponential number of steps can be required to
achieve the next goal fact. These are examples of domains
with bounded correlation complexity but unbounded width.

However, it is also possible to construct tasks with low
width and high correlation complexity. Given any planning
task with correlation complexity n, we can create a new task
(not equivalent to the original one) with width 1 by perform-
ing the usual conversion to a single goal fact (adding an arti-
ficial goal fact that can be achieved once the actual goal has
been reached) and then adding a “cheating” operator that is
only applicable in the initial state and directly achieves the
artificial goal. The resulting task can be solved by a plan
consisting only of the cheating operator and has width 1.

However, it still has correlation complexity n because corre-
lation complexity considers all alive states, and hence hav-
ing one obvious short solution does not automatically lead
to low correlation complexity.

Conclusion
We introduced a new measure for the complexity of clas-
sical planning tasks. Correlation complexity measures how
complex the features of a potential heuristic must be for the
induced state space to contain no local minima.

Correlation complexity is a way to quantify how inter-
related the state variables of a task are. Planning tasks for
which it is necessary to take into account large conjunctions
of facts have high correlation complexity. The benchmark
planning domains we studied in this paper all have a low
correlation complexity of 2. Given that potential heuristics
with low dimension can be evaluated very efficiently, our re-
sults motivate further research on how to find good features
and weights for potential heuristics automatically.

We also described an artificial planning task with correla-
tion complexity 3, but so far we have no examples of “nat-
urally occurring” planning domains that are tractable, yet
have high correlation complexity. We believe that studying
correlation complexity in a wider set of benchmark domains
could be useful to further improve our understanding of what
makes planning hard and what makes easy planning tasks
easy.

Acknowledgments
This work was supported by the Swiss National Sci-
ence Foundation (SNSF) as part of the project “Reasoning
about Plans and Heuristics for Planning and Combinatorial
Search” (RAPAHPACS).

References
Bäckström, C., and Nebel, B. 1995. Complexity results for SAS+

planning. Computational Intelligence 11(4):625–655.
Bonet, B., and van den Briel, M. 2014. Flow-based heuristics for
optimal planning: Landmarks and merges. In Proc. ICAPS 2014,
47–55.
Brafman, R., and Domshlak, C. 2013. On the complexity of plan-
ning for agent teams and its implications for single agent planning.
AIJ 198:52–71.
Chen, H., and Giménez, O. 2007. Act local, think global: Width
notions for tractable planning. In Proc. ICAPS 2007, 73–80.
Chen, H., and Giménez, O. 2009. On-the-fly macros. In Logic,
Language, Information and Computation, volume 5514 of LNCS,
155–169. Springer-Verlag.
Edelkamp, S. 2001. Planning with pattern databases. In Proc. ECP
2001, 84–90.
Gray, F. 1953. Pulse code communication. US Patent 2,632,058.
Haslum, P., and Geffner, H. 2000. Admissible heuristics for opti-
mal planning. In Proc. AIPS 2000, 140–149.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern database
heuristics for cost-optimal planning. In Proc. AAAI 2007, 1007–
1012.

Haslum, P.; Bonet, B.; and Geffner, H. 2005. New admissible
heuristics for domain-independent planning. In Proc. AAAI 2005,
1163–1168.
Helmert, M., and Mattmüller, R. 2008. Accuracy of admissible
heuristic functions in selected planning domains. In Proc. AAAI
2008, 938–943.
Helmert, M. 2003. Complexity results for standard benchmark
domains in planning. AIJ 143(2):219–262.
Hoffmann, J., and Nebel, B. 2001. The FF planning system: Fast
plan generation through heuristic search. JAIR 14:253–302.
Hoffmann, J. 2005. Where ‘ignoring delete lists’ works: Local
search topology in planning benchmarks. JAIR 24:685–758.
Keyder, E.; Hoffmann, J.; and Haslum, P. 2014. Improving delete
relaxation heuristics through explicitly represented conjunctions.
JAIR 50:487–533.
Keyder, E.; Richter, S.; and Helmert, M. 2010. Sound and complete
landmarks for and/or graphs. In Proc. ECAI 2010, 335–340.
Knuth, D. E. 1992. Two notes on notation. American Mathematical
Monthly 99(5):403–422.
Lipovetzky, N., and Geffner, H. 2012. Width and serialization of
classical planning problems. In Proc. ECAI 2012, 540–545.
Lipovetzky, N., and Geffner, H. 2014. Width-based algorithms for
classical planning: New results. In Proc. ECAI 2014, 1059–1060.
Pommerening, F., and Helmert, M. 2015. A normal form for clas-
sical planning tasks. In Proc. ICAPS 2015, 188–192.
Pommerening, F.; Helmert, M.; Röger, G.; and Seipp, J. 2015.
From non-negative to general operator cost partitioning. In Proc.
AAAI 2015, 3335–3341.
Pommerening, F.; Röger, G.; and Helmert, M. 2013. Getting the
most out of pattern databases for classical planning. In Proc. IJCAI
2013, 2357–2364.
Richter, S., and Helmert, M. 2009. Preferred operators and deferred
evaluation in satisficing planning. In Proc. ICAPS 2009, 273–280.
Rintanen, J. 2012. Planning as satisfiability: Heuristics. AIJ
193:45–86.
Russell, S., and Norvig, P. 2003. Artificial Intelligence — A Mod-
ern Approach. Prentice Hall.
Seipp, J.; Pommerening, F.; and Helmert, M. 2015. New opti-
mization functions for potential heuristics. In Proc. ICAPS 2015,
193–201.
Slaney, J., and Thiébaux, S. 2001. Blocks World revisited. AIJ
125(1–2):119–153.
Suda, M. 2014. Property directed reachability for automated plan-
ning. JAIR 50:265–319.

Torralba, Á. 2015. Symbolic Search and Abstraction Heuristics for
Cost-Optimal Planning. Ph.D. Dissertation, Universidad Carlos III
de Madrid.

