
Finding Minimal Plan Reductions Using Classical Planning

MAURICIO SALERNO, Universidad Carlos III de Madrid, España
RAQUEL FUENTETAJA, Universidad Carlos III de Madrid, España
JENDRIK SEIPP, Linköping University, Sweden

While classical planning research has made tremendous progress in the last decades, many complex tasks can still only be
solved suboptimally. The satisficing plans found for these tasks often contain actions that can be removed while maintaining
plan validity. Removing such redundant actions is desirable since it can decrease the plan cost and simplify the plan. Reducing
a plan to a minimum-cost plan without redundant actions is NP-complete and previous work addressed this problem with a
compilation to weighted MaxSAT. In this work, we propose several simple and natural formulations to encode this problem as
a classical planning task, and prove that solving the resulting tasks optimally guarantees finding minimal plan reductions. We
analyze the relation of the classical planning formulations to the MaxSAT compilation, and prove theoretical properties of the
known concept of plan action landmarks. Finally, we evaluate the new approaches experimentally and show that they are
competitive with the previous state of the art in minimal plan reduction.

JAIR Associate Editor: Siddharth Srivastava

JAIR Reference Format:

Mauricio Salerno, Raquel Fuentetaja, and Jendrik Seipp. 2025. Finding Minimal Plan Reductions Using Classical Planning.
Journal of Artificial Intelligence Research 84, Article 10 (October 2025), 35 pages. doi: 10.1613/jair.1.19437

1 Introduction
Modern satisficing planning systems are able to solve large planning tasks efficiently (Lipovetzky and Geffner
2017; Richter and Westphal 2010). However, solutions found by these planners can be far from optimal, even
producing plans with redundant actions. Intuitively, an action in a plan is redundant if it can be removed without
affecting the plan’s validity. In turn, a subsequence of actions in a plan is redundant if it can be removed without
affecting validity, and plans without redundant subsequences are called perfectly justified (Fink and Yang 1992;
Nebel et al. 1997).

It is easy to see that justified plans are preferable to non-justified plans. First, cheaper plans are preferable, and
removing redundant actions can lead to cost reductions. Second, in a plan reuse setting (Fink and Yang 1992),
where a plan found for a task is reused to solve a subtask, removing redundant actions which are only related to
goals in the original task that are not considered in the subtask can lead to a more efficient plan. Third, Olz and
Bercher 2019 argue that removing redundant actions also improves plan explanations. Fourth, finding justified
plans is particularly important in settings such as top-𝑘 planning (Katz and Sohrabi 2022; Katz, Sohrabi, and
Udrea 2020; Katz, Sohrabi, Udrea, and Winterer 2018; Speck et al. 2020), especially when diversity is required
(Katz, Sohrabi, and Udrea 2022; Srivastava et al. 2007). Alternative plans with redundant actions are bound to
have little practical value since they are the result of adding loops or other types of redundant actions to actually

Authors’ Contact Information: Mauricio Salerno, orcid: 0000-0002-7664-5847, msalerno@pa.uc3m.es, Universidad Carlos III de Madrid,
Leganés, Madrid, España; Raquel Fuentetaja, orcid: 0000-0002-3856-2629, rfuentet@inf.uc3m.es, Universidad Carlos III de Madrid, Leganés,
Madrid, España; Jendrik Seipp, orcid: 0000-0002-2498-8020, jendrik.seipp@liu.se, Linköping University, Linköping, Sweden.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2025 Copyright held by the owner/author(s).
doi: 10.1613/jair.1.19437

Journal of Artificial Intelligence Research, Vol. 84, Article 10. Publication date: October 2025.

https://doi.org/10.1613/jair.1.19437
https://orcid.org/0000-0002-7664-5847
https://orcid.org/0000-0002-3856-2629
https://orcid.org/0000-0002-2498-8020
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1613/jair.1.19437

10:2 • Salerno, Fuentetaja & Seipp

useful plans. Paths that are bound to contain redundant actions can also be pruned dynamically during the search
(Karpas and Domshlak 2011).

The existence of redundant actions in plans generated by modern planners is not limited to top-k settings, and
it has been documented widely (Balyo, Chrpa, et al. 2014; Chrpa et al. 2012a,b; Med and Chrpa 2022; Nakhost
and Müller 2010). For example, in the agile setting, where the goal is to find a plan as fast as possible, redundant
actions in plans are quite common. We will analyze this in detail in Section 7.1, but highlight some extreme cases
here already: 50% of the actions in plans found by the Freelunch Madagascar planner (Balyo and Gocht 2018)
for the DataNetwork domain are redundant. Similarly, 55% of actions are redundant in plans found by YASHP3
(Vidal 2014) for the Hiking domain. These examples show that in some settings it is crucial to identify redundant
actions in plans. However, checking whether a plan is perfectly justified is NP-complete (Fink and Yang 1992;
Nakhost and Müller 2010), so it is important to develop efficient methods.

In our work, we filter redundant actions from plans in a post-planning step while preserving the order of the
remaining actions, in the same spirit as previous work (Balyo, Chrpa, et al. 2014; Chrpa et al. 2012a,b; Fink and
Yang 1992; Med and Chrpa 2022; Nakhost and Müller 2010). Specifically, we focus on obtaining perfectly justified
plans of minimum cost. These plans are referred to as minimal reductions of the original plan (Nakhost and
Müller 2010). To our knowledge, there is only one previous approach for finding minimal plan reductions: Balyo,
Chrpa, et al. 2014 cast the problem as a weighted partial MaxSAT formula. While eliminating redundant actions
reduces the plan length and often its cost, our main motivation is to find justified plans. In contrast, optimizing
plan length or cost is central for post-planning plan optimization, which usually involves modifying the plan
actions and/or the action order (Muise et al. 2016; Olz and Bercher 2019; Say et al. 2016; Siddiqui and Haslum
2015; Waters et al. 2020). Bercher et al. (2024) present a comprehensive survey on plan optimization, including
some methods focused in removing redundant actions from plans.

Given a plan for a planning task, we propose several automatic reformulations to a new planning task whose
optimal solution is a minimal reduction of the original plan. Automated planning is PSPACE-complete even in its
simplest form (Bylander 1994), but there are several reasons that justify its use to find minimal plan reductions:
(1) the planning formulation is natural, since choosing which actions are needed to go from an initial state to a
goal state is planning; (2) it is simple, in contrast to the previous weighted MaxSAT approach; (3) in many cases it
is also more efficient; and (4) it is portable to other planning settings where the solution is a sequence of actions,
such as temporal or conformant planning (Bonet and Geffner 2000).

This article extends a conference publication (Salerno et al. 2023a). In that paper, we presented the first classical
planning formulation to find minimal plan reductions. Here, we make the following novel contributions:

• We thoroughly review existing work on eliminating redundant actions from plans.
• We study, both theoretically and empirically, four different alternative formulations of the minimal reduction
problem as a classical planning task, including the one from the conference paper, which is explained in
more detail here including an analysis of its theoretical properties.
• We analyze fix-point plan action landmarks theoretically (Salerno et al. 2023a).
• We introduce the concept of always redundant actions, characterizing actions that can never be part of a
minimal reduction of a plan.
• We identify situations where the use of planning is preferable to the weighted MaxSAT approach by Balyo,
Chrpa, et al. 2014, and vice versa.
• We carry out a comprehensive evaluation, aimed at
– empirically comparing the different classical planning-based approaches among themselves and with the
weighted MaxSAT approach; and

– obtaining empirical evidence for the identified situations where a planning approach is preferable to
weighted MaxSAT.

Journal of Artificial Intelligence Research, Vol. 84, Article 10. Publication date: October 2025.

• 10:3

The rest of the article is organized as follows: Section 2 introduces background on classical planning and
plan justifications. Section 3 summarizes related work. Section 4 presents four planning compilations and
their theoretical properties. Sections 5 and 6 introduce plan action landmarks and always unnecessary actions,
respectively. Finally, Section 7 contains the empirical evaluation, before Section 8 concludes the paper.

2 Background
In this section we describe the planning formalism we use throughout this work, as well as the concepts of plan
justification and redundant actions. We consider classical planning tasks in the SAS+formalism with action costs
(Bäckström and Nebel 1995).

Definition 1 (planning task). A planning task is a tuple Π = ⟨V,A,I,G⟩, where:
• V is a set of finite-domain state variables 𝑣 , each with a finite domain D(𝑣). Any pair ⟨𝑣, 𝑑⟩ such that 𝑣 ∈ 𝑉
and 𝑑 ∈ D(𝑣) is a fact, written as 𝑣 ↦→ 𝑑 . For Boolean variables 𝑣 , we refer to fact 𝑣 ↦→ ⊤ as 𝑣 , and 𝑣 ↦→ ⊥ as

¬𝑣 . A partial state 𝑠 is a mapping of a subset of variables vars(𝑠) ⊆ V to values in their respective domains,

and we often treat partial states as sets of facts. The value of variable 𝑣 ∈ vars(𝑠) in partial state 𝑠 is denoted

as 𝑠 [𝑣] ∈ D(𝑣). Partial states that assign values to all variables (vars(𝑠) = V) are called states. The set of all
states in the planning task is denoted as 𝑆 (Π).
• A is a finite set of actions. Each action 𝑎 ∈ A is a pair ⟨𝑝𝑟𝑒 (𝑎), eff (𝑎)⟩, where pre(𝑎) and eff (𝑎) are both
partial states defining the precondition and the effect of 𝑎, respectively. An action 𝑎 ∈ A is applicable in

state 𝑠 iff pre(𝑎) ⊆ 𝑠 . Applying action 𝑎 in 𝑠 yields the successor state 𝑠 [[𝑎]], with 𝑠 [[𝑎]] [𝑣] = eff (𝑎) [𝑣] if
𝑣 ∈ vars(eff (𝑎)) and as 𝑠 [[𝑎]] [𝑣] = 𝑠 [𝑣] otherwise. Each action 𝑎 ∈ A has a non-negative cost 𝑐 (𝑎) ∈ R+0 .
• I is the initial state.
• G is a partial state describing the goal condition.

A solution or plan for Π is an action sequence 𝜋 = ⟨𝑎1, . . . , 𝑎𝑛⟩ that, when applied in succession starting from
the initial state, induces a state sequence S𝜋 = ⟨𝑠0, . . . , 𝑠𝑛⟩ such that 𝑠0 = I, G ⊆ 𝑠𝑛 , and for each 𝑖 with 1 ≤ 𝑖 ≤ 𝑛,
𝑎𝑖 is applicable in 𝑠𝑖−1, and 𝑠𝑖 = 𝑠𝑖−1 [[𝑎𝑖]]. We denote the length of plan 𝜋 = ⟨𝑎1, . . . , 𝑎𝑛⟩ as |𝜋 | = 𝑛. The cost of
a plan 𝜋 is 𝑐 (𝜋) = ∑𝑛

𝑖=1 𝑐 (𝑎𝑖). A plan is optimal if there is no cheaper plan. We slightly abuse notation and let
𝑎𝑖 ∈ 𝜋 denote that action 𝑎𝑖 occurs at position 𝑖 of 𝜋 .

Example 1. A well-known domain in automated planning is Blocksworld (Slaney and Thiébaux 2001). In this
domain, a set of blocks can be either on a table or stacked on top of each other. A mechanical arm can hold one
block at a time, and it can place the block it is holding on the table or stack it on top of another block. The arm
can only pick up blocks that do not have another block on top of them. We will use the Blocksworld task in
Figure 1 as a running example. Figure 1a shows the initial state, where four different blocks are on the table, and
Figure 1b shows the goal description, where block A is on the table, while B is on top of A. Figure 2 presents a
SAS+representation of the task.

It is easy to see that the single optimal plan for this planning task is: 𝜋1 = ⟨pick-up-b, stack-b-a⟩. However,
an equally valid plan for this planning task is: 𝜋2 = ⟨pick-up-c, stack-c-d, pick-up-b, stack-b-a⟩. Since 𝜋1 is a
subsequence of 𝜋2 and both achieve the goals, it is trivial for a human to realize that the actions pick-up-c, stack-c-d
can be removed from the plan and still reach the goals. In other words, they are not justified.
The notion of action and plan justifications can be traced back to the early 1990s. Fink and Yang 1992 define

three types of plan justification: backwards justification, well-justification and perfect justification. Backwards
justification is the weakest of the three, and it is defined using the notion of causal links between actions in a plan
(McAllester and Rosenblitt 1991). In essence, there is a causal link between two actions 𝑎𝑖 and 𝑎 𝑗 , if 𝑎𝑖 produces a
fact 𝑓 that is a precondition of 𝑎 𝑗 , and no action in between them overwrites that fact. The set of causal links of a
plan can be extracted in polynomial time (Jiménez Celorrio et al. 2013).

Journal of Artificial Intelligence Research, Vol. 84, Article 10. Publication date: October 2025.

10:4 • Salerno, Fuentetaja & Seipp

A B C D

(a) Initial state

A

B

(b) Goal description

Fig. 1. Example Blocksworld planning task.

Definition 2 (causal link). Given a planning task Π = ⟨V,A,I,G⟩ and a plan 𝜋 = ⟨𝑎1, 𝑎2, . . . , 𝑎𝑛⟩ for Π,
there exists a causal link ℓ = ⟨𝑎𝑖 , 𝑓 , 𝑎 𝑗 ⟩ between actions 𝑎𝑖 and 𝑎 𝑗 (1 ≤ 𝑖 < 𝑗 ≤ 𝑛) if

• there is a fact 𝑓 = 𝑣 ↦→ 𝑑 ∈ eff (𝑎𝑖) ∩ pre(𝑎 𝑗), and
• there is no action 𝑎𝑘 with 𝑖 < 𝑘 < 𝑗 , such that 𝑣 ∈ 𝑣𝑎𝑟𝑠 (eff (𝑎𝑘)).

An action is backward justified if it is causally related to a goal fact: there is a chain of causal links that connects
the action to a goal fact.

Definition 3 (backward justified action). Given a planning task Π = ⟨V,A,I,G⟩ and a plan 𝜋 =

⟨𝑎1, 𝑎2, . . . , 𝑎𝑛⟩ for Π, an action 𝑎𝑖 ∈ 𝜋 is backward-justified if at least one of the following conditions is true:

• Action 𝑎𝑖 achieves a goal fact that is not achieved by any action after 𝑎𝑖 . Formally, there is a fact 𝑓 ∈ eff (𝑎𝑖)∩G
such that there is no action 𝑎 𝑗 ∈ 𝜋 with 𝑗 > 𝑖 and 𝑓 ∈ eff (𝑎 𝑗).
• There exists a causal link ℓ = ⟨𝑎𝑖 , 𝑓 , 𝑎 𝑗 ⟩ and 𝑎 𝑗 is backward justified.

Backward justification fails to capture if an action can be removed from the plan without invalidating it,
because it only considers the last achiever of a fact before an action needs it. In other words, it could be the
case that an action that can be removed from the plan is backward justified. The next type of justification is
well-justification, which captures if a single action can be removed from the plan without invalidating it:

Definition 4 (well-justifiedaction). Given a planning taskΠ = ⟨V,A,I,G⟩ and a plan𝜋 = ⟨𝑎1, 𝑎2, . . . , 𝑎𝑛⟩
for Π, an action 𝑎𝑖 ∈ 𝜋 is well-justified if and only if its removal from the plan invalidates 𝜋 .

A plan is backward/well justified if all of its actions are backward/well justified. The action sequence resulting
from removing any number of actions from a plan (including no actions) is a subsequence of the original plan.
When the resulting subsequence is also a plan for the planning task, we call it a plan reduction.

Definition 5 (plan reduction). Let 𝜋 be a plan for a planning task Π and 𝜌 be a subsequence of 𝜋 . Then 𝜌 is

a plan reduction of 𝜋 if and only if 𝜌 is also a plan for Π.

Throughout the article, when it is necessary to relate a specific subsequence of actions of length𝑚 with the
sequence (plan) of length 𝑛,𝑚 ≤ 𝑛, from which it originates, we use the notation ⟨𝑎𝑓 (1) , . . . , 𝑎𝑓 (𝑚)⟩, where 𝑓 is a
strictly monotonic function mapping the action indices in the subsequence to action indices in the sequence. For
instance, if the plan is ⟨𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5⟩, the subsequence containing the first and third actions is ⟨𝑎𝑓 (1) , 𝑎𝑓 (2)⟩
with 𝑓 (1) = 1 and 𝑓 (2) = 3.

Journal of Artificial Intelligence Research, Vol. 84, Article 10. Publication date: October 2025.

• 10:5

Variables

V = {arm, a-pos, b-pos, c-pos, d-pos, a-top, b-top, c-top, d-top}
Domains

D(arm) = {free, full}
D(a-pos)= {arm, 𝑏, 𝑐, 𝑑, table}
D(a-top) = {clear, blocked}
. . .

Actions

A = {pick-up-a, put-down-a, stack-a-b, unstack-a-b, . . . }
pick-up-a = ⟨ {a-pos ↦→ 𝑡𝑎𝑏𝑙𝑒, a-top ↦→ 𝑐𝑙𝑒𝑎𝑟, arm ↦→ free},

{a-pos ↦→ 𝑎𝑟𝑚, arm ↦→ full}⟩
put-down-a= ⟨ {a-pos ↦→ 𝑎𝑟𝑚},

{a-pos ↦→ 𝑡𝑎𝑏𝑙𝑒, arm ↦→ free}⟩
stack-a-b = ⟨ {a-pos ↦→ 𝑎𝑟𝑚, b-top ↦→ 𝑐𝑙𝑒𝑎𝑟 },

{a-pos ↦→ 𝑏, b-top ↦→ 𝑏𝑙𝑜𝑐𝑘𝑒𝑑, arm ↦→ free}⟩
unstack-a-b= ⟨ {a-pos ↦→ 𝑏, a-top ↦→ 𝑐𝑙𝑒𝑎𝑟, arm ↦→ free},

{a-pos ↦→ 𝑎𝑟𝑚, b-top ↦→ 𝑐𝑙𝑒𝑎𝑟, arm ↦→ full}⟩
. . .

Initial state

I = { a-pos ↦→ 𝑡𝑎𝑏𝑙𝑒, b-pos ↦→ 𝑡𝑎𝑏𝑙𝑒, c-pos ↦→ 𝑡𝑎𝑏𝑙𝑒, d-pos ↦→ 𝑡𝑎𝑏𝑙𝑒, a-top ↦→ 𝑐𝑙𝑒𝑎𝑟 ,
b-top ↦→ 𝑐𝑙𝑒𝑎𝑟, c-top ↦→ 𝑐𝑙𝑒𝑎𝑟, d-top ↦→ 𝑐𝑙𝑒𝑎𝑟, arm ↦→ free}

Goal state

G = { a-pos ↦→ 𝑡𝑎𝑏𝑙𝑒, b-pos ↦→ 𝑎, b-top ↦→ 𝑐𝑙𝑒𝑎𝑟 }

Fig. 2. SAS+representation of the Blocksworld task in Figure 1. For each block, there is a variable representing its position,
which can be on the table, on top of another block, or being held by the mechanical arm. Another variable represents whether
a block has a block on top of it. The last variable represents if the arm is holding a block or if it is free. For each block, there is
one action to pick it up from the table, and one to put it down on the table. Finally, for each pair of blocks, there are actions
to either stack or unstack them.

A plan is well-justified if all of its actions are well-justified, which means that a plan 𝜋 is well-justified if and
only if there does not exist a plan reduction 𝜌 such that |𝜌 | = |𝜋 | − 1 (i.e. no action can be removed individually
without invalidating the plan). Going back to our running example, the plan ⟨pick-up-b, stack-b-a, pick-up-c⟩ is
not well-justified, since action pick-up-c can be removed from the plan without affecting its validity. However,
the plan ⟨pick-up-c, stack-c-d, pick-up-b, stack-b-a⟩ is well-justified: removing any action creates an invalid plan
(either because some actions are not applicable or because the goals are not achieved). In order to identify this
type of redundant actions, we need the strongest type of justification, which is the main interest of this work:
perfect justification. In contrast to backward and well-justification, perfect justification is defined over plans
instead of over actions.

Definition 6 (Perfect justification). A plan 𝜋 for planning task Π is perfectly justified if and only if there

is no plan reduction 𝜌 of 𝜋 such that |𝜌 | < |𝜋 |.

This means that a plan is perfectly justified if no non-empty subset of actions can be removed from it without
invalidating the plan, so the plan ⟨pick-up-c, stack-c-d, pick-up-b, stack-b-a⟩ is not perfectly justified.

Journal of Artificial Intelligence Research, Vol. 84, Article 10. Publication date: October 2025.

10:6 • Salerno, Fuentetaja & Seipp

The task of finding a well-justified plan reduction of a given plan can be solved in polynomial time, while
verifying if a plan is perfectly justified, as well as the problem of finding a perfectly justified plan reduction, are
NP-complete (Fink and Yang 1992; Nakhost and Müller 2010). Finally, the task of finding the cheapest perfectly
justified plan reduction of a given plan is known as the minimal reduction problem (Balyo, Chrpa, et al. 2014;
Nakhost and Müller 2010).

3 Related Work on Action Elimination
Over the years, several methods have been proposed to identify and remove redundant actions from plans. We
group them into two coarse categories: optimal action elimination methods, and sub-optimal (greedy) action
elimination methods. Optimal action elimination methods produce a minimal reduction, while greedy action
elimination methods can quickly remove redundant actions, but have no guarantees that the resulting plan
reduction is minimal. The main focus of this work are optimal action elimination methods.

3.1 Greedy Methods
Fink and Yang 1992 present, to the best of our knowledge, the first three methods to identify and eliminate
redundant actions from plans.
(1) The first method, which we will call FY1, guarantees producing backward justified plans. FY1 checks, for

each action in a plan, if there exists a causal link chain rooting from the action to a goal fact. Any action
that is not causally linked to a goal is removed, ensuring that the resulting plan is backward justified.

(2) The second method, FY2, yields well-justified plans. FY2 checks, for each action 𝑎 in the plan, if the sequence
resulting from removing 𝑎 is still a plan. If so, 𝑎 is removed. This loop is repeated until no actions can be
removed from the plan, producing a well-justified plan.

(3) The final method, FY3, greedily tries to remove each action from the plan. If any of the remaining actions
are not applicable afterwards, they are also removed. If the resulting sequence is not a plan, FY3 restores
the actions removed in this step. Otherwise, if the resulting sequence is a plan, the method continues with
the same greedy process for each remaining action. This process guarantees finding well-justified plans,
and it was actually rediscovered by Nakhost and Müller 2010.

Chrpa et al.Chrpa et al. 2012a,b study redundant actions from the view of action dependencies. If two actions
in a plan are inverse (applying the second after the first has the same effect as not applying any of them), and no
action in between them depends on the first action, then they can both be removed from the plan.

Balyo, Chrpa, et al. 2014 build on FY3, taking into account action costs when deciding which set of redundant
actions to remove from the plan. The original method removes sets of redundant actions as soon as it discovers
them, but their algorithm is a bit less greedy, by identifying multiple sets of redundant actions, and eliminating
the one with the highest cost. Med and Chrpa 2022 further improve this greedy action elimination method by
introducing Plan Action Landmarks (PALs) and action cycles.
We will explain plan action landmarks in detail in Section 5, but put simply, a plan action landmark is an

action that must be a part of any plan reduction (i.e., it is never redundant). Action cycles extend the notion of
inverse actions from pairs of actions to sequences, identifying (not necessarily consecutive) subsequences of
actions in a plan that, if removed, lead to the same state after the execution of the last action. Naively, one could
try to preprocess a plan by identifying loops or action cycles in the plan and removing them. However, while
the resulting sequence (without the loop) will be a plan, this cannot be done if the purpose is to find a minimal
reduction. We illustrate this with a simple example: a task with three Boolean variables 𝑣1, 𝑣2, 𝑣3. The initial state
is I = {¬𝑣1,¬𝑣2,¬𝑣3} and the goal is G = {𝑣1, 𝑣2, 𝑣3}. Consider the plan 𝜋 = ⟨𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5⟩, where:
• 𝑎1 = ⟨{¬𝑣1,¬𝑣2}, {𝑣1, 𝑣2}⟩
• 𝑎2 = ⟨{𝑣1, 𝑣2}, {¬𝑣1,¬𝑣2}⟩

Journal of Artificial Intelligence Research, Vol. 84, Article 10. Publication date: October 2025.

• 10:7

• 𝑎3 = ⟨{¬𝑣1}, {𝑣1}⟩
• 𝑎4 = ⟨{¬𝑣3}, {𝑣3}⟩
• 𝑎5 = ⟨{¬𝑣2}, {𝑣2}⟩

After applying 𝑎1 and 𝑎2, we end up in the initial state again. So removing all action cycles from 𝜋 yields plan
𝜋 ′ = ⟨𝑎3, 𝑎4, 𝑎5⟩. Assuming unit costs for all actions, the minimal reduction of 𝜋 ′ is ⟨𝑎3, 𝑎4, 𝑎5⟩, since no action is
redundant. In contrast, the minimal reduction of 𝜋 is ⟨𝑎1, 𝑎4⟩.

3.2 Optimal Methods
To the best of our knowledge, the only previous optimal method to solve the minimal reduction problem was
proposed by Balyo, Chrpa, et al. 2014. Given a planning task Π and a plan 𝜋 = ⟨𝑎1, . . . , 𝑎𝑛⟩ for Π, they define a
CNF formula 𝐹Π,𝜋 , such that each satisfying assignment represents a plan reduction of 𝜋 . By solving 𝐹Π,𝜋 with
a weighted partial MaxSAT solver, they find a plan reduction 𝜋 ′ of minimal cost. Then, by solving a new 𝐹Π,𝜋 ′

created from this reduction using unit cost clauses, they guarantee there are no zero-cost redundant actions
in the plan reduction, finding a minimal reduction. We include a full description of the formulation of 𝐹Π,𝜋 in
Appendix A.

3.3 Plan Justification Beyond Classical Planning
Muise et al. 2016 proposed a partial weighted MaxSAT encoding that is able to identify redundant actions in
plans, as well as produce partial order plans from linear plans. A partially ordered plan, instead of imposing a
total order over the actions, specifies a set of ordering constraints (action x is before action y). Their encoding is
able to find a minimum cost least commitment partial order plan, that, given an input partially ordered plan, finds
a partially ordered plan with the cheapest cost that has the least possible ordering constraints over the actions.
Solving this problem can potentially generate cheaper and more flexible plans compared to finding minimal
reductions, as it also considers re-ordering actions as well as partially ordered plans. However, while related to
our work, re-ordering and de-ordering are distinct research questions with different aims and challenges. Finding
a minimal-cost reordering can be exponentially harder than finding minimal reductions in practice, as it requires
considering all possible permutations of subsets of actions, whereas minimal reduction only considers subsets.
The computational difficulty not only differs significantly in theory, but it can also be observed in practice: Muise
et al. 2016 consider re-orderings and mention that plans with more than 200 actions are problematic for their
method, since their encoding is too big to fit in memory. In contrast, our methods handle input plans with more
than 3000 steps within a few seconds.

More recently, Sreedharan et al. 2023 proposed a generalization of plan justifications to policies, in the context
of fully observable, non-deterministic planning (FOND). The work focuses on generalizing the notion of well-
justified actions. An action is well-justified in a policy if it is needed in every possible trace from the initial state
to a goal state. They propose a planning compilation to identify when an action is well-justified in this context.
When this new planning task is unsolvable, the action in question is well-justified.

4 Minimal Reduction as Planning
In this section, we introduce four planning formulations to solve the minimal reduction problem. First, we describe
the design space within which we create the formulations, motivating each option and analyzing their trade-offs.
We then describe each formulation and show that an optimal solution to the resulting planning tasks is a minimal
reduction of the input plan. Finally, we compare the theoretical properties of each formulation, which will help
to interpret the empirical results shown in Section 7.

Journal of Artificial Intelligence Research, Vol. 84, Article 10. Publication date: October 2025.

10:8 • Salerno, Fuentetaja & Seipp

4.1 Design Space
Given a planning task Π and a plan 𝜋 that solves Π, the minimal reduction problem asks for a least-cost, perfectly
justified reduction 𝜋 ′ of 𝜋 . To solve this minimal reduction problem with a classical planner, we must devise
a new planning task Π′ that allows applying or skipping the actions of the original plan 𝜋 , while preserving
their relative order, and eventually achieving the goal of Π. The simplest task variant that guarantees this is a
formulation where each action in the plan is either applied or skipped in order. This implies that plans for the
new task have the same length as the input plan. However, when many consecutive actions 𝜋 are redundant, it
might be more efficient to skip multiple actions at a time, allowing us to find solutions at shallower depths of the
search tree. Similarly, for plans with little redundancy, applying multiple actions at a time might improve search
performance. With these idea in mind, we propose four different planning compilations:
• Πs1

a1
(“skip one, apply one”): each action of the plan is either applied or skipped individually.1

• Πsm

a1
(“skip multiple, apply one”): each action of the plan can be applied individually, but multiple actions

can be skipped at a time.
• Πs1

am
(“skip one, apply multiple”): multiple actions can be applied at a time, but actions are skipped individ-

ually.
• Πsm

am
(“skip multiple, apply multiple”): multiple actions can be applied and skipped simultaneously.

4.2 Πs1
a1 Compilation: Skipping and Applying Single Actions

Let Π = ⟨V,A,I,G⟩ be a planning task and 𝜋 = ⟨𝑎1, 𝑎2, . . . , 𝑎𝑛⟩ be a plan for Π. We define 𝑅𝜋 as the set of facts
that appear in a precondition of the actions in the plan 𝜋 or in the goal: 𝑅𝜋 =

⋃
𝑎𝑖 ∈𝜋 pre(𝑎𝑖) ∪ G. 𝑅𝜋 represents

the set of relevant facts for 𝜋 , or the facts read by 𝜋 . We also define𝑊𝜋 as the facts that appear in the effects of
the actions or the initial state:𝑊𝜋 =

⋃
𝑎𝑖 ∈𝜋 eff (𝑎𝑖) ∪ I.𝑊𝜋 are the facts written by 𝜋 . We refer to the set of all

facts in 𝜋 as 𝐹𝜋 = 𝑅𝜋 ∪𝑊𝜋 . With this, we define the function 𝜏 , that given a fact 𝑣 ↦→ 𝑑 , maps the fact to itself if
𝑣 ↦→ 𝑑 is read by 𝜋 and to the irrelevant fact 𝑣 ↦→ 𝜃 otherwise.

𝜏 (𝑣 ↦→ 𝑑) =
{
𝑣 ↦→ 𝑑 if 𝑣 ↦→ 𝑑 ∈ 𝑅𝜋
𝑣 ↦→ 𝜃 otherwise.

Then, the new planning task Πs1

a1
= ⟨V′,A′,I′,G′⟩ has facts 𝐹 ′𝜋 = {𝜏 (𝑣 ↦→ 𝑑) | 𝑣 ↦→ 𝑑 ∈ 𝐹𝜋 }, and is defined as:

• V′ = {𝑣 ′ | 𝑣 ∈ V ∧ |D(𝑣 ′) | > 1} ∪ {pos}, where D(𝑣 ′) = {𝑑 | 𝑣 ↦→ 𝑑 ∈ 𝐹 ′𝜋 }; and variable pos with
D(pos) = {0, . . . , 𝑛} tracks the current position in the original plan. Note that D(𝑣 ′) only contains 𝜃 if
there is a fact 𝑣 ↦→ 𝑑 ∈𝑊𝜋 \ 𝑅𝜋 .2
• A′ = {𝑎′𝑖 | 1 ≤ 𝑖 ≤ 𝑛} ∪ {skip𝑖 | 1 ≤ 𝑖 ≤ 𝑛}, so that for each original plan action 𝑎𝑖 , there is one apply
action 𝑎′𝑖 and one skip action skip𝑖 . Actions 𝑎′𝑖 are defined as:

pre(𝑎′𝑖) = pre(𝑎𝑖) ∪ {pos ↦→ 𝑖 − 1}
eff (𝑎′𝑖) = {𝜏 (𝑣 ↦→ 𝑑) | 𝑣 ↦→ 𝑑 ∈ eff (𝑎𝑖) ∧ 𝑣 ∈ V′} ∪ {pos ↦→ 𝑖}

where the new action has the same preconditions as the original one, plus an additional precondition
to ensure that the current position is the preceding one. The effects are the same as the original action,
but mapped with function 𝜏 to only keep relevant values, plus an additional effect to update the current
position.

1This compilation was first presented in our original conference paper (Salerno et al. 2023a).
2Just removing effects that map a variable 𝑣 to 𝜃 is not enough. Even though 𝑣 ↦→ 𝜃 is never read itself, it can affect the applicability of a later
action that has 𝑣 ↦→ 𝑑 , with 𝑑 ≠ 𝜃 in its preconditions.

Journal of Artificial Intelligence Research, Vol. 84, Article 10. Publication date: October 2025.

• 10:9

The skip𝑖 actions just increase the value of pos from 𝑖 − 1 to 𝑖:

𝑝𝑟𝑒 (skip𝑖) = {pos ↦→ 𝑖 − 1}
eff (skip𝑖) = {pos ↦→ 𝑖}

The 𝑎′𝑖 actions maintain the cost 𝑐 (𝑎𝑖) of the corresponding 𝑎𝑖 , while the skip𝑖 actions have zero-cost.3
• I′ = {𝜏 (𝑣 ↦→ 𝑑) | 𝑣 ↦→ 𝑑 ∈ I ∧ 𝑣 ∈ V′} ∪ {pos ↦→ 0} is composed of two sets of facts: (1) the facts from
the original initial state that are relevant for the plan, i.e., those that belong to (I ∩ 𝑅𝜋) and new facts of
the form 𝑣 ↦→ 𝜃 , setting the variables inV′ with an irrelevant initial value to 𝜃 ; and (2) a set with just one
fact initializing pos variable to zero.
• G′ = G∪ {pos ↦→ 𝑛} contains the original goals and requires the pos variable to be at the end of the original
plan (the latter could be omitted, but it can be useful for heuristics).

With this definition of the task, plans for Πs1

a1
can only contain skip actions (with a corresponding skipped

action in the original plan) and actions from the original plan in the same order (if they appear in the plan at
position 𝑖 , they are only applicable when pos is 𝑖 − 1).

Proposition 1. LetΠ = ⟨V,A,I,G⟩ be a planning task, 𝜋 = ⟨𝑎1, . . . , 𝑎𝑛⟩ be a plan forΠ,Πs1

a1
= ⟨V′,A′,I′,G′⟩

be the reformulated planning task and 𝜋 s1

a1
= ⟨𝑏1, . . . , 𝑏𝑚⟩ be a plan for Πs1

a1
. Then, there is a one-to-one correspondence

between the actions in 𝜋 and the actions in 𝜋 s1

a1
such that 𝑛 =𝑚 and 𝑎𝑖 � 𝑏𝑖 , where 𝑏𝑖 is either 𝑎

′
𝑖 (the reformulation

of 𝑎𝑖) or skip𝑖 .

Proof. This follows directly from the construction of Πs1

a1
. Every 𝑎′𝑖 ∈ A′ maintains the precondition and relevant

effects of 𝑎𝑖 ∈ 𝜋 . Also, both 𝑎′𝑖 and skip𝑖 actions are only applicable if pos is 𝑖 − 1, and they set pos to 𝑖 . Since
pos is 0 in the initial state and 𝑛 in all goal states, all plans for Πs1

a1
select either 𝑎′𝑖 or skip𝑖 at each of the 𝑛 steps,

producing a plan of length𝑚 = 𝑛. □
Given Proposition 1, it is trivial to translate a plan 𝜋 s1

a1
for Πs1

a1
into a subsequence of the original plan 𝜋 for Π.

Definition 7 (translated plan). Let 𝜋 = ⟨𝑎1, 𝑎2, . . . , 𝑎𝑛⟩ be a plan for Π, 𝜋 s1

a1
= ⟨𝑏1, 𝑏2, . . . , 𝑏𝑛⟩ be a plan for

Πs1

a1
, and𝑚,𝑚 ≤ 𝑛, the number of actions in 𝜋 s1

a1
that are not skip actions. The translated plan is the subsequence

𝜋 ′ = ⟨𝑎𝑓 (1) , . . . , 𝑎𝑓 (𝑚)⟩ of 𝜋 , containing exactly those actions 𝑎𝑓 (𝑘) ∈ 𝜋 for which the corresponding 𝑏 𝑓 (𝑘) ∈ 𝜋 s1

a1
is

not a skip action.

We now prove that a solution for Πs1

a1
translated by Definition 7 is guaranteed to be a plan reduction of the

original plan. We also show that, since the compilation only allows for the application of actions in the original
plan or for their explicit elimination, the set of all plans that solve Πs1

a1
translated by Definition 7 is exactly the set

of all plan reductions of the original plan. Formally:

Proposition 2. Let Π = ⟨V,A,I,G⟩ be a planning task, 𝜋 be a plan for Π, Πs1

a1
= ⟨V′,A′,I′,G′⟩ be the

reformulated planning task, and 𝑃 s1

a1
be the set of all plans for Πs1

a1
translated by Definition 7. Then 𝑃 s1

a1
is exactly the

set of all plan reductions of 𝜋 for Π.

Proof.We have to show that (i) any plan 𝜋 ′ ∈ 𝑃 s1

a1
is a plan reduction of 𝜋 , and that (ii) any plan reduction of 𝜋 for

Π belongs to 𝑃 s1

a1
.

(i) Let 𝜋 ′ be a plan in 𝑃 s1

a1
, obtained with Definition 7 from original plan 𝜋 and plan 𝜋 s1

a1
for Πs1

a1
. By Definition 7,

𝜋 ′ = ⟨𝑎𝑓 (1) , . . . , 𝑎𝑓 (𝑚)⟩ is a subsequence of 𝜋 . The initial state I′ of Πs1

a1
contains all facts from I that are relevant

for 𝜋 . Every 𝑎′𝑖 ∈ A′ maintains the precondition of its corresponding action 𝑎𝑖 ∈ 𝜋 . Actions 𝑠𝑘𝑖𝑝𝑖 in 𝜋 s1

a1
, omitted

from 𝜋 to generate 𝜋 ′ by Definition 7, only modify the pos variable and do not contribute to the achievement of
other facts in action preconditions or goals. Then 𝑎𝑓 (1) is applicable in I, and every action 𝑎𝑓 (𝑖) ∈ 𝜋 ′ is applicable
3Below, we elaborate on how to handle problems with zero-cost actions.

Journal of Artificial Intelligence Research, Vol. 84, Article 10. Publication date: October 2025.

10:10 • Salerno, Fuentetaja & Seipp

in the state resulting from the application of the previous action 𝑎𝑓 (𝑖−1) ∈ 𝜋 ′. The goal description G′ of Πs1

a1

contains the goals G of Π. Thus, 𝜋 ′ achieves the goals of Π from initial state I, and therefore it is a plan for Π.
Since 𝜋 ′ is a subsequence of 𝜋 , by Definition 5 𝜋 ′ is a plan reduction of 𝜋 .
(ii) Let 𝜌 be a plan reduction of 𝜋 . By Definition 5, 𝜌 is a subsequence of 𝜋 , so there exists a strictly monotonic
function 𝑓 mapping its action indices into action indices in 𝜋 . The image of 𝑓 , img(𝑓), is the set of indices of
the actions in 𝜋 included in 𝜌 . Assume a plan 𝜋 s1

a1
is generated from 𝜋 by replacing every action 𝑎𝑖 ∈ 𝜋 , where

𝑖 ∈ img(𝑓), by the corresponding reformulated action 𝑎′𝑖 ∈ A′; and every 𝑎𝑖 ∈ 𝜋 , where 𝑖 ∉ img(𝑓) by skip𝑖 . Since
𝜌 is a plan for Π, 𝜋 s1

a1
is a plan for 𝑃 s1

a1
. Then, the plan reduction 𝜌 can be obtained from 𝜋 and 𝜋 s1

a1
by Definition 7

and therefore 𝜌 ∈ 𝑃 s1

a1
. □

Now that we have shown that all plan reductions of 𝜋 for Π can be generated from Πs1

a1
, it is easy to see that, if

there are no zero-cost actions in Π, an optimal solution for Πs1

a1
is a minimal reduction of 𝜋 .4

Theorem 1. Let 𝜋 be a plan for a planning task Π without zero-cost actions, and 𝜋 s1

a1
an optimal plan for the task

Πs1

a1
generated for Π and 𝜋 . The plan 𝜋 ′ obtained from 𝜋 s1

a1
using Definition 7 is a minimal reduction of 𝜋 .

Proof. To prove that 𝜋 ′ is a minimal reduction of 𝜋 , we have to show that (i) 𝜋 ′ is a plan reduction of minimal
cost and (ii) that 𝜋 ′ is perfectly justified. Proposition 1 proves (i), since 𝜋 s1

a1
is a plan for Πs1

a1
if and only if the

translated plan 𝜋 ′ is a plan reduction of 𝜋 . Hence, since action costs in Π and Πs1

a1
are the same, except for skip

actions which have zero-cost, and 𝜋 s1

a1
is a plan of minimal cost for Πs1

a1
, 𝜋 ′ is a plan reduction of minimal cost of

𝜋 . Furthermore, from the fact that there are no zero-cost actions in Π, 𝜋 ′ cannot contain redundant actions: if
it did, there would exist a plan reduction of lesser cost, implying that 𝜋 s1

a1
is not an optimal plan for Πs1

a1
, which

is assumed. By contradiction, it follows that 𝜋 ′ must be perfectly justified, proving (ii). Since 𝜋 ′ is both a plan
reduction of minimal cost and perfectly justified, it is a minimal reduction of 𝜋 . □

Zero-cost Actions. In the presence of zero-cost actions in Π, further steps must be taken to guarantee that an
optimal solution for Πs1

a1
is also perfectly justified. One option, in a similar fashion as the WPMaxSAT approach

(Balyo, Chrpa, et al. 2014), is to create a new Πs1

a1
task, taking as input a plan reduction of minimal cost, but

assigning cost 1 to all non-skip actions. However, this implies solving two different planning tasks, which can be
time-consuming. To avoid this, we adapt the original costs of the input plan actions by setting the cost of all
zero-cost actions to 1, and multiplying all other costs by the factor 𝑓 = ⌈ 𝑚

mincost
+ 𝜖⌉, where𝑚 is the number of

zero-cost actions in the input plan, mincost is the smallest positive action cost in the plan, and 𝜖 is an arbitrarily
small positive real number. If all actions have zero-cost, 𝑓 is undefined but also unneeded. This factor satisfies
𝑚 < 𝑓 ·mincost, which guarantees that removing any action with an original cost greater than zero will be more
beneficial than removing any set of actions that originally cost zero. So, with this modification, an optimal plan
for Πs1

a1
is a minimal reduction for 𝜋 .

Example 2. To better illustrate what a Πs1

a1
task looks like, we return to the running example from Figure 1.

Figure 3 shows the Πs1

a1
task resulting from the input plan ⟨pick-up-c, stack-c-d, pick-up-b, stack-b-a⟩. The domain

of each variable is mapped as explained, only keeping facts in 𝑅𝜋 (those that are relevant for the new planning
task). Variables a-pos and d-pos can be removed from the task, since their domains only have one value. We
keep them in the example to explicitly illustrate cases where variables would disappear. Note that the number of
actions in Π and Πs1

a1
differ. The reformulated task has exactly 8 actions, while the original task had 20 (4 pick-up,

4 put-down, 12 stack). This discrepancy stems from the fact that the number of actions in Πs1

a1
depends on the

number of actions in the plan 𝜋 , not the actions in the task. If |𝜋 | = 𝑛, then |A′ | = 𝑛 ∗ 2.

The Πs1

a1
formulation allows for the explicit application or elimination (skipping) of each action in the input

plan. A Πs1

a1
task induces a state space in the form of a tree, rooted in the initial state. It has a branching factor of

4We leave zero-cost actions out of the proof for clarity, but we show how to handle them immediately afterwards.

Journal of Artificial Intelligence Research, Vol. 84, Article 10. Publication date: October 2025.

• 10:11

Variables

V = {arm, a-pos, b-pos, c-pos, d-pos, a-top, b-top, c-top, d-top, pos}
Domains

D(arm) = {𝑓 𝑟𝑒𝑒, 𝜃 } D(a-pos)= {𝜃 }
D(a-top) = {𝑐𝑙𝑒𝑎𝑟, 𝜃 } D(b-pos)= {table, arm, a}
D(b-top) = {𝑐𝑙𝑒𝑎𝑟, 𝜃 } D(c-pos) = {table, arm, 𝜃 }
D(c-top) = {𝑐𝑙𝑒𝑎𝑟, 𝜃 } D(d-pos)= {𝜃 }
D(d-top)= {𝑐𝑙𝑒𝑎𝑟, 𝜃 } D(pos) = {0,1,2,3,4}

Actions

A′ = {pick-up-c′, skip-pick-up-c, stack-c-d′, skip-stack-c-d, pick-up-b′,
skip-pick-up-b, stack-b-a′, skip-stack-b-a}

pick-up-c′ = ⟨pre(pick-up-c) ∪ {pos ↦→ 0}, eff (pick-up-c) ∪ {pos ↦→ 1}⟩
skip-pick-up-c= ⟨{pos ↦→ 0}, {pos ↦→ 1}⟩

stack-c-d′ = ⟨pre(stack-c-d) ∪ {pos ↦→ 1}, eff (stack-c-d) ∪ {pos ↦→ 2}⟩
skip-stack-c-d= ⟨{pos ↦→ 1}, {pos ↦→ 2}⟩

pick-up-b′ = ⟨pre(pick-up-b) ∪ {pos ↦→ 2}, eff (pick-up-b) ∪ {pos ↦→ 3}⟩
skip-pick-up-b= ⟨{pos ↦→ 2}, {pos ↦→ 3}⟩

stack-b-a′ = ⟨pre(stack-b-a) ∪ {pos ↦→ 3}, eff (stack-b-a) ∪ {pos ↦→ 4}⟩
skip-stack-b-a= ⟨{pos ↦→ 3}, {pos ↦→ 4}⟩

Initial state

I′ = {arm ↦→ 𝑓 𝑟𝑒𝑒, a-pos ↦→ 𝜃, b-pos ↦→ 𝑡𝑎𝑏𝑙𝑒, c-pos ↦→ 𝑡𝑎𝑏𝑙𝑒, d-pos ↦→ 𝜃,

a-top ↦→ 𝑐𝑙𝑒𝑎𝑟, b-top ↦→ 𝑐𝑙𝑒𝑎𝑟, c-top ↦→ 𝑐𝑙𝑒𝑎𝑟, d-top ↦→ 𝑐𝑙𝑒𝑎𝑟, pos ↦→ 0}
Goal state

G′ = {b-pos ↦→ on-a, b-top ↦→ 𝑐𝑙𝑒𝑎𝑟, pos ↦→ 4}

Fig. 3. SAS+representation of the Πs1
a1 task generated from the Blocksworld task in Figure 1 and the plan ⟨pick-up-c, stack-c-d,

pick-up-b, stack-b-a⟩.

at most 2, and each path from the root to a leaf has length 𝑛, where 𝑛 = |𝜋 | is the number of actions in the input
plan. Since only leaf nodes can be goal states, all plans for Πs1

a1
tasks have length 𝑛 as well. Figure 4 shows the full

state space of the Πs1

a1
task for our running example.

4.3 Πsm
a1 Compilation: Skipping Multiple Actions at Once

Looking at the definition of a Πs1

a1
task, the naive way to allow skipping multiple actions at a time, is to introduce

additional skip actions that change the pos variable to any index greater than its current value. For that, if |𝜋 | = 𝑛,
the set of skip actions would be SKIPS = {skip𝑖 𝑗 | 0 ≤ 𝑖 < 𝑗 ≤ 𝑛}, where 𝑠𝑘𝑖𝑝𝑖 𝑗 = ⟨{pos ↦→ 𝑖}, {pos ↦→ 𝑗}⟩.
However, this would incur |SKIPS | = ∑𝑛

𝑖=1 𝑖 =
𝑛 (𝑛+1)

2 skip actions. Since plans commonly have thousands of steps,
avoiding this quadratic growth can be beneficial. For this, we now propose a compilation where multiple actions
can be skipped without incurring this quadratic growth.

Journal of Artificial Intelligence Research, Vol. 84, Article 10. Publication date: October 2025.

10:12 • Salerno, Fuentetaja & Seipp

I

c-pos 7→ arm
arm 7→ θ

. . .

c-pos 7→ θ

arm 7→ free
. . .

b-pos 7→ arm
arm 7→ θ

. . .

b-pos 7→ a
arm 7→ free

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

b-pos 7→ arm
arm 7→ θ

. . .

b-pos 7→ a
arm 7→ free

. . .

. . .

. . .

. . .

pick-up-c

stack-c-d

pick-up-b

stack-b-a
skip-stack-b-a

skip-pick-up-b

skip-stack-b-a

skip-stack-c-d

skip-pick-up-b

skip-stack-b-a

skip-pick-up-c

skip-stack-c-d

pick-up-b

stack-b-a
skip-stack-b-a

skip-pick-up-b

skip-stack-b-a

Fig. 4. Πs1
a1 task state space for the running example. In each node, only the relevant facts that differ from the parent node

are shown. Goal states are marked gray. In the initial state all four blocks are on the table, and the mechanical arm is empty.
Here, we can either apply the action pick-up-c, or skip it. If it is applied, in the resulting state the mechanical arm is holding
block C. Otherwise, nothing changes (except for the pos variable, that we omit for simplicity). Continuing the explanation on
the branch of the tree that skips the first action (right branch), the second action of the plan (stack-c-d) is not applicable,
since the arm is not holding block C. In this case, the only applicable action is to skip this action. If we continue down this
branch, we can pick-up-b and stack-b-d, finding a plan reduction that is a minimal reduction of the input plan. Its cost is
0 + 0 + 1 + 1 = 2.

The idea of this new formulation is simple: when one action is applied, all preceding actions become inapplicable.
For this, we simply need to introduce a new Boolean variable activei to the task for each action 𝑎𝑖 in the input
plan. Initially, all actions are active (𝑎𝑐𝑡𝑖𝑣𝑒𝑖 , for all 𝑖), and each action 𝑎𝑖 has 𝑎𝑐𝑡𝑖𝑣𝑒𝑖 in its precondition. Applying
action 𝑎𝑖 makes the preceding actions and itself inapplicable by setting ¬𝑎𝑐𝑡𝑖𝑣𝑒 𝑗 for all 𝑗 ≤ 𝑖 .

Let Π = ⟨V,A,I,G⟩ be a planning task and 𝜋 = ⟨𝑎1, . . . , 𝑎𝑛⟩ be a plan for Π. We formally define the planning
task Πsm

a1
= ⟨V′,A′,I′,G′⟩ as follows:

• V′ = {𝑣 ′ | 𝑣 ∈ V ∧ |D(𝑣 ′) | > 1} ∪ {active𝑖 | 1 ≤ 𝑖 ≤ 𝑛}, where D(𝑣 ′) = {𝑑 | 𝑣 ↦→ 𝑑 ∈ 𝐹 ′𝜋 }, as for Πs1

a1
, and

D(active𝑖) = {⊤,⊥}, for all 1 ≤ 𝑖 ≤ 𝑛.
• A′ = {𝑎′𝑖 | 1 ≤ 𝑖 ≤ 𝑛}, where each 𝑎′𝑖 is defined as:

pre(𝑎′𝑖) = pre(𝑎𝑖) ∪ {active𝑖 }
eff (𝑎′𝑖) = {𝜏 (𝑣 ↦→ 𝑑) | 𝑣 ↦→ 𝑑 ∈ eff (𝑎𝑖) ∧ 𝑣 ∈ V′} ∪ {¬active 𝑗 | 1 ≤ 𝑗 ≤ 𝑖}

• I′ = {𝜏 (𝑣 ↦→ 𝑑) | 𝑣 ↦→ 𝑑 ∈ I ∧ 𝑣 ∈ V′} ∪ {active𝑖 | 1 ≤ 𝑖 ≤ 𝑛}
• G′ = G

Journal of Artificial Intelligence Research, Vol. 84, Article 10. Publication date: October 2025.

• 10:13

In a Πsm

a1
task, actions 𝑎𝑖 in the original plan can be applied if their original preconditions pre(𝑎𝑖) are met and

no action that comes after 𝑎𝑖 in the plan has been applied. Thus, plans for Πsm

a1
can only contain actions from

𝜋 maintaining their original order, implying that those plans are plan reductions of 𝜋 . To translate Πsm

a1
plans

into plans for Π, we simply consider for each action its corresponding action in Π. Since each action in Πsm

a1

deactivates itself and all preceding actions, its corresponding action index in the original plan is the highest index
of the active𝑖 variables it sets to ⊥ in its effects. Formally:

Definition 8 (translated Πsm

a1
plan). Let 𝜋 = ⟨𝑎1, 𝑎2, . . . , 𝑎𝑛⟩ be a plan for Π, 𝜋 sm

a1
= ⟨𝑏1, 𝑏2, . . . , 𝑏𝑚⟩ be a

plan for Πsm

a1
. The translated plan 𝜋 ′, for each action 𝑏 ∈ 𝜋 sm

a1
, takes the corresponding action 𝑎 from the original task.

A plan for Πsm

a1
translated by Definition 8 is a plan reduction of the original plan. Additionally, the set of all

plans that solve Πsm

a1
translated by Definition 8 is exactly the set of all plan reductions of the original plan.

Proposition 3. Let Π = ⟨V,A,I,G⟩ be a planning task, 𝜋 be a plan for Π, Πsm

a1
= ⟨V′,A′,I′,G′⟩ be the

reformulated planning task, and 𝑃 sm

a1
be the set of all plans for Πsm

a1
translated by Definition 8. Then 𝑃 sm

a1
is exactly the

set of all plan reductions of 𝜋 for Π.

Proof. We will show that (i) any plan 𝜋 ′ ∈ 𝑃 sm

a1
is a plan reduction of 𝜋 for Π, and that (ii) any plan reduction of 𝜋

for Π is in 𝑃 sm

a1
.

(i) Let 𝜋 ′ be a plan in Πsm

a1
translated from a plan 𝜋 sm

a1
for Πsm

a1
. Since plans for Πsm

a1
maintain the order of the actions,

𝜋 ′ is a subsequence of 𝜋 . The initial state I′ contains all relevant facts for 𝜋 , and all actions in A′ maintain all
preconditions and relevant effects of their corresponding actions in 𝜋 . Thus, since all actions in 𝜋 sm

a1
are applicable

in succession starting from I′, all actions in 𝜋 ′ must be applicable in succession starting from I. Furthermore,
since G′ = G and 𝜋 sm

a1
is a plan for Πsm

a1
, 𝜋 ′ is a plan for Π.

(ii) Let 𝜌 be a plan reduction of 𝜋 for Π. By translating actions in 𝜌 following the Πsm

a1
compilation, we obtain

the action sequence 𝜋 sm

a1
. Since 𝜌 is a plan reduction of 𝜋 , all of its actions are applicable in succession starting

from I. Actions in Πsm

a1
maintain all preconditions and relevant effects of the actions in 𝜋 , and the only extra

precondition is that the corresponding active variable is true. All active variables are set to true in I′, and each
action only deactivates preceding actions and itself. Hence, given that 𝜌 is a subsequence of 𝜋 , all actions in 𝜋 sm

a1

are applicable in succession starting from I′. Finally, since G′ = G, 𝜋 sm

a1
is a plan for Πsm

a1
. Thus, 𝜋 sm

a1
translated

with Definition 8 is in 𝑃 sm

a1
. □

If there are no zero-cost actions in Π, an optimal solution for Πsm

a1
is a minimal reduction of 𝜋 for Π. We omit

the corresponding proof since it is analogous to the one for Theorem 1, and we handle zero-cost action in the
exact same way as for Πs1

a1
tasks.

Theorem 2. Let 𝜋 be a plan for planning task Π without zero-cost actions, and 𝜋 sm

a1
an optimal plan for the task

Πsm

a1
generated for Π and 𝜋 . The plan 𝜋 ′ obtained from 𝜋 sm

a1
using Definition 8 is a minimal reduction of 𝜋 .

Proof. The proof is analogous to the proof of Theorem 1. □

4.4 Πs1
am Compilation: Applying Multiple Actions at Once

To apply multiple actions at a time, we create macro-actions (Fikes et al. 1972) of consecutive actions in the
input plan. Traditionally, generating macro-actions involves identifying sequences of actions that are usually
applied together (Dawson and Siklóssy 1977; Fikes et al. 1972; Korf 1985). However, since we are interested in
finding a plan reduction of an input plan, we know exactly which actions can be applied consecutively simply by
looking at the different consecutive subsequences of the plan. Given a plan 𝜋 = ⟨𝑎1, 𝑎2, . . . , 𝑎𝑛⟩, the number of
consecutive subsequences of at least two actions is

∑𝑛−1
𝑖=1 𝑖 =

𝑛 (𝑛−1)
2 . For example, the consecutive subsequences

of 𝜋 with |𝜋 | = 3 are ⟨𝑎1, 𝑎2⟩, ⟨𝑎1, 𝑎2, 𝑎3⟩, ⟨𝑎2, 𝑎3⟩. The macro-action generated from ⟨𝑎𝑖 , 𝑎𝑖+1, . . . , 𝑎 𝑗 ⟩ represents
applying consecutive actions 𝑎𝑖 to 𝑎 𝑗 in a single step.

Journal of Artificial Intelligence Research, Vol. 84, Article 10. Publication date: October 2025.

10:14 • Salerno, Fuentetaja & Seipp

The preconditions and effects of a macro-action 𝑎𝑖 𝑗 generated from two consecutive actions ⟨𝑎𝑖 , 𝑎 𝑗 ⟩ are defined
as follows:

• pre(𝑎𝑖 𝑗) = pre(𝑎𝑖) ∪ (pre(𝑎 𝑗) \ eff (𝑎𝑖))
• eff (𝑎𝑖 𝑗) = eff (𝑎 𝑗) ∪ {𝑣 ↦→ 𝑑 | 𝑣 ↦→ 𝑑 ∈ eff (𝑎𝑖), 𝑣 ∉ vars(eff (𝑎 𝑗))}

Chaining two actions in this way is always well-defined for two actions that appear consecutively in the original
plan. To generate macro-actions of more than two actions, this procedure can simply be applied repeatedly. Thus,
to allow the application of multiple actions at a time, we simply add the appropriate macro-actions in Πs1

a1
that

represent consecutive subsequences of actions in 𝜋 to Πs1

a1
.

The added macro-actions increase the number of actions from 2𝑛 to 2𝑛 + 𝑛 (𝑛−1)
2 compared to Πs1

a1
, and the

branching factor increases to at most 𝑛 + 1. The increased branching factor might slow down the expansion rate
of the search. However, in cases where only a few or no actions can be removed from the original plan, Πs1

am
will

find solutions at shallower depths of the search tree compared to Πs1

a1
.

Given a planning task Π = ⟨V,A,I,G⟩, a plan 𝜋 = ⟨𝑎1, 𝑎2, . . . , 𝑎𝑛⟩, we define Πs1

am
= ⟨V′,A′′,I′,G′⟩ in

terms of Πs1

a1
= ⟨V′,A′,I′,G′⟩ by simply modifying the set of actions to include all possible macro-actions of at

least two consecutive actions in 𝜋 : A′′ = A′ ∪ {macro(𝑎𝑖 , 𝑎 𝑗) | 1 ≤ 𝑖 < 𝑗 ≤ 𝑛}, where macro(𝑎𝑖 , 𝑎 𝑗) produces
the macro-action including all actions from 𝑎𝑖 to 𝑎 𝑗 in succession.
Equivalent propositions to Proposition 1, Proposition 2 and Theorem 1 can be stated for Πs1

am
, but we omit

them because they are practically identical to the propositions and proofs for Πs1

a1
.

4.5 Πsm
am Compilation: Applying and Skipping Multiple Actions at Once

To completely explore the design space of compilations described in Section 4.1, we need to formulate a compilation
that can apply and skip multiple actions at a time. To do this, we simply take Πsm

a1
and create macro-actions

in the same way as it is done for Πs1

am
, and we call it Πsm

am
. Given a planning task Π = ⟨V,A,I,G⟩ and a plan

𝜋 = ⟨𝑎1, 𝑎2, . . . , 𝑎𝑛⟩, we define Πsm

am
= ⟨V′,A′′,I′,G′⟩ in terms of Πsm

a1
= ⟨V′,A′,I′,G′⟩ by modifying the set

actions to include all possible macro-actions of at least two consecutive actions in 𝜋 :A′′ = A′ ∪ {macro(𝑎𝑖 , 𝑎 𝑗) |
𝑎𝑖 , 𝑎 𝑗 ∈ A′ ∧ 1 ≤ 𝑖 < 𝑗 ≤ 𝑛}.

Again, equivalent propositions to Proposition 3 and Theorem 2 can be stated for Πsm

am
, but we omit them

because they are practically identical to the propositions and proofs for Πsm

a1
.

4.6 Comparison Between Πs1
a1, Π

sm
a1 ,Π

s1
am and Πsm

am
Given a planning task Π = ⟨V,A,I,G⟩ and a plan 𝜋 = ⟨𝑎1, 𝑎2, . . . , 𝑎𝑛⟩, we show how the different compilations
compare against each other in Table 1. Πs1

a1
and Πs1

am
only require the additional pos variable, while Πsm

a1
and Πsm

am

require the 𝑛 active variables. |D(pos) | = 𝑛 + 1, so the number of facts in Πs1

a1
and Πs1

am
increases only in that

amount with respect to 𝑅𝜋 , while |D(active𝑖) | = 2 for each of the 𝑛 active variables, increasing the number of
facts by 2𝑛 for Πsm

a1
and Πsm

am
. Πs1

a1
has two actions for each action in 𝜋 , while Πsm

a1
only has one action for each

action in 𝜋 . Similarly, Πs1

am
has the 2𝑛 actions from Πs1

a1
plus the macro-actions, while Πsm

am
has 𝑛 actions plus the

macro-actions.
The branching factor for Πs1

a1
is always 2 (skip or apply each action in 𝜋), while the branching factor for Πsm

a1

can be at most 𝑛 (apply any of the active actions), for Πs1

am
the highest branching factor is 𝑛 + 1 (apply any

macro-action representing a subsequence starting from the first action or skip the first action), and for Πsm

am
it is

𝑛 (𝑛+1)
2 (apply any action or any macro-action).
Finally, the number of effects for actions created for both Πs1

a1
and Πs1

am
only increases by 1 (updating the pos

variable), while each action in Πsm

a1
and Πsm

am
must deactivate itself and all preceding actions. We omit the size of

the preconditions in the table since each compilation only adds one additional precondition to each action (pos

Journal of Artificial Intelligence Research, Vol. 84, Article 10. Publication date: October 2025.

• 10:15

Table 1. Comparison of different characteristics of each compilation. For each compilation we show the number of resulting
variables (|V′ |), the number of actions (|A′ |), the number of facts |F |, the upper bound on the branching factor of the search
tree induced by the compilation (BF), the number of effects of a reformulated action (|eff (𝑎′) |) in terms of the number of
effects of the action it was created from, and the upper bound on the size of the state space induced by the compilation (|𝑆 |).

Πs1

a1
Πsm

a1
Πs1

am
Πsm

am

|V′ | |V| + 1 |V| + 𝑛 |V| + 1 |V| + 𝑛
|A′ | 2𝑛 𝑛 2𝑛 + 𝑛 (𝑛−1)

2 𝑛 + 𝑛 (𝑛−1)
2

|F | |𝑅𝜋 | + 𝑛 + 1 |𝑅𝜋 | + 2𝑛 |𝑅𝜋 | + 𝑛 + 1 |𝑅𝜋 | + 2𝑛
BF 2 𝑛 𝑛 + 1 𝑛 (𝑛+1)

2
|eff (𝑎′𝑖) | |eff (𝑎𝑖) | + 𝑖 |eff (𝑎𝑖) | + 𝑖 |eff (𝑎𝑖) | |eff (𝑎𝑖) | + 𝑖
|𝑆 | 2𝑛+1 − 1 2𝑛 2𝑛+1 − 1 2𝑛

variable or active variable). Note that both the effects and preconditions of Πs1

am
and Πsm

am
depend on the number

of effects and preconditions of the macro-action they represent, so they can have as many as |V| effects and
preconditions.

Regarding the size of the state space induced by each compilation, it is clear that all compilations can generate
any subsequence of actions of the input plan. To obtain an upper bound on the size |𝑆 | of the reachable state space
induced by each of the four compilations, we assume that 𝑆 contains no duplicate states. Under this assumption,
each subsequence of actions from the original plan is a different state. For a plan of length 𝑛, the number of
subsequences is 2𝑛 . Πsm

a1
and Πsm

am
implicitly eliminate actions, so they induce exactly as many states as there

are subsequences of the plan (2𝑛). In contrast, Πs1

a1
explicitly eliminates actions. This translates into a branching

factor of exactly 2 and a state tree of depth 𝑛 (length of the input plan), so assuming there are no duplicates, the
number of states is exactly

∑𝑛
𝑖=0 2𝑖 = 2𝑛+1 − 1. The size of the state space for Πs1

am
is the same as for Πs1

a1
, since the

macro-actions do not generate different states, just more edges.

5 Plan Action Landmarks
Even though identifying if a plan contains any redundant subsequence of actions is NP-complete in general,
some actions can easily be detected as necessary. In this section, we discuss plan action landmarks (PALs), which
are actions that must be part of any plan reduction of a given plan. The idea of identifying these type of actions to
speed up action elimination methods was introduced by Med and Chrpa 2022. The authors proposed an algorithm
to identify a specific type of plan action landmarks, which we call trivial plan action landmarks (TPALs). We
use this name to distinguish them from fix-point plan action landmarks (FPALs), which extend the notion to
a superset of trivial plan action landmarks. We use the name FPAL because these plan action landmarks are
computed with a fix-point procedure. In the following, we define trivial and fix-point plan action landmarks,
followed by a theoretical analysis of fix-point plan action landmarks.

To simplify the notation and without loss of generality, we describe plan action landmarks in terms of extended
planning tasks with virtual initial and goal actions. These actions establish the initial state and require that all
the goals are achieved, respectively.

Definition 9 (extended task and plan). Given a planning task Π = ⟨V,A,I,G⟩, the extended task is

Π𝑒 = ⟨V𝑒 ,A𝑒 ,I𝑒 ,G𝑒⟩, defined as follows.
• V𝑒 = {𝑣 | 𝑣 ∈ V} ∪ {𝑣𝑔}, where D(𝑣) = D(𝑣) ∪ {init} and D(𝑣𝑔) = {init, goal}.

Journal of Artificial Intelligence Research, Vol. 84, Article 10. Publication date: October 2025.

10:16 • Salerno, Fuentetaja & Seipp

• I𝑒 = {𝑣 ↦→ init | 𝑣 ∈ V𝑒 }.
• A𝑒 = {⟨pre(𝑎) ∪ {𝑣𝑔 ↦→ init}, eff (𝑎)⟩ | 𝑎 ∈ A}∪ {𝑎init, 𝑎goal}, where 𝑎init = ⟨I𝑒 ,I⟩, and 𝑎goal = ⟨G ∪ {𝑣𝑔 ↦→
init}, {𝑣𝑔 ↦→ goal}⟩.
• G𝑒 = {𝑣𝑔 ↦→ goal}.

Each plan 𝜋 = ⟨𝑎1, 𝑎2, . . . , 𝑎𝑛⟩ for Π corresponds to exactly one extended plan 𝜋𝑒 = ⟨𝑎0, 𝑎1, 𝑎2, . . . , 𝑎𝑛, 𝑎𝑛+1⟩ for
Π𝑒

, where 𝑎0 and 𝑎𝑛+1 are the virtual initial and goal actions 𝑎init and 𝑎goal , respectively.

Definition 10 (plan action landmark). Let 𝜋 be a plan for an extended planning task Π. An action 𝑎 ∈ 𝜋
is a plan action landmark of 𝜋 iff 𝑎 is part of all plan reductions of 𝜋 .

Identifying whether an action in a plan is a plan action landmark is co-NP-complete (Med and Chrpa 2022),
but some plan action landmarks can be identified in polynomial time. Trivial plan action landmarks are one
such example. Here, the idea is to identify if a necessary fact for the plan has only one achiever. For example,
if only one action 𝑎 in a plan achieves a goal fact, removing 𝑎 would render the plan invalid. Furthermore, if
some preconditions of 𝑎 are also achieved by a single action 𝑎′, then 𝑎′ is also necessary. This is similar to the
back-chaining method of fact landmark discovery (Hoffmann et al. 2004).

Definition 11 (trivial plan action landmark, tpal). Let Π = ⟨V,A,I,G⟩ be an extended planning

task and 𝜋 = ⟨𝑎0, 𝑎1, . . . , 𝑎𝑛, 𝑎𝑛+1⟩ be a plan for Π. Action 𝑎𝑖 is a trivial plan action landmark for 𝜋 iff: (1) 𝑎𝑖 is the

goal action 𝑎𝑛+1 or (2) there is a trivial plan action landmark 𝑎 𝑗 , 𝑖 < 𝑗 , such that there is a fact 𝑝 ∈ eff (𝑎𝑖) ∩ pre(𝑎 𝑗),
and there is no action 𝑎𝑘 , 𝑘 < 𝑗 , 𝑘 ≠ 𝑖 , such that 𝑝 ∈ eff (𝑎𝑘).

Figure 5a illustrates the concept of TPALs graphically. We now prove that trivial plan action landmarks are in
fact plan action landmarks.5

Proposition 4. Let 𝜋 = ⟨𝑎0, 𝑎1, . . . , 𝑎𝑛, 𝑎𝑛+1⟩ be a plan for an extended planning task Π = ⟨V,A,I,G⟩, and 𝑎𝑖
an action in 𝜋 . If 𝑎𝑖 is a trivial plan action landmark for 𝜋 , then 𝑎𝑖 is a plan action landmark for 𝜋 .

Proof by induction.

(1) Base case: both the virtual initial and goal actions are present exactly once in any plan, and they must
always appear at the beginning and the end, respectively. If 𝑎𝑖 is a TPAL because it is the virtual goal action
𝑎𝑛+1, it must be part of any plan reduction of 𝜋 for Π, since it is the only action in the plan that achieves
the goal fact 𝑣𝑔 ↦→ 𝑔𝑜𝑎𝑙 . Therefore, 𝑎𝑖 is a plan action landmark.

(2) Inductive step: assuming that 𝑎 𝑗 is a plan action landmark, we show that if 𝑎𝑖 is a TPAL because it is the
only action situated before 𝑎 𝑗 achieving a fact 𝑝 in the precondition of 𝑎 𝑗 , then 𝑎𝑖 is a plan action landmark.
Since 𝑎 𝑗 is a plan action landmark, it is part of all plan reductions of 𝜋 , and in consequence all facts in its
precondition, including 𝑝 , must be true in some state of the state sequence induced by applying the prefix
up to 𝑎 𝑗 of any plan reduction. Since no other action in that prefix achieves 𝑝 , all plan reductions must
contain 𝑎𝑖 . Therefore, 𝑎𝑖 is a plan action landmark. □

The concept of fix-point plan action landmarks allows discovering additional plan action landmarks. They
extend trivial plan action landmarks by exploiting the fact that, since plan action landmarks must be executed,
their effects can be taken into account when identifying other plan action landmarks. While trivial plan action
landmarks identify single achievers of a necessary fact (either because it is a goal fact or part of a precondition of
a plan action landmark), fix-point plan action landmarks additionally identify single achievers of a necessary fact
after a plan action landmark overwrote said fact.

5Proposition 4 is equivalent to Propositions 3 and 4 in the paper by Med and Chrpa 2022, but here we present it in a more compact way, by
using the extended planning task.

Journal of Artificial Intelligence Research, Vol. 84, Article 10. Publication date: October 2025.

• 10:17

𝑎0 𝒂𝒊

𝑣 ↦→ 𝑑

𝑎 𝑗 𝑎𝑛+1

(a) TPAL

𝑎0 𝑎𝑖

𝑣 ↦→ 𝑑′

𝒂𝒌

𝑣 ↦→ 𝑑

𝑎ℓ 𝑎𝑛+1

(b) FPAL

Fig. 5. Visual representation of (a) a trivial plan action landmark and (b) a fix-point plan action landmark. Actions already
known to be trivial and fix-point plan action landmarks, respectively, are marked in blue. In (a), 𝒂𝒊 is a trivial plan action
landmark because it is the only achiever of 𝑝 = 𝑣 ↦→ 𝑑 , which is a precondition of the trivial plan action landmark 𝑎 𝑗 . The red
line indicates the range of plan actions in which 𝑎𝑖 is the only achiever. In (b), 𝒂𝒌 is a fix-point plan action landmark because
it is the only achiever of 𝑣 ↦→ 𝑑 , a precondition of the fix-point plan action landmark 𝑎ℓ , situated before 𝑎ℓ and after another
previous fix-point plan action landmark action, 𝑎𝑖 , generates a different value for the same variable 𝑣 . Note that if there was
another achiever of 𝑣 ↦→ 𝑑 situated between 𝑎𝑖 and 𝑎ℓ , 𝑎𝑘 would not be a FPAL.

Definition 12 (fix-point plan action landmark, fpal). Let Π = ⟨V,A,I,G⟩ be an extended planning

task and 𝜋 = ⟨𝑎0, 𝑎1, . . . , 𝑎𝑛, 𝑎𝑛+1⟩ be a plan for Π. Action 𝑎𝑘 is a fix-point plan action landmark iff: (1) 𝑎𝑘 is

a trivial plan action landmark or (2) there is a fix-point plan action landmark 𝑎ℓ , 𝑘 < ℓ , such that there is a

fact 𝑣 ↦→ 𝑑 ∈ eff (𝑎𝑘) ∩ 𝑝𝑟𝑒 (𝑎ℓ), and there is another fix-point plan action landmark 𝑎𝑖 , 𝑖 < 𝑘 , with an effect

𝑣 ↦→ 𝑑 ′ ∈ eff (𝑎𝑖) where 𝑑 ′ ≠ 𝑑 and there is no other action 𝑎 𝑗 with 𝑗 ≠ 𝑘 , 𝑖 < 𝑗 < ℓ such that 𝑣 ↦→ 𝑑 ∈ eff (𝑎 𝑗).
Figure 5b illustrates the concept of FPALs graphically. We now show that fix-point plan action landmarks are,

indeed, plan action landmarks.

Proposition 5. Let 𝜋 = ⟨𝑎0, 𝑎1, . . . , 𝑎𝑛, 𝑎𝑛+1⟩ be a plan for an extended planning task Π = ⟨V,A,I,G⟩, and 𝑎𝑘
an action in 𝜋 . If 𝑎𝑘 is a fix-point plan action landmark for 𝜋 , then 𝑎𝑘 is a plan action landmark for 𝜋 .

Proof by induction.

(1) If an action 𝑎𝑘 is a FPAL because it is a TPAL (case (1), Definition 12), it is a plan action landmark by
Proposition 4.

(2) Assuming that 𝑎ℓ and 𝑎𝑖 are plan action landmarks, we show that if 𝑎𝑘 is a FPAL because 𝑎ℓ and 𝑎𝑖 are
FPALs with 𝑖 < 𝑘 < ℓ and 𝑎𝑘 is the only achiever of a fact 𝑓 = 𝑣 ↦→ 𝑑 , where 𝑓 ∈ pre(𝑎ℓ) ∩ eff (𝑎𝑘) and
𝑣 ↦→ 𝑑 ′ ∈ eff (𝑎𝑖), with 𝑑 ≠ 𝑑 ′ (case (2), Definition 12), then 𝑎𝑘 is a plan action landmark. Since 𝑎ℓ is a plan
action landmark, it belongs to all plan reductions and, consequently, all facts in its precondition must be
true in some state of the state sequence induced by applying the prefix up to 𝑎ℓ of any plan reduction.
Analogously, given that 𝑎𝑖 is a plan action landmark, it belongs to all plan reductions and, consequently,
after the application of 𝑎𝑖 in any plan reduction, the value of 𝑣 is necessarily 𝑑 ′. Since 𝑎𝑘 is the only achiever
of the fact 𝑣 ↦→ 𝑑 , in the precondition of 𝑎ℓ , after 𝑎𝑖 overwrote it, it must be part of all plan reductions, and
therefore it is a plan action landmark. □

5.1 Identifying Plan Action Landmarks
Our method to identify fix-point plan action landmarks (and the subsumed TPALs) is shown in Algorithm 1.
The input is an extended planning task and a plan. Initially, the virtual goal action is marked as a PAL. Then,
the procedure ComputeAchievers (called in line 3 and defined in lines 22–26) finds the achievers for each fact
𝑣 ↦→ 𝑑 , i.e., all actions 𝑎𝑖 ∈ 𝜋 such that 𝑣 ↦→ 𝑑 ∈ eff (𝑎𝑖). For each fact, an achiever is a pair ⟨𝑎𝑖 , 𝑘⟩, where 𝑎𝑖 is
an action in 𝜋 and 𝑖 < 𝑘 . In this pair, 𝑘 represents that action 𝑎𝑖 is an achiever of fact 𝑣 ↦→ 𝑑 until step 𝑘 of the
plan. This means that action 𝑎𝑖 can achieve a fact for the precondition of another action 𝑎 𝑗 only if 𝑖 < 𝑗 ≤ 𝑘 .
Initially, for each effect of each action, we initialize 𝑘 to the last plan position (line 26). Then, until no new plan
action landmark is found (line 5), ComputePALs iterates backwards over all plan actions (line 6). If an action is a

Journal of Artificial Intelligence Research, Vol. 84, Article 10. Publication date: October 2025.

10:18 • Salerno, Fuentetaja & Seipp

Algorithm 1 Compute fix-point plan action landmarks.
1: function ComputeFPALs(Π, 𝜋)
2: ⟨𝑎0, 𝑎1, . . . , 𝑎𝑛, 𝑎𝑛+1⟩ ← 𝜋

3: PALs← {𝑎𝑛+1}
4: achs← ComputeAchievers(𝜋) ⊲ Initial achievers
5: repeat

6: for 𝑖 = 𝑛 + 1 to 0 do

7: if 𝑎𝑖 ∈ PALs then
8: for 𝑣 ↦→ 𝑑 ∈ pre(𝑎𝑖) do
9: 𝐴← {𝑎 𝑗 |⟨𝑎 𝑗 , 𝑘⟩ ∈ achs(𝑣 ↦→ 𝑑), 𝑗 < 𝑖 ≤ 𝑘}
10: if 𝐴 = {𝑎 𝑗 } and 𝑎 𝑗 ∉ PALs then ⊲ Check if fact has a single achiever
11: PALs← PALs ∪ {𝑎 𝑗 }
12: UpdateAchievers(achs, 𝑎 𝑗)
13: until PALs remains unchanged
14: return PALs

15:
16: procedure UpdateAchievers(achs, 𝑎 𝑗) ⊲ Update achievers
17: for 𝑣 ↦→ 𝑑 ∈ eff (𝑎 𝑗) do
18: for 𝑑 ′ ∈ D(𝑣) \ {𝑑} do
19: for (𝑎𝑖 , 𝑘) ∈ achs(𝑣 ↦→ 𝑑 ′) with 𝑖 < 𝑗 < 𝑘 do

20: achs(𝑣 ↦→ 𝑑 ′) = (achs(𝑣 ↦→ 𝑑 ′) \ ⟨𝑎𝑖 , 𝑘⟩) ∪ ⟨𝑎𝑖 , 𝑗⟩
21:
22: function ComputeAchievers(𝜋)
23: achs(𝑣 ↦→ 𝑑) = ∅ for all 𝑣 ∈ V , 𝑑 ∈ D(𝑣)
24: for 𝑎𝑖 ∈ 𝜋 do

25: for 𝑣 ↦→ 𝑑 ∈ eff (𝑎𝑖) do
26: achs(𝑣 ↦→ 𝑑) = achs(𝑣 ↦→ 𝑑) ∪ ⟨𝑎𝑖 , |𝜋 |⟩
27: return achs

plan action landmark (line 7), it checks its precondition (lines 8–10) to see if a new plan action landmark can
be identified using Definition 12: is there a unique achiever 𝑎 𝑗 that was not marked as a plan action landmark
before? If a new plan action landmark 𝑎 𝑗 is identified, it is marked as such (line 11) and the until value of actions
whose effects are overwritten by 𝑎 𝑗 are updated (line 12). Procedure UpdateAchievers (lines 16–20) finds, for
every 𝑣 ↦→ 𝑑 ∈ eff (𝑎 𝑗), the actions 𝑎𝑖 before 𝑎 𝑗 that set 𝑣 to 𝑑 ′, 𝑑 ′ ≠ 𝑑 , and updates their until value to 𝑗 .

With only a single iteration of the fix-point loop (lines 5–13) and without the Update call (line 11), Algorithm 1
finds the set of all trivial plan action landmarks, and we call it ComputeTPALs.
The following two propositions follow from the fact that ComputeTPALs and ComputeFPALs are direct

implementations of Definitions 11 and 12.

Proposition 6. Algorithm ComputeTPALs finds all trivial plan action landmarks.

Proposition 7. Algorithm 1 finds all fix-point plan action landmarks.

The ComputeTPALs variant is equivalent to the algorithm proposed by Med and Chrpa 2022. The authors
showed that it runs in linear time in the length of the plan if the size of action preconditions and effects is assumed
to be constant. To find fix-point plan action landmarks, the fix-point loop in Algorithm 1 must be repeated

Journal of Artificial Intelligence Research, Vol. 84, Article 10. Publication date: October 2025.

• 10:19

every time a new plan action landmark is found. In the worst case, each iteration only discovers one plan action
landmark, so the loop runs at most |𝜋 | times. Making the same assumptions on the size of preconditions and
effects, Algorithm 1 thus runs in 𝑂 (|𝜋 |2).

5.2 Using Plan Action Landmarks
Since plan action landmarks must be part of any plan reduction, there is no need to consider skipping or
eliminating them when looking for a minimal reduction. This reduces the branching factor and speeds up the
search process for all compilations. We now show how to use information about plan action landmarks to shrink
the search space and/or the task size of the four planning compilations.

Reducing the Number of Skip Actions in Πs1

a1
and Πs1

am
. Both Πs1

a1
and Πs1

am
have explicit skip actions that represent

eliminating actions, making it easy to not consider removing plan action landmarks simply by omitting their
corresponding skip actions. The resulting PAL-enhanced tasks for Πs1

a1
and Πs1

am
preserveV′,I′,G′ exactly as in

Section 4, and only creating skip actions for actions that are not known plan action landmarks. For this, A′ is
redefined as A′ = {𝑎′𝑖 | 1 ≤ 𝑖 ≤ 𝑛} ∪ {skip𝑖 | 1 ≤ 𝑖 ≤ 𝑛 ∧ ¬𝑝𝑎𝑙 (𝑎𝑖)}.

Reducing the Number of Macro-Actions in Πs1

am
and Πsm

am
. One clear detriment of Πs1

am
and Πsm

am
is the quadratic

number of actions that are created from the input plan. By only creating macro-actions using actions that are not
known to be plan action landmarks, the number of actions and the branching factor can be greatly reduced.

Reducing the Branching Factor in Πsm

a1
and Πsm

am
. Whenever an action 𝑎𝑖 is applied, all variables active 𝑗 , with

𝑗 ≤ 𝑖 are set to false. This represents eliminating all actions 𝑎 𝑗 with 𝑗 < 𝑖 for which active 𝑗 is true before applying
𝑎𝑖 . In Πsm

a1
and Πsm

am
actions are not explicitly removed. To ensure that no plan action landmark is removed, we will

modify which actions are active in the initial state, and also change the effects of all actions by taking into account
plan action landmarks. We describe these changes formally with the help of two functions: firstPalAfter (𝑖) and
lastPalBefore(𝑖), which, for a given planning task Π = ⟨V,A,I,G⟩ and plan 𝜋 = ⟨𝑎1, . . . , 𝑎𝑛⟩, provide the index
of the first plan action landmark with index higher than 𝑖 (or 𝑛 if there are none), and the index of the last plan
action landmark with index smaller than 𝑖 (or 0 if there are none), respectively:

firstPalAfter (𝑖) =
{
𝑛 if ¬𝑝𝑎𝑙 (𝑎𝑘) for all 𝑘 > 𝑖,

min{𝑘 | 𝑖 < 𝑘 ≤ 𝑛 ∧ 𝑝𝑎𝑙 (𝑎𝑘)} otherwise, and

lastPalBefore(𝑖) =
{

0 if ¬𝑝𝑎𝑙 (𝑎𝑘) for all 𝑘 < 𝑖,

max{𝑘 | 1 ≤ 𝑘 < 𝑖 ∧ 𝑝𝑎𝑙 (𝑎𝑘)} otherwise.

We show how to modify the task Πsm

a1
= ⟨V′,A′,I′,G′⟩ obtained from Π and 𝜋 , but the same changes apply

to Πsm

am
. The initial state I′ is modified so only actions up to the first plan action landmark in 𝜋 are active:

I′ = {𝜏 (𝑣 ↦→ 𝑑) | 𝑣 ↦→ 𝑑 ∈ I ∧ 𝑣 ∈ V′}∪{active𝑖 | 1 ≤ 𝑖 ≤ firstPalAfter (0)}∪
{¬active𝑖 | firstPalAfter (0) < 𝑖 ≤ 𝑛}

Regarding the effects of the actions 𝑎′𝑖 ∈ A′, when 𝑎𝑖 is a plan action landmark, all actions up to the next plan
action landmark must be activated; and when an action is applied, only the preceding actions up to the previous
plan action landmark are deactivated.

Journal of Artificial Intelligence Research, Vol. 84, Article 10. Publication date: October 2025.

10:20 • Salerno, Fuentetaja & Seipp

eff (𝑎′𝑖) ={𝜏 (𝑣 ↦→ 𝑑) | 𝑣 ↦→ 𝑑 ∈ eff (𝑎𝑖) ∧ 𝑣 ∈ V′}∪
{active 𝑗 | 𝑝𝑎𝑙 (𝑎𝑖) ∧ 𝑖 < 𝑗 ≤ firstPalAfter (i)}∪
{¬active 𝑗 | lastPalBefore(i) < 𝑗 ≤ 𝑖}

Furthermore, since plan action landmarks must be executed, each action must only deactivate all preceding
actions up to the last plan action landmark (which will have deactivated all preceding actions up to the plan
action landmark before that, and so on). When dealing with particularly long plans, this can reduce the size of
the effects of each action drastically.

Macro-Actions of Plan Action Landmarks. For all compilations, since plan action landmarks must be part of any
plan reduction, consecutive subsequences of plan action landmarks can be replaced by a single macro-action. The
effect it has on the search space is reducing the depth at which solutions are found. To maximize this effect, the
longest possible subsequences must be chosen to be encapsulated as a macro-action. For a plan 𝜋 = ⟨𝑎1, 𝑎2, . . . , 𝑎𝑛⟩,
let CPAL be the set of the longest consecutive subsequences of plan action landmarks of 𝜋 . For all subsequences in
CPAL, their corresponding actions are replaced by the macro-action encapsulating all of them. The macro-actions
are constructed as explained in Section 4.4.

6 Always Redundant Actions
Similarly to plan action landmarks, one might wonder if there are actions that can be identified as always
redundant, and not be considered when searching for a plan reduction of a given plan. However, the notion is not
as clear as plan action landmarks. An action can be redundant because another action achieves the same facts,
but if the other action is removed, this action might no longer be redundant in the resulting plan reduction. In the
context of minimal reduction, we now propose actions that can be identified as redundant in polynomial time.
In the minimal reduction problem, the goal is to find a perfectly justified plan reduction of least cost. So an

action that is never part of a perfectly justified plan reduction cannot be part of a minimal reduction. We call this
type of actions always redundant actions. As in the case of plan action landmarks, we use the extended planning
task to simplify notation.

Definition 13 (always redundant action). Let Π = ⟨V,A,I,G⟩ be an extended planning task and

𝜋 = ⟨𝑎0, 𝑎1, 𝑎2, . . . , 𝑎𝑛, 𝑎𝑛+1⟩ be a plan for Π. An action 𝑎𝑖 ∈ 𝜋 is always redundant iff there is no perfectly justified

plan reduction 𝜌 of 𝜋 such that 𝑎𝑖 ∈ 𝜌 .
Given a plan 𝜋 for a task Π, if an action 𝑎𝑖 ∈ 𝜋 does not achieve any goal fact nor any precondition fact

of another action, it can always be removed from any plan reduction 𝜌 of 𝜋 without affecting its validity. By
Definition 6, 𝜌 is not perfectly justified, so 𝑎𝑖 is always redundant. Furthermore, if an action 𝑎𝑖 only generates
facts that are part of the precondition of always redundant actions 𝑎 𝑗 , following the same reasoning, 𝑎𝑖 will not
be part of any perfectly justified plan reduction. We call this type of actions trivially redundant actions. Note
that, by Definition 9, virtual actions 𝑎0 and 𝑎𝑛+1 must be part of any plan for an extended task, so they are never
redundant.

Definition 14 (trivially redundant action). Let Π = ⟨V,A,I,G⟩ be an extended planning task and

𝜋 = ⟨𝑎0, 𝑎1, . . . , 𝑎𝑛, 𝑎𝑛+1⟩ be a plan for Π. Actions 𝑎0 and 𝑎𝑛+1 are never trivially redundant. Action 𝑎𝑖 , 1 ≤ 𝑖 ≤ 𝑛, is

a trivially redundant action for 𝜋 iff: for all 𝑎 𝑗 , 𝑖 < 𝑗 ≤ 𝑛 + 1, eff (𝑎𝑖) ∩ pre(𝑎 𝑗) = ∅ or 𝑎 𝑗 is trivially redundant.

Proposition 8. Let Π = ⟨V,A,I,G⟩ be an extended planning task and 𝜋 = ⟨𝑎0, 𝑎1, . . . , 𝑎𝑛, 𝑎𝑛+1⟩ be a plan for

Π. If 𝑎𝑖 is trivially redundant, then 𝑎𝑖 is always redundant.

Proof by induction.

Journal of Artificial Intelligence Research, Vol. 84, Article 10. Publication date: October 2025.

• 10:21

(1) Base case: suppose 𝑎𝑖 is trivially redundant because it does not achieve any precondition fact required
by any subsequent action in the plan. That is, for all 𝑗 , 𝑖 < 𝑗 ≤ 𝑛 + 1, eff (𝑎𝑖) ∩ pre(𝑎 𝑗) = ∅. Assume, for
contradiction, that 𝑎𝑖 is part of a perfectly justified plan reduction 𝜌 of 𝜋 . Let 𝜌 ′ = 𝜌 \ {𝑎𝑖 }, that is, the
plan obtained by removing 𝑎𝑖 from 𝜌 . Since 𝑎𝑖 ’s effects are not required by any subsequent action in 𝜋 ,
removing 𝑎𝑖 preserves applicability and the goal remains achieved. Therefore, 𝜌 ′ is also a plan reduction of
𝜋 , and |𝜌 ′ | < |𝜌 |. This contradicts the assumption that 𝜌 is perfectly justified. Hence, 𝑎𝑖 cannot be part of a
perfectly justified plan reduction, and is therefore always redundant.

(2) Inductive step: assume for all 𝑘 , 𝑖 < 𝑘 ≤ 𝑛 + 1, if 𝑎𝑘 is trivially redundant, then 𝑎𝑘 is always redundant. Let
𝑎𝑖 be a trivially redundant action such that 𝑝𝑟𝑒 (𝑎𝑖) ∩ eff (𝑎 𝑗) ≠ ∅ for some 𝑗 , 𝑖 < 𝑗 ≤ 𝑛 + 1. Now suppose,
for contradiction, that 𝑎𝑖 is part of a perfectly justified plan reduction 𝜌 of 𝜋 . By the inductive hypothesis,
all such 𝑎 𝑗 are always redundant and therefore cannot be included in any perfectly justified plan reduction
of 𝜋 . Hence, none of 𝑎𝑖 ’s effects are required in 𝜌 . This reduces to the base case and by the argument in the
base case, 𝑎𝑖 must then be always redundant—contradicting the assumption that it appears in a perfectly
justified plan reduction. □

In a similar fashion as fix-point plan action landmarks, the effects of known plan action landmarks can be used
to identify always redundant actions that are not trivially redundant. If an action 𝑎𝑖 only achieves facts that are
overwritten by a plan action landmark 𝑎 𝑗 before they are read by another action 𝑎𝑘 , 𝑎𝑖 can always be removed.
However, in practice, this characterization is too restrictive to be useful: for 𝑎𝑖 to be always redundant, there
needs to be a plan action landmark 𝑎 𝑗 ∈ A, with 𝑖 < 𝑗 , that sets the value of a variable 𝑣 which does not occur in
the precondition of 𝑎 𝑗 , that is, 𝑣 ∈ vars(eff (𝑎 𝑗)) \ vars(pre(𝑎 𝑗)), and there must be no action 𝑎𝑘 , with 𝑖 < 𝑘 < 𝑗 ,
with a precondition involving variable 𝑣 . This type of always redundant actions is absent from our benchmarks
and plans.

Note that trivially redundant actions and actions that are not backward justified (Definition 3) are not equivalent.
An action is not backward justified if there is no chain of causal links connecting it to the virtual goal action.
However, this does not imply that the action can never be part of a perfectly justified plan reduction: causal links
only consider the last achiever of a fact, so if multiple actions achieve the same fact, the action in question may
still be included in a minimal reduction—provided all other achievers are removed. In contrast, always redundant
actions never achieve any fact that could be useful in reaching the goals in any perfectly justified plan reduction.
Thus, all trivially redundant actions are not backward justified, but not all actions that are not backward justified
are trivially redundant.

Enhancing the performance of all planning compilations with information about always redundant actions is
straightforward. Since always redundant actions are never part of a perfectly justified plan reduction, simply
omitting the always redundant actions from the set of actions for the reformulated tasks is enough.

7 Evaluation
We now evaluate the different methods for finding minimal reductions experimentally. We solve the different
planning compilations with the Scorpion planning system (Seipp, Keller, et al. 2020), which is an extension of Fast
Downward (Helmert 2006). We use𝐴∗ with an admissible heuristic (described below) to find optimal plans, which
is necessary to find minimal plan reductions with our approach. We use Python 3.10 to generate the planning
task reformulations. To generate the WPMaxSAT tasks formulations we use the Java code by Balyo, Chrpa, et al.
2014. To solve the WPMaxSAT formulations, we use the Sat4J solver (Le Berre and Parrain 2010). All algorithm
runs are limited to a runtime of 30minutes and 8GiB of memory. Code and data for the planning compilations
are available online (Salerno et al. 2025).

Journal of Artificial Intelligence Research, Vol. 84, Article 10. Publication date: October 2025.

10:22 • Salerno, Fuentetaja & Seipp

Table 2. Per-domain benchmark analysis. For each domain, we show the number of plans (#), the length of the shortest plan
(𝑚𝑖𝑛(𝐿)), the average number of actions in each plan (𝐿), and the length of the longest plan (𝑚𝑎𝑥 (𝐿)). Additionally, for each
planner, we show the average percentage of redundant actions in plans (number of redundant actions divided by the input
plan length, multiplied by 100) and, in parentheses, the number of plans the planner found for each domain.

Domain # min(𝐿) 𝐿 max(𝐿) Cerberus Madagascar LAMA BFWS YASHP3

Agricola 18 53 89.72 152 0.00 (2) – (0) 0.00 (6) 0.00 (10) – (0)
Barman 57 150 196.40 377 6.36 (17) – (0) 17.82 (19) 4.35 (20) 47.21 (1)
ChildSnack 25 33 55.48 86 0.00 (1) 4.05 (19) 5.92 (5) – (0) – (0)
DataNetwork 34 18 95.82 402 3.57 (9) 57.49 (4) 15.90 (11) 7.40 (10) – (0)
Floortile 47 36 83.11 127 7.99 (20) 4.05 (20) 5.13 (2) 3.50 (2) 22.15 (3)
GED 68 62 153.63 390 0.00 (20) – (0) 0.00 (20) 0.00 (20) 4.50 (8)
Hiking 47 13 446.89 4058 6.54 (8) 5.38 (8) 0.67 (9) 0.00 (8) 55.33 (5)
OpenStacks 53 442 731.25 1115 0.00 (13) – (0) 0.00 (20) 0.00 (20) – (0)
OrgSynthesis 9 2 4.00 8 0.00 (3) – (0) 0.00 (3) 0.00 (3) – (0)
OrgSynthesisSplit 21 24 37.62 68 0.00 (4) 0.00 (4) 0.00 (8) 0.00 (5) – (0)
Parking 45 70 103.64 147 0.00 (5) – (0) 0.59 (20) 0.00 (20) – (0)
Snake 26 34 91.27 270 0.00 (5) – (0) 0.00 (3) 0.00 (18) – (0)
Termes 31 100 732.00 2944 4.94 (11) – (0) 9.77 (11) 40.33 (6) – (0)
Tetris 37 23 71.59 157 0.28 (13) 10.11 (4) 6.67 (2) 10.53 (17) 4.76 (1)
Thoughtful 69 27 102.83 318 0.85 (18) 7.86 (5) 0.34 (16) 0.20 (20) 21.79 (10)
Transport 53 143 480.85 1358 0.00 (6) – (0) 10.15 (7) 7.50 (20) 26.22 (20)
VisitAll 60 919 3046.97 4976 0.00 (4) – (0) 0.72 (16) 0.00 (20) 0.03 (20)

7.1 Benchmark Analysis
As benchmarks, we use the same tasks and input plans as Med and Chrpa 2022.6 We omit tasks with conditional
effects since the WPMaxSAT approach does not support them.7 The benchmark set consists of tasks from the
Agile tracks of the International Planning Competitions (IPC) of 2014 and 2018, and plans found with the following
planners: Cerberus (Katz 2018), Freelunch Madagascar (Balyo and Gocht 2018), LAMA 2011 (Richter, Westphal,
and Helmert 2011), BFWS Preference (Francès et al. 2018) and YAHSP3 (Vidal 2014). We refer to LAMA 2011
simply as “LAMA”, to Freelunch Madagascar as “Madagascar” and to BFWS Preference as “BFWS”. All planners
aim to find a single plan as fast as possible.

The number of actions in a plan directly influences the size of the state space induced by the reformulated task,
and it also directly impacts the number of variables and clauses in the WPMaxSAT formulation. Table 2 shows
the size of the input plans, as well as the ratio of redundant actions. In general, we are dealing with plans with
hundreds of steps, while plans for VisitAll have thousands of steps. Particularly short plans are only found in
OrgSynthesis and OrgSynthesisSplit. LAMA and BFWS produce the lowest ratio of redundant actions on average,
close to 4% on average, while still producing a high number of redundant actions in some domains, like Barman
for LAMA (17.82%) and Termes for BFWS (40.33%). On the other hand, Madagascar and YASHP3 produce highly
redundant plans, with 12% and 22.75% of the actions being redundant on average for each plan, respectively.8

6While they find plan reductions of arbitrary cost, we solve the minimal reduction problem.
7Adding support for conditional effects to our planning compilations is straightforward and we have done so for our submission to the
International Planning Competition (Salerno et al. 2023b).
8We obtained these statistics using the best configuration for Πs1

a1
, discussed in Section 7.4.

Journal of Artificial Intelligence Research, Vol. 84, Article 10. Publication date: October 2025.

• 10:23

Table 3. Comparison of the total time needed to reformulate all tasks, the total time needed to solve all tasks, the sum
of these two runtimes, the geometric mean of the number of expansions and the number of solved tasks. All values are
computed only over the commonly solved tasks, except for coverage. Note that solving a task compilation implies finding a
plan reduction, which includes the case of returning the input plan if it already is a minimal reduction.

Πs1

a1
Πsm

a1
Πs1

am
Πsm

am

Reformulation Time (s) 6.70 35.84 1497.56 7345.67
Planning Time (s) 16.22 32.14 716.64 55934.31
Compilation + Planning Time (s) 22.92 67.98 2214.20 63279.98
Expansions 105.64 84.41 86.02 68.58

Coverage 683 670 551 414

7.2 Comparison of Planning Compilations
We begin by comparing the performance of the different planning compilations without using plan action
landmarks. Table 3 shows an aggregated comparison of the performance of Πs1

a1
, Πsm

a1
, Πs1

am
and Πsm

am
when using

ℎmax (Bonet and Geffner 2001) as the heuristic function. We use this simple heuristic to compare the proposed
methods, and will evaluate the best configuration of each approach with more advanced heuristic functions in
Section 7.4.
When it comes to time, Πs1

a1
is fastest overall, both regarding time needed to create the planning task and the

time needed to solve it. Πsm

am
is noticeably slower compared to both Πsm

a1
and Πs1

am
.

The reformulation and solving times for Πs1

am
and Πsm

am
are extremely high when compared to the other

reformulations (particularly for Πsm

am
). This follows from the fact that, as shown in Table 2, many plans have

thousands of actions. The number of actions to be created by Πs1

am
and Πsm

am
is quadratic in the length of the input

plan (see Table 1), which explains this increase both in reformulation and solving time.
For Πsm

a1
, the reformulation time is higher than Πs1

a1
, even though the number of actions is lower for the former

(|𝜋 | for Πsm

a1
and 2 × |𝜋 | for Πs1

a1
). This counter-intuitive result comes from the fact that actions in Πsm

a1
have a

large number of effects: each action must deactivate all preceding actions. Πsm

am
is affected by this large number of

effects to an even greater extent because of its larger number of actions.
The number of expansions is lower for Πsm

a1
, Πs1

am
and Πsm

am
when compared to Πs1

a1
which is to be expected.

Allowing to skip and apply multiple actions at a time means states found at a deeper level of the search tree
generated by Πs1

a1
can be achieved in a single expansion by the other compilations. However, as can be inferred

from Table 1, in general the overhead of the large number of effects and actions, as well as the higher branching
factor, translates into a slower expansion rate for the other compilations compared to Πs1

a1
, and thus incurs a

slower planning process.
A per-domain comparison of the four compilations can be found in Figure 6 and in Table 4. For the OpenStacks

and VisitAll domains, both Πs1

am
and Πsm

am
fail to solve any tasks within the time and memory limits. In contrast,

Πs1

a1
and Πsm

a1
solve all tasks for OpenStacks, and 58/60 and 53/60 for VisitAll, respectively. Πs1

a1
is particularly

faster than Πsm

a1
for both domains. This is not reflected in Table 4, since we only include statistics for tasks

solved by all compilations, but it can be appreciated in Figure 6(a). For Πs1

am
and Πsm

am
, the cause for the weak

performance in these domains is the quadratic number of actions created from the input plans, in conjunction
with the particularly long plans from those domains.9

9This problem will be alleviated by the use of plan action landmark information in the following section.

Journal of Artificial Intelligence Research, Vol. 84, Article 10. Publication date: October 2025.

10:24 • Salerno, Fuentetaja & Seipp

10−2 10−1 100 101 102 103

10−2

10−1

100

101

102

103

uns.

uns.

Πs1

a1
(lower for 636 tasks)

Π
s
m

a
1
(lo

w
er

fo
r3

4
ta
sk
s)

(a) Πs1
a1 vs Π

sm
a1

10−2 10−1 100 101 102 103

10−2

10−1

100

101

102

103

uns.

Πs1

a1
(lower for 547 tasks)

Π
s
1

a
m
(lo

w
er

fo
r4

ta
sk
s)

(b) Πs1
a1 vs Π

s1
am

10−2 10−1 100 101 102 103

10−2

10−1

100

101

102

103

uns.

uns.

Πsm

a1
(lower for 414 tasks)

Π
s
m

a
m
(lo

w
er

fo
r0

ta
sk
s)

(c) Πsm
a1 vs Πsm

am

10−2 10−1 100 101 102 103

10−2

10−1

100

101

102

103

uns.

uns.

Πs1

am
(lower for 409 tasks)

Π
s
m

a
m
(lo

w
er

fo
r5

ta
sk
s)

(d) Πs1
am vs Πsm

am

Agricola
Barman
ChildSnack
DataNetwork
Floortile
GED
Hiking
OpenStacks
OrgSynthesis
OrgSynthesisSplit
Parking
Snake
Termes
Tetris
Thoughtful
Transport
VisitAll

Fig. 6. Comparison of the compilation+planning time between the different planning formulations using the ℎmax heuristic.

Overall, Πs1

a1
outperforms the other three approaches, solving all tasks in all domains except for Hiking (37/47),

Termes (26/31) and Visitall (58/60). In general, the solving time of Πs1

a1
is lower than the solving time of Πsm

a1
, Πs1

am

and Πsm

am
. However, there are cases where the opposite is true.

7.3 Plan Action Landmarks and Always Redundant Actions
In this section, we analyze how prevalent trivial and fix-point plan action landmarks are in our benchmarks, as
well as always redundant actions. Additionally, we study the impact of enhancing the planning reformulations
with fix-point plan action landmark information.

7.3.1 Prevalence of Trivial and Fix-Point Plan Action Landmarks. Table 5 shows that, on average, more than
half of the actions of all plans are trivial plan action landmarks, while over 85% of actions are fix-point plan
action landmarks. Particularly, in many domains all actions are fix-point plan action landmarks (OrgSynthesis,
OrgSynthesisSplit, OpenStacks, Snake, Agricola). In these cases, the FPALs prove that the input plan is perfectly
justified, and no planner call is needed. For other domains, a high number of plan action landmarks will greatly
reduce the branching factor of the search when solving the reformulated planning tasks. For example, in the

Journal of Artificial Intelligence Research, Vol. 84, Article 10. Publication date: October 2025.

• 10:25

Table 4. Per-domain statistics for our four compilations using ℎmax: number of instances (#), coverage (C), time needed to
reformulate all tasks (RT), time needed to solve all tasks (ST), and geometric mean of the number of expansions (E). All values
are computed over the commonly solved tasks, except for coverage.

Πs1

a1
Πsm

a1
Πs1

am
Πsm

am

Domain # C RT ST E C RT ST E C RT ST E C RT ST E

Agricola 18 18 0.3 0.6 86.7 18 2.6 0.8 86.7 18 57.8 9.7 77.8 18 277.3 147.4 77.8

Barman 57 57 0.2 0.4 1332.6 57 1.4 3.6 478.7 57 52.0 39.4 1329.5 7 484.6 9823.3 475.5

ChildSnack 25 25 0.2 0.8 68.5 25 0.7 1.4 61.9 25 20.1 5.4 67.3 25 65.9 1097.4 60.6

DataNetwork 34 34 0.3 1.4 162.4 34 1.8 4.2 131.0 33 52.5 86.8 153.4 30 439.8 7824.9 125.3

Floortile 47 47 0.5 2.0 197.3 47 2.4 4.6 156.3 47 45.4 24.9 195.1 47 349.9 5016.6 154.2

GED 68 68 0.7 1.5 109.6 68 3.8 2.9 102.7 68 59.5 18.5 98.9 44 741.2 13580.5 92.3

Hiking 47 37 0.2 1.1 42.8 37 0.4 1.5 37.8 36 3.8 5.3 38.7 36 12.3 74.3 34.0

OpenStacks 53 53 – – – 53 – – – 0 – – – 0 – – –
OrgSynthesis 9 9 0.0 0.2 4.3 9 0.0 0.2 4.3 9 0.1 0.5 2.8 9 0.1 0.5 2.8

OrgSynthesisSplit 21 21 0.4 0.8 37.6 21 0.6 0.7 37.1 21 6.4 1.7 7.7 21 19.3 6.1 7.5

Parking 45 45 0.8 1.6 104.9 45 6.2 2.8 103.7 45 257.6 62.7 100.0 45 1082.6 1151.7 98.8

Snake 26 26 0.5 0.9 70.4 26 2.4 1.2 70.1 26 161.7 60.6 43.2 23 564.6 340.5 43.0

Termes 31 26 0.1 0.2 643.2 20 0.8 1.0 230.7 16 7.6 5.7 640.6 6 263.5 2047.9 228.3

Tetris 37 37 1.1 1.6 138.1 37 3.1 3.0 107.5 37 91.2 88.9 134.2 36 386.0 5713.7 104.2

Thoughtful 69 69 1.6 3.0 98.9 69 8.9 3.9 83.3 69 672.4 303.0 94.0 64 2488.5 5657.6 78.7

Transport 53 53 0.0 0.1 181.4 53 0.6 0.3 159.9 43 9.6 3.7 173.2 3 170.4 3452.0 151.7

VisitAll 60 58 – – – 52 – – – 0 – – – 0 – – –

Overall 700 683 6.7 16.2 105.6 671 35.8 32.1 84.4 551 1497.6 716.6 86.0 414 7345.7 55934.3 68.6

VisitAll domain, if trivial plan action landmarks are used to enhance the search, the branching factor is reduced
from 2 to 1.14 on average, and to 1.004 for fix-point plan action landmarks. From these results, we can expect a
large reduction of planning time for domains with a high prevalence of plan action landmarks, like Visitall, while
domains with low prevalence, like Termes, will remain challenging.

7.3.2 Prevalence of Always Redundant Actions. On average, only 0.7% of actions in plans in our benchmark set
are trivially redundant, indicating that modern satisficing planners very rarely yield plans with actions that
cannot contribute to the goals of the task, but this does not mean they cannot be more prevalent in different
settings. A setting where the idea of always redundant actions can be helpful is plan reuse: imagine you have a
plan for a planning task, but you are interested in achieving only a subset of the original goal facts (Fink and Yang
1992). If the effects of some actions are only related to goals that are not in the selected subset of goals, they will
be identified as always redundant and can be safely removed, quickly yielding a better plan for this specific subset
of goals. Table 6 shows the average ratio of trivially redundant actions for each domain in the benchmark set,
where each task is modified by only keeping a subset of the original goals. We consider the original task (100% of
the goals), and tasks with 75%, 50% and 25% of the goals. As the number of goals gradually decreases, trivially
redundant actions become more and more common, showing they can be useful in the plan-reuse context.
Although few plans in our benchmark set contain trivially redundant actions, this does not mean they are

never generated by modern planners. Take, for instance, the running example task from the Blocksworld domain
shown in Figure 1 and the plan ⟨pick-up-b, stack-b-a, pick-up-c, stack-c-d⟩. The goal of the task is to stack 𝐵 on
top of𝐴, so actions stack-c-d and pick-up-c are not causally related to the goals of the task. By Definition 14, both
actions are trivially redundant: the effects of stack-c-d are not read by any action (the virtual goal action only has
the precondition {b-pos ↦→ 𝑎, a-pos ↦→ 𝑡𝑎𝑏𝑙𝑒}, and the effects of pick-up-c are only read by the trivially redundant

Journal of Artificial Intelligence Research, Vol. 84, Article 10. Publication date: October 2025.

10:26 • Salerno, Fuentetaja & Seipp

Table 5. For each domain, we show the minimum ratio (min), average ratio (avg) and maximum ratio (max) of trivial and
fix-point plan action landmarks (number of PALs over plan length).

TPAL FPAL

Domain min avg max min avg max

Agricola 0.687 0.745 0.804 1.000 1.000 1.000
Barman 0.095 0.195 0.247 0.377 0.830 1.000
ChildSnack 0.558 0.874 1.000 0.667 0.920 1.000
DataNetwork 0.161 0.579 0.903 0.161 0.794 1.000
Floortile 0.449 0.591 0.722 0.640 0.867 1.000
GED 0.031 0.436 0.864 0.059 0.966 1.000
Hiking 0.007 0.506 0.882 0.008 0.699 1.000
OpenStacks 0.758 0.822 0.925 1.000 1.000 1.000
OrgSynthesis 1.000 1.000 1.000 1.000 1.000 1.000
OrgSynthesisSplit 0.426 0.893 1.000 1.000 1.000 1.000
Parking 0.556 0.648 0.728 0.865 0.983 1.000
Snake 0.107 0.361 0.786 1.000 1.000 1.000
Termes 0.000 0.051 0.199 0.000 0.282 1.000
Tetris 0.000 0.133 0.391 0.000 0.629 1.000
Thoughtful 0.253 0.803 1.000 0.459 0.949 1.000
Transport 0.096 0.395 0.741 0.369 0.785 1.000
VisitAll 0.643 0.858 0.987 0.957 0.996 1.000

Overall (700) 0.000 0.582 1.000 0.000 0.865 1.000

action stack-c-d .) Plans for top-𝑘 planning tasks are bound to include such actions: in a Blocksworld task, a
second cheapest plan can always be constructed by picking up any block not mentioned in the goal description
after reaching a goal state, and such an action will be trivially redundant.

7.3.3 Using Plan Action Landmarks. We now analyze how enhancing each reformulation with fix-point plan
action landmarks affects its performance.

Table 7 shows the impact plan action landmarks have on the performance of each individual compilation. The
use of TPALs improves performance for all compilations, and FPALs similarly improve performance over only
using TPALs. The coverage increases for all approaches: from 683 to 688 solved tasks for Πs1

a1
; 670 to 684 for Πsm

a1
;

550 to 676 for Πs1

am
; and 414 to 670 for Πsm

am
. Πs1

am
(Table 7c) and Πsm

am
(Table 7d) are the greatest beneficiaries of

plan action landmarks. This result follows from the fact that, by using plan action landmarks, the number of
actions created for Πs1

am
and Πsm

am
is lower, vastly reducing the time needed to create the task, which was the

main culprit of its poor performance without plan action landmarks. The increase in reformulation time for
Πs1

a1
(Table 7a) is due to the time needed to compute fix-point plan action landmarks, which is considered in

the reformulation time. However, since the planning time is greatly reduced, the overall time is still lower than
without plan action landmarks. The counter-intuitive decrease in reformulation time for Πsm

a1
(Table 7b) is due to

the fact that the number of effects in the actions of Πsm

a1
shrinks drastically: each action must only “deactivate” all

preceding actions up to the previous plan action landmark. In the best case, this reduces the number of effects
of an action from thousands to 1, if the previous action is known to be a plan action landmark (only needs to

Journal of Artificial Intelligence Research, Vol. 84, Article 10. Publication date: October 2025.

• 10:27

Table 6. Average ratio of trivially redundant actions for tasks modified by keeping only a fraction of goal facts. The absolute
number of goals in each modified task is rounded down to the closest integer.

Domain 25% 50% 75% 100%

Agricola 1.000 0.949 0.949 0.000
Barman 0.162 0.083 0.035 0.000
ChildSnack 0.709 0.457 0.262 0.031
DataNetwork 0.411 0.216 0.111 0.057
Floortile 0.476 0.299 0.108 0.016
GED 0.930 0.869 0.024 0.000
Hiking 0.599 0.231 0.119 0.008
OpenStacks 0.013 0.002 0.001 0.000
OrgSynthesis 0.667 0.153 0.153 0.000
OrgSynthesisSplit 0.430 0.239 0.046 0.000
Parking 0.064 0.010 0.007 0.000
Snake 0.386 0.151 0.069 0.000
Termes 0.080 0.017 0.011 0.000
Tetris 0.682 0.156 0.102 0.010
Thoughtful 0.083 0.036 0.008 0.000
Transport 0.288 0.130 0.045 0.005
VisitAll 0.005 0.002 0.002 0.000

Overall (700) 0.411 0.235 0.121 0.007

Table 7. Impact of TPALs and FPALs on the performance of the different planning compilations. RT is the time needed to
reformulate all tasks, PT is the time needed to find plans for all reformulated tasks, TT is the total time needed to solve all
tasks (RT + PT), E is the geometric mean of the number of expansions and C is the number of solved tasks (coverage). All
metrics (except for coverage) consider commonly solved tasks by the three configurations in the respective table.

Πs1

a1
Πs1

a1
-TPAL Πs1

a1
-FPAL

RT (s) 38.59 59.85 306.86
PT (s) 3260.66 1142.96 740.24

TT (s) 3299.24 1202.80 1047.10

E 283.25 85.54 10.41

C 683 686 688

(a) Impact of TPALs and FPALs on Πs1
a1.

Πsm

a1
Πsm

a1
-TPAL Πsm

a1
-FPAL

RT (s) 7836.76 114.45 302.96
PT (s) 26382.58 1067.05 828.21

TT (s) 34219.34 1181.50 1131.17

E 183.16 63.06 7.31

C 670 682 684

(b) Impact of TPALs and FPALs on Πsm
a1 .

Πs1

am
Πs1

am
-TPAL Πs1

am
-FPAL

RT (s) 4479.09 718.11 140.62

PT (s) 19228.46 1684.42 1200.30

TT (s) 23707.55 2402.54 1340.92

E 140.63 51.00 9.27

C 551 675 676

(c) Impact of TPALs and FPALs on Πs1
am.

Πsm

am
Πsm

am
-TPAL Πsm

am
-FPAL

RT (s) 7345.67 518.83 141.74

PT (s) 55934.31 4162.95 2239.28

TT (s) 63279.98 4681.78 2381.02

E 68.58 28.18 4.02

C 414 658 670

(d) Impact of TPALs and FPALs on Πsm
am.

Journal of Artificial Intelligence Research, Vol. 84, Article 10. Publication date: October 2025.

10:28 • Salerno, Fuentetaja & Seipp

Table 8. Time needed to reformulate all tasks, time needed to solve all tasks, sum of reformulation and planning time,
geometric mean of number of expansions and coverage. All approaches are enhanced using fix-point plan action landmarks
and macro-actions of consecutive plan action landmarks. The heuristic used to solve all problems is ℎmax.

Πs1

a1
Πsm

a1
Πs1

am
Πsm

am

Reformulation Time (s) 7.85 8.98 45.84 153.14
Planning Time (s) 12.9 14.36 65.76 2329.78
Total Time (s) 20.75 23.34 111.6 2482.92
Expansions 4.73 4.04 4.7 4.02

Coverage 688 684 676 670

deactivate itself). Using PALs reduces the number of expansions for all compilations, as expected, due to the
reduced branching factor.
Table 8 offers a direct comparison of performance between the different compilations enhanced with FPALs

(the same statistics as Table 3, but now all compilations use fix-point plan action landmarks as explained in
Section 5.2). Note that the commonly solved tasks for Table 3 and Table 8 differ, so times and expansions in
those tables are not comparable. Since using FPALs is always beneficial, and Πs1

a1
is preferable to the other three

compilations, we use Πs1

a1
enhanced with FPALs for all experiments below.

7.4 Using Different Heuristics
Beyond ℎmax, we evaluated several heuristics spanning a diverse range of approaches to heuristic search. These
include the blind heuristic (ℎ0), the ℎLM-cut heuristic (Helmert and Domshlak 2009) and the admissible landmark-
based ℎBJOLP heuristic (Domshlak et al. 2011). As a representative of a state-of-the-art heuristic for optimal
classical planning, we considered saturated cost partitioning (Seipp, Keller, et al. 2020) over pattern database
heuristics (Edelkamp 2001) and Cartesian abstractions (Seipp and Helmert 2018), referred to as ℎSCP.

The evaluated heuristics can be categorized based on their trade-off between informativeness and computational
cost. The blind heuristic (ℎ0) is fast to evaluate but wholly uninformed. The ℎmax heuristic strikes a balance, being
semi-informed and moderately fast to evaluate. In contrast, ℎSCP, ℎLM-cut and ℎBJOLP are highly informed but
require significantly greater computational effort.

For the Πs1

a1
reformulation, augmented with fix-point plan action landmarks, ℎSCP achieves the highest coverage

in all domains among all heuristics. However, ℎmax solves only one fewer task than ℎSCP (in the Termes domain)
while requiring nearly two orders of magnitude less time for the tasks they both solve. To provide a closer
comparison, Table 9 highlights results for three representative heuristics: ℎ0, ℎmax and ℎSCP. We do not include
ℎLM-cut and ℎBJOLP in the table, as neither solves any task not solved by ℎmax and ℎSCP. The results reveal a trade-off
between planning time and heuristic informativeness. While ℎ0 requires the least planning time for the commonly
solved tasks, ℎSCP significantly reduces the number of node expansions. This reduction, however, comes at the
cost of the high computational overhead required to compute and evaluate ℎSCP. For simpler problems, the
additional computation time of informed heuristics like ℎSCP may not be justified. However, for more complex
problems, only the additional information provided by such heuristics leads to finding a solution.

7.5 Comparison to WPMaxSAT
We now compare the Πs1

a1
planning compilation to the WPMaxSAT approach (Balyo, Chrpa, et al. 2014), described

in Section 3.2. We also highlight a particular plan characteristic where the WPMaxSAT approach struggles, and

Journal of Artificial Intelligence Research, Vol. 84, Article 10. Publication date: October 2025.

• 10:29

Table 9. Per-domain statistics for Πs1
a1 enhanced with fix-point plan action landmarks with three different heuristics: ℎ0, ℎmax

and ℎSCP. For each heuristic, we show coverage (C), time needed to solve all tasks (T), geometric mean of evaluated nodes
per second (ER), and geometric mean of expanded nodes (E). For domains where all instances need at most 100 evaluations,
we do not show ER. All results are computed over all commonly solved tasks.

ℎ0 ℎmax ℎSCP

Domain C T ER E C T ER E C T ER E

Agricola 18 0.47 – 2.00 18 0.50 – 2.00 18 8.92 – 2.00
Barman 57 2.07 99568.9 104.77 57 2.09 34606.4 45.11 57 78.64 11784.9 31.42

ChildSnack 25 0.63 – 6.92 25 0.68 – 6.49 25 28.48 – 5.90

DataNetwork 34 8.94 288314.3 100.41 34 1.86 57717.5 24.09 34 47.42 29565.8 23.21

Floortile 47 1.31 – 32.07 47 1.45 – 18.18 47 55.34 – 15.33

GED 68 1.82 490636.2 3.13 68 2.64 19100.0 2.55 68 74.58 10064.2 2.53

Hiking 37 6.59 516668.7 10.15 38 2.38 114388.3 5.80 38 43.52 49863.5 5.29

OpenStacks 53 1.50 – 2.00 53 1.79 – 2.00 53 92.87 – 2.00
OrgSynthesis 9 0.25 – 2.00 9 0.24 – 2.00 9 6.71 – 2.00
OrgSynthesisSplit 21 0.56 – 2.00 21 0.59 – 2.00 21 16.16 – 2.00
Parking 45 1.22 – 3.57 45 1.17 – 3.14 45 53.39 – 3.10

Snake 26 0.66 – 2.00 26 0.82 – 2.00 26 27.59 – 2.00
Termes 20 3.21 463916.1 1709.28 28 1.31 80664.3 244.19 29 20.65 14374.6 148.08

Tetris 36 41.83 350780.8 76.11 37 0.95 29209.9 10.04 37 45.14 47046.2 19.75
Thoughtful 69 2.25 296896.2 6.28 69 2.39 38804.6 4.84 69 82.53 11331.0 4.50

Transport 53 5.62 332304.4 381.02 53 1.75 47618.0 53.52 53 63.14 7729.2 33.32

VisitAll 60 12.45 78784.9 15.67 60 6.51 11441.9 5.74 60 774.82 38027.8 14.84

Overall 678 91.39 275706.3 14.25 688 29.13 39176.6 7.46 689 1519.89 19425.2 7.38

confirm it empirically using a slightly modified VisitAll domain. Throughout this section we use Πs1

a1
enhanced

with fix-point plan action landmarks and the ℎmax heuristic.

7.5.1 Solving Time and Coverage. Figure 7 compares the time it takes Πs1

a1
and WPMaxSAT to solve the minimal

reduction tasks. Figure 7a compares the time needed to create the tasks for both approaches, Figure 7b compares
the time needed to solve the tasks, and Figure 7c compares the sum of task creation and solving times. We see that
Πs1

a1
is faster in most cases, though there are cases where WPMaxSAT manages to create the task faster. These

cases consist mainly of tasks where the input planning task has a high number of fix-point plan action landmarks
(like in VisitAll and OpenStacks), since the time needed to compute them is accounted for in the reformulation
time for Πs1

a1
.

Regarding the number of solved tasks, both approaches perform similarly. Πs1

a1
solves 688 out of 700 tasks,

while WPMaxSAT solves 687. Πs1

a1
solves one more task in the Transport and Hiking domains, while WPMaxSAT

solves one more task in the Termes domain.

7.5.2 Modified VisitAll. We now present a family of minimal reduction tasks where the CNF formula created by
the WPMaxSAT approach grows drastically, while the planning approaches maintain the same number of actions.

Journal of Artificial Intelligence Research, Vol. 84, Article 10. Publication date: October 2025.

10:30 • Salerno, Fuentetaja & Seipp

10−2 10−1 100 101

10−2

10−1

100

101

uns.

uns.

WPMaxSAT (lower for 146 tasks)

(l
ow

er
fo
r
53
3
ta
sk
s)

(a) Reformulation Time (s)

10−2 10−1 100 101 102 103

10−2

10−1

100

101

102

103

uns.

uns.

WPMaxSAT (lower for 21 tasks)

(l
ow

er
fo
r
6
64

ta
sk
s)

(b) Solving Time (s)

10−2 10−1 100 101 102 103

10−2

10−1

100

101

102

103

uns.

uns.

WPMaxSAT (lower for 77 tasks)

Π
s
1

a
1
(lo

w
er

fo
r6

08
ta
sk
s)

(c) Total Time (s)

Agricola Barman
ChildSnack DataNetwork
Floortile GED
Hiking OpenStacks
OrgSynthesis OrgSynthesisSplit
Parking Snake
Termes Tetris
Thoughtful Transport
VisitAll

(d) Legend

Fig. 7. Scatter plots comparing time needed to: (a) create the minimal reduction task, (b) solve the task and (c) total time
(sum of task creation and solving time).

In Appendix A, we show how the CNF formula proposed by Balyo, Chrpa, et al. 2014 is created. The number of
variables is at most quadratic in the plan length 𝑛, while the number of clauses is at most cubic in 𝑛 (Balyo, Chrpa,
et al. 2014). The number of clauses depends both on the plan length and the number of achievers and opposers of
the required facts. For the number of clauses to grow to the worst case, the input plan needs to contain 𝑛 different
options to generate each required fact (all actions in the plan are achievers) and 𝑛 opposing actions for each fact
(all actions in the plan are opposers). Therefore, the formulas generated for input plans where multiple actions
require to use an exclusive fact, or consume a fact that needs to be restored with a different action (or actions)
will be particularly large. Formula (1) shows that if a fact needs to be true at a given step of the plan, at least one
of the actions that achieve said fact before the time step must be true. In the worst case, all actions achieve a
specific fact, and this clause can have as many as 𝑛 variables, with 𝑛 being the plan length. Formula (2) shows
that, in order for a fact to be achieved by a specific action at a certain time step 𝑖 , none of the actions that oppose
that fact must be part of the plan reduction between the action and the time step 𝑖 . In the worst case, all actions

Journal of Artificial Intelligence Research, Vol. 84, Article 10. Publication date: October 2025.

• 10:31

oppose a fact achieved by an action, so this clause can have as many as 𝑛 variables. Formula (4) declares that,
if an action at time step 𝑖 is part of the plan reduction, then all of its preconditions must be true at time 𝑖 . For
this, for each precondition 𝑝 of the action, Formula (1) is added, and for each achiever of 𝑝 Formula (2) is also
added. If all actions are achievers and opposers of every fact, in the worst case, 𝑛 + 𝑛2 clauses are added to the
CNF for each precondition of every action. Assuming the number of preconditions and effects is constant in the
plan length, this translates into a cubic number of clauses, as noted by Balyo, Chrpa, et al. 2014. For plans with
thousands of actions, this worst-case scenario translates into billions of clauses. In contrast, the size of the Πs1

a1

compilation does not depend on the number of achievers or opposers of facts in the plan; it is only dependent
(linear) on the size of the input plan.

To simulate a similar situation to this worst case scenario, we slightly modify the VisitAll domain. In the
original domain, an agent is placed in a grid and must visit all cells in the grid. The actions in the domain allow
the agent to move from its current position to any adjacent cell. Our modification consists of adding a resource
(fuel) that is consumed after each move: each move consumes the fuel and a refuel action can be executed at any
point in the grid. With this modification, all move actions will be opposers of all other (they all consume the
available fuel, which is needed to move). Also, for the fuel precondition there will be as many achievers as there
are previous actions in the plan (a valid plan needs to refuel after every move action). We modify the input plans
by adding a refuel action between move actions to create valid plans for this modified domain (this also makes
the plans double in size) and run both Πs1

a1
using FPALs, macro-actions of FPALs and ℎmax and the WPMaxSAT

approach. Πs1

a1
shows a similar behavior as for the original plans and solves all tasks, while WPMaxSAT runs

out of memory for each task while creating the CNF. This indicates that, for plans where each fact has many
achieving and opposing actions, using the planning reformulation might be preferable over the WPMaxSAT
when searching for a minimal reduction.

8 Conclusions
In this work, we presented several approaches to find minimal plan reductions using classical planning, as well
as a review of existing work related to redundant action detection in automated planning. Similarly, a theoretical
analysis of trivial and fix-point plan action landmarks was presented, showing that both must be part of any plan
reduction of a plan. Additionally, we introduced the concept of always redundant actions, which are actions that
are not part of any perfectly justified plan reduction.
Experimentally, we compared all planning compilations and found that, in general, Πs1

a1
is preferable to the

other approaches, though there are cases where Πsm

a1
and Πs1

am
outperform it. We looked at the prevalence of

trivial and fix-point plan action landmarks, and found that they are highly prevalent in our benchmark set. This
indicates that, in many cases, one can identify most actions that must be part of a plan reduction in polynomial
time. The same study was done for always redundant actions, and we found that they are not present in our
benchmark set, but we illustrated settings where they occur. The performance of different heuristics when solving
the minimal reduction problem with the different planning compilations indicates that, in the vast majority of
cases, a simple heuristic is preferable over a more informative one.
A comparison to the WPMaxSAT approach shows that Πs1

a1
is faster in most cases, while solving roughly as

many tasks. Finally, we proposed a simple modification to the VisitAlldomain to empirically show a particular
type of tasks where the WPMaxSAT approach struggles. The experiments using this domain showed that, under
these conditions, the formula created by the WPMaxSAT grows too fast to be able to find minimal reductions of
long plans, while the planning approaches are able to solve them.

In the future, we plan to study the impact of using our action elimination techniques inside of anytime planners
that iteratively reduce the last found plan before a new search. Furthermore, since our techniques are general,
they can be applied to other planning settings where the solutions are sequences of actions, such as temporal,

Journal of Artificial Intelligence Research, Vol. 84, Article 10. Publication date: October 2025.

10:32 • Salerno, Fuentetaja & Seipp

numeric or conformant planning. While we focused on obtaining minimum plan reductions, our techniques
can also be applied to find any plan reduction, simply by running a satisficing instead of an optimal planner on
the reformulations. Finally, to solve the minimal reduction problem, we maintain the relative order of actions.
However, it is easy to lift this restriction to solve the problem of finding the cheapest plan that also uses only
actions from the input plan, but possibly in a different order.

Acknowledgments
This work was partially funded by grant PID2021-127647NB-C21 from MCIN/AEI/10.13039/501100011033, by
the ERDF “A way of making Europe”, and by the Madrid Government under the Multiannual Agreement with
UC3M in the line of Excellence of University Professors (EPUC3M17) in the context of the V PRICIT (Regional
Programme of Research and Technological Innovation). Furthermore, this work was partially supported by the
Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg
Foundation and by TAILOR, a project funded by the EU Horizon 2020 research and innovation programme under
grant agreement no. 952215. The computations were enabled by resources provided by the National Academic
Infrastructure for Supercomputing in Sweden (NAISS) partially funded by the Swedish Research Council through
grant agreement no. 2022-06725.

References
C. Bäckström and B. Nebel. 1995. “Complexity Results for SAS+ Planning.” 11, 4, 625–655.
T. Balyo, L. Chrpa, and A. Kilani. 2014. “On Different Strategies for Eliminating Redundant Actions from Plans.” In: Proceedings of the Seventh

Annual Symposium on Combinatorial Search (SoCS 2014). Ed. by S. Edelkamp and R. Barták. AAAI Press, 10–18.
T. Balyo and S. Gocht. 2018. “The Freelunch Planning System Entering IPC 2018.” In: Ninth International Planning Competition (IPC-9): Planner

Abstracts, 51–54.
P. Bercher, P. Haslum, and C. Muise. 2024. “A Survey on Plan Optimization.” In: Proceedings of the 33rd International Joint Conference on

Artificial Intelligence (IJCAI 2024). Ed. by K. Larson. IJCAI, 7941–7950.
B. Bonet and H. Geffner. 2001. “Planning as Heuristic Search.” 129, 1, 5–33.
B. Bonet and H. Geffner. 2000. “Planning with Incomplete Information as Heuristic Search in Belief Space.” In: Proceedings of the Fifth

International Conference on Artificial Intelligence Planning and Scheduling (AIPS 2000). Ed. by S. Chien, S. Kambhampati, and C. A. Knoblock.
AAAI Press, 52–61.

T. Bylander. 1994. “The Computational Complexity of Propositional STRIPS Planning.” 69, 1–2, 165–204.
L. Chrpa, T. L. McCluskey, and H. Osborne. 2012a. “Determining Redundant Actions in Sequential Plans.” In: Proceedings of the 24th International

Conference on Tools with Artificial Intelligence (ICTAI 2012). IEEE, 484–491.
L. Chrpa, T. L. McCluskey, and H. Osborne. 2012b. “Optimizing Plans through Analysis of Action Dependencies and Independencies.” In:

Proceedings of the Twenty-Second International Conference on Automated Planning and Scheduling (ICAPS 2012). Ed. by L. McCluskey,
B. Williams, J. R. Silva, and B. Bonet. AAAI Press, 338–342.

C. Dawson and L. Siklóssy. 1977. “The Role of Preprocessing in Problem Solving Systems.” In: Proceedings of the 5th International Joint

Conference on Artificial Intelligence (IJCAI 1977). Ed. by R. Reddy. William Kaufmann, 465–471.
C. Domshlak, M. Helmert, E. Karpas, E. Keyder, S. Richter, G. Röger, J. Seipp, and M. Westphal. 2011. “BJOLP: The Big Joint Optimal Landmarks

Planner.” In: IPC 2011 Planner Abstracts, 91–95.
S. Edelkamp. 2001. “Planning with Pattern Databases.” In: Proceedings of the Sixth European Conference on Planning (ECP 2001). Ed. by A. Cesta

and D. Borrajo. AAAI Press, 84–90.
R. E. Fikes, P. E. Hart, and N. J. Nilsson. 1972. “Learning and Executing Generalized Robot Plans.” 3, 251–288.
E. Fink and Q. Yang. 1992. “Formalizing Plan Justifications.” In: Proceedings of the Ninth Conference of the Society for Computational Studies of

Intelligence, 9–14.
G. Francès, H. Geffner, N. Lipovetzky, and M. Ramiréz. 2018. “Best-First Width Search in the IPC 2018: Complete, Simulated, and Polynomial

Variants.” In: Ninth International Planning Competition (IPC-9): Planner Abstracts, 23–27.
M. Helmert. 2006. “The Fast Downward Planning System.” 26, 191–246.
M. Helmert and C. Domshlak. 2009. “Landmarks, Critical Paths and Abstractions: What’s the Difference Anyway?” In: Proceedings of the

Nineteenth International Conference on Automated Planning and Scheduling (ICAPS 2009). Ed. by A. Gerevini, A. Howe, A. Cesta, and
I. Refanidis. AAAI Press, 162–169.

J. Hoffmann, J. Porteous, and L. Sebastia. 2004. “Ordered Landmarks in Planning.” 22, 215–278.

Journal of Artificial Intelligence Research, Vol. 84, Article 10. Publication date: October 2025.

• 10:33

S. Jiménez Celorrio, P. Haslum, and S. Thiébaux. 2013. “Pruning bad quality causal links in sequential satisfying planning.” In: ICAPS 2013
Workshop on Planning and Learning, 45–52.

E. Karpas and C. Domshlak. 2011. “Living on the Edge: Safe Search with Unsafe Heuristics.” In: ICAPS 2011 Workshop on Heuristics for

Domain-Independent Planning (HDIP), 53–58.
M. Katz. 2018. “Cerberus: Red-Black Heuristic for Planning Tasks with Conditional Effects Meets Novelty Heuristic and Enchanced Mutex

Detection.” In: Ninth International Planning Competition (IPC-9): Planner Abstracts, 47–51.
M. Katz and S. Sohrabi. 2022. “Who Needs These Operators Anyway: Top Quality Planning with Operator Subset Criteria.” In: Proceedings of

the Thirty-Second International Conference on Automated Planning and Scheduling (ICAPS 2022). Ed. by S. Thiébaux and W. Yeoh. AAAI
Press.

M. Katz, S. Sohrabi, and O. Udrea. 2022. “Bounding Quality in Diverse Planning.” In: Proceedings of the Thirty-Sixth AAAI Conference on

Artificial Intelligence (AAAI 2022). Ed. by V. Honavar and M. Spaan. AAAI Press.
M. Katz, S. Sohrabi, and O. Udrea. 2020. “Top-Quality Planning: Finding Practically Useful Sets of Best Plans.” In: Proceedings of the Thirty-Fourth

AAAI Conference on Artificial Intelligence (AAAI 2020). Ed. by V. Conitzer and F. Sha. AAAI Press, 9900–9907.
M. Katz, S. Sohrabi, O. Udrea, and D. Winterer. 2018. “A Novel Iterative Approach to Top-k Planning.” In: Proceedings of the Twenty-Eighth

International Conference on Automated Planning and Scheduling (ICAPS 2018). Ed. by M. de Weerdt, S. Koenig, G. Röger, and M. Spaan.
AAAI Press, 132–140.

R. E. Korf. 1985. “Depth-First Iterative-Deepening: An Optimal Admissible Tree Search.” 27, 1, 97–109.
D. Le Berre and A. Parrain. 2010. “The Sat4j library, release 2.2.” Journal on Satisfiability, Boolean Modeling and Computation, 7, 2–3, 59–64.
N. Lipovetzky and H. Geffner. 2017. “Best-First Width Search: Exploration and Exploitation in Classical Planning.” In: Proceedings of the

Thirty-First AAAI Conference on Artificial Intelligence (AAAI 2017). Ed. by S. Singh and S. Markovitch. AAAI Press, 3590–3596.
D. A. McAllester and D. Rosenblitt. 1991. “Systematic Nonlinear Planning.” In: Proceedings of the Ninth National Conference on Artificial

Intelligence (AAAI 1991). Vol. 2. AAAI Press, 634–639.
J. Med and L. Chrpa. 2022. “On Speeding Up Methods for Identifying Redundant Actions in Plans.” In: Proceedings of the Thirty-Second

International Conference on Automated Planning and Scheduling (ICAPS 2022). Ed. by S. Thiébaux and W. Yeoh. AAAI Press, 252–260.
C. Muise, J. C. Beck, and S. A. McIlraith. 2016. “Optimal Partial-Order Plan Relaxation via MaxSAT.” 57, 113–149.
H. Nakhost and M. Müller. 2010. “Action Elimination and Plan Neighborhood Graph Search: Two Algorithms for Plan Improvement.” In:

Proceedings of the Twentieth International Conference on Automated Planning and Scheduling (ICAPS 2010). Ed. by R. Brafman, H. Geffner,
J. Hoffmann, and H. Kautz. AAAI Press, 121–128.

B. Nebel, Y. Dimopoulos, and J. Koehler. 1997. “Ignoring Irrelevant Facts and Operators in Plan Generation.” In: Recent Advances in AI Planning.
4th European Conference on Planning (ECP 1997). Ed. by S. Steel and R. Alami. Vol. 1348. Springer-Verlag, 338–350.

C. Olz and P. Bercher. 2019. “Eliminating Redundant Actions in Partially Ordered Plans – A Complexity Analysis.” In: Proceedings of the
Twenty-Ninth International Conference on Automated Planning and Scheduling (ICAPS 2019). Ed. by N. Lipovetzky, E. Onaindia, and D. E.
Smith. AAAI Press, 310–319.

S. Richter and M. Westphal. 2010. “The LAMA Planner: Guiding Cost-Based Anytime Planning with Landmarks.” 39, 127–177.
S. Richter, M. Westphal, and M. Helmert. 2011. “LAMA 2008 and 2011 (planner abstract).” In: IPC 2011 Planner Abstracts, 50–54.
M. Salerno, R. Fuentetaja, and J. Seipp. 2025. Code and Data for the Article “Finding Minimal Plan Reductions Using Classical Planning”.

https://doi.org/10.5281/zenodo.14065819. (2025).
M. Salerno, R. Fuentetaja, and J. Seipp. 2023a. “Eliminating Redundant Actions from Plans using Classical Planning.” In: Proceedings of the

Twentieth International Conference on Principles of Knowledge Representation and Reasoning (KR 2023). Ed. by P. Marquis, T. C. Son, and
G. Kern-Isberner. IJCAI Organization, 774–778.

M. Salerno, R. Fuentetaja, and J. Seipp. 2023b. “Spock: Fast Downward Stone Soup with Redundant Action Elimination.” In: Tenth International

Planning Competition (IPC-10): Planner Abstracts.
B. Say, A. A. Cire, and J. C. Beck. 2016. “Mathematical Programming Models for Optimizing Partial-Order Plan Flexibility.” In: Proceedings of

the 22nd European Conference on Artificial Intelligence (ECAI 2016). Ed. by G. A. Kaminka, M. Fox, P. Bouquet, E. Hüllermeier, V. Dignum,
F. Dignum, and F. van Harmelen. IOS Press, 1044–1052.

J. Seipp and M. Helmert. 2018. “Counterexample-Guided Cartesian Abstraction Refinement for Classical Planning.” 62, 535–577.
J. Seipp, T. Keller, and M. Helmert. 2020. “Saturated Cost Partitioning for Optimal Classical Planning.” 67, 129–167.
F. H. Siddiqui and P. Haslum. 2015. “Continuing Plan Quality Optimisation.” 54, 369–435.
J. Slaney and S. Thiébaux. 2001. “Blocks World revisited.” 125, 1–2, 119–153.
D. Speck, R. Mattmüller, and B. Nebel. 2020. “Symbolic Top-k Planning.” In: Proceedings of the Thirty-Fourth AAAI Conference on Artificial

Intelligence (AAAI 2020). Ed. by V. Conitzer and F. Sha. AAAI Press, 9967–9974.
S. Sreedharan, C. Muise, and S. Kambhampati. 2023. “Generalizing Action Justification and Causal Links to Policies.” In: Proceedings of the

Thirty-Third International Conference on Automated Planning and Scheduling (ICAPS 2023). Ed. by S. Koenig, R. Stern, and M. Vallati. AAAI
Press, 417–426.

Journal of Artificial Intelligence Research, Vol. 84, Article 10. Publication date: October 2025.

https://doi.org/10.5281/zenodo.14065819

10:34 • Salerno, Fuentetaja & Seipp

B. Srivastava, T. A. Nguyen, A. Gerevini, S. Kambhampati, M. B. Do, and I. Serina. 2007. “Domain Independent Approaches for Finding Diverse
Plans.” In: Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI 2007). Ed. by M. M. Veloso, 2016–2022.

V. Vidal. 2014. “YAHSP3 and YAHSP3-MT in the 8th International Planning Competition.” In: Eighth International Planning Competition

(IPC-8): Planner Abstracts, 64–65.
M. Waters, L. Padgham, and S. Sardina. 2020. “Optimising Partial-Order Plans Via Action Reinstantiation.” In: Proceedings of the 29th

International Joint Conference on Artificial Intelligence (IJCAI 2020). IJCAI, 4143–4151.

A WPMaxSAT Formulation
Below, we summarize how the WPMaxSAT formula by Balyo, Chrpa, et al. 2014 is constructed, in order to show
how the characteristics of the planning task affect it. To encode the minimal reduction problem as a SAT problem,
the following variables are defined:
• 𝑎𝑖 for 1 ≤ 𝑖 ≤ 𝑛: 𝑎𝑖 is used in the plan reduction.
• 𝑦𝑝,𝑖,𝑘 for 1 ≤ 𝑘 < 𝑖 ≤ 𝑛: plan action 𝑎𝑘 is responsible for achieving fact 𝑝 at step 𝑖 in the plan reduction.
• 𝑦𝑝,𝑖,0: the initial state is responsible for achieving fact 𝑝 at step 𝑖 in the plan reduction.

Using these variables, the formula 𝐹Π,𝜋 is constructed as a conjunction of clauses representing which actions
from the input plan are applied. For each action in the input plan, clauses are introduced to guarantee that all their
preconditions hold when the action is applied. To formulate 𝐹Π,𝜋 , the authors consider achievers and opposers. An
action is an achiever of a fact 𝑓 if 𝑓 ∈ eff (𝑎). Similarly, an action is an opposer of a fact 𝑣 ↦→ 𝑑 if 𝑣 ↦→ 𝑑 ′ ∈ eff (𝑎),
with 𝑑 ′ ≠ 𝑑 . With these notions, the sets of achievers and opposers can be defined as:
• Achs(𝑝, 𝑖): set of plan positions 𝑗 of the achievers of fact 𝑝 with 𝑗 < 𝑖 .
• Opps(𝑝, 𝑖, 𝑗): set of plan positions 𝑘 of opposers of fact 𝑝 with 𝑖 ≤ 𝑘 ≤ 𝑗 .

Using the achievers and opposers, the authors define the following formulas:
• 𝐹𝑝,𝑖 : if a fact 𝑝 is required to be true at step 𝑖 in the plan reduction, then it must be generated by the initial
state or by at least one of its achievers with plan positions smaller than 𝑖:

𝐹𝑝,𝑖 = 𝑦𝑝,𝑖,0
∨

𝑗∈Achs(𝑝,𝑖)
𝑦𝑝,𝑖, 𝑗 (1)

• 𝐹𝑝,𝑖, 𝑗 : for 1 ≤ 𝑗 ≤ 𝑛 encodes that, if a plan action 𝑎 𝑗 is responsible for achieving fact 𝑝 at time 𝑖 in the plan
reduction, then 𝑎 𝑗 must belong to the plan reduction, and that none of the opposing actions between 𝑗 and
𝑖 belong to the plan reduction:

𝐹𝑝,𝑖, 𝑗 = (¬𝑦𝑝,𝑖, 𝑗 ∨ 𝑎 𝑗)
∧

𝑘∈Opps(𝑝,𝑗,𝑖)
(¬𝑦𝑝,𝑖, 𝑗 ∨ ¬𝑎𝑘) (2)

• 𝐹𝑝,𝑖,0: the initial state is responsible for achieving fact 𝑝 at time 𝑖:

𝐹𝑝,𝑖,0 =
∧

𝑘∈Opps(𝑝,0,𝑖)
(¬𝑦𝑝,𝑖,0 ∨ ¬𝑎𝑘) (3)

• 𝐹𝑎𝑖 : if 𝑎𝑖 is an action of the plan reduction, then all its preconditions are required to be true at time 𝑖:

𝐹𝑎𝑖 =
∧

𝑝∈𝑝𝑟𝑒 (𝑎𝑖)

©­«(¬𝑎𝑖 ∨ 𝐹𝑝,𝑖) ∧ 𝐹𝑝,𝑖,0
∧

𝑗∈Achs(𝑝,𝑖)
𝐹𝑝,𝑖, 𝑗

ª®¬ (4)

• 𝐹𝐺 : all goal conditions must be true in the end of the plan:

𝐹𝐺 =
∧
𝑝∈G

©­«𝐹𝑝,𝑖 ∧ 𝐹𝑝,𝑖,0
∧

𝑗∈Achs(𝑝,𝑛)
𝐹𝑝,𝑛,𝑗

ª®¬ (5)

Journal of Artificial Intelligence Research, Vol. 84, Article 10. Publication date: October 2025.

• 10:35

Then 𝐹Π,𝜋 is defined as:
𝐹Π,𝜋 = 𝐹𝐺

∧
𝑖=1,..., |𝜋 |

𝐹𝑎𝑖 (6)

Clearly, every satisfying assignment 𝜙 of 𝐹Π,𝜋 constitutes a plan reduction 𝜋𝜙 of 𝜋 , where an action 𝑎𝑖 is present
in the plan reduction if 𝜙 (𝑎𝑖) = ⊤.

To solve the minimal reduction problem using 𝐹Π,𝜋 , the authors use a weighted partial MaxSAT (WPMaxSAT)
formula and a WPMaxSAT solver. WPMaxSAT problems have hard and soft clauses. In a solution to a WPMaxSAT
problem, all hard clauses must be satisfied, while soft clauses can be true or false. Each soft clause has a weight
associated with it, and the goal is to satisfy the hard clauses while maximizing the summed weight of the satisfied
soft clauses. The hard clauses are defined as 𝐻Π,𝜋 = 𝐹Π,𝜋 ; while the soft clauses are unit clauses with negated
action variables, 𝑆Π,𝜋 =

∧
𝑎𝑖 ∈Π
¬𝑎𝑖 . The weight of each soft clause is the cost of the corresponding action. Thus,

maximizing the weight of the satisfied soft clauses is equivalent to removing actions with maximal cost. To deal
with potential redundant zero-cost actions remaining after solving the WPMaxSAT, a minimal length reduction
(same scheme but with unitary action costs) is performed on the resulting plan reduction.

Received 07 June 2025; accepted 04 September 2025

Journal of Artificial Intelligence Research, Vol. 84, Article 10. Publication date: October 2025.

	Abstract
	1 Introduction
	2 Background
	3 Related Work on Action Elimination
	3.1 Greedy Methods
	3.2 Optimal Methods
	3.3 Plan Justification Beyond Classical Planning

	4 Minimal Reduction as Planning
	4.1 Design Space
	4.2 s1a1 Compilation: Skipping and Applying Single Actions
	4.3 sma1 Compilation: Skipping Multiple Actions at Once
	4.4 s1am Compilation: Applying Multiple Actions at Once
	4.5 smam Compilation: Applying and Skipping Multiple Actions at Once
	4.6 Comparison Between s1a1, sma1,s1am and smam

	5 Plan Action Landmarks
	5.1 Identifying Plan Action Landmarks
	5.2 Using Plan Action Landmarks

	6 Always Redundant Actions
	7 Evaluation
	7.1 Benchmark Analysis
	7.2 Comparison of Planning Compilations
	7.3 Plan Action Landmarks and Always Redundant Actions
	7.4 Using Different Heuristics
	7.5 Comparison to WPMaxSAT

	8 Conclusions
	Acknowledgments
	A WPMaxSAT Formulation

