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Abstract
In planning tasks, conditional effects model action
outcomes that depend on the current state of the
world. Conditional effects are a crucial modeling
feature since compiling them away can cause an
exponential growth in task size. However, only a
few admissible heuristics support them. To add ab-
straction heuristics to this set, we show how to com-
pute projections, Cartesian abstractions and merge-
and-shrink abstractions for tasks with conditional
effects. Our experiments show that these heuris-
tics are competitive with—and often surpass—the
state-of-the-art for conditional-effect tasks.

1 Introduction
Conditional effects allow the modelling of action effects that
occur only when specified conditions are satisfied in the cur-
rent state [Nebel, 2000; Helmert, 2009]. Introduced to clas-
sical planning in the context of ADL [Pednault, 1989], they
have since become an essential tool for compactly represent-
ing complex planning tasks. For example, they underlie re-
cent planning formulations for discovering new algorithms
for matrix multiplication [Speck et al., 2023] and for trans-
forming quantum circuits [Shaik and van de Pol, 2024]. Their
importance is also reflected in the growing number of Interna-
tional Planning Competition (IPC) domains that feature con-
ditional effects [Taitler et al., 2024].

Since designing optimal planners that natively handle con-
ditional effects remains challenging, a common alternative is
to compile them away [Gazen and Knoblock, 1997; Haslum,
2013]. However, Nebel [2000] showed that compiling away
conditional effects entails an exponential increase in model
size if plan lengths are constrained to grow at most linearly.
If polynomial growth of plan lengths is allowed, compilation
becomes feasible for certain tasks using techniques that ex-
ploit the structure of the conditional effects [Gerevini et al.,
2024; Percassi et al., 2024]. Nevertheless, the resulting com-
piled tasks often overwhelm planners due to a combinatorial
explosion in the search space, which usually grows exponen-
tially with the depth of the search [Gerevini et al., 2024].

Given these limitations, developing optimal classical plan-
ners that can handle conditional effects natively is paramount.
While symbolic search can be extended to support conditional

effects simply by encoding the effects in the transition rela-
tion [Edelkamp and Helmert, 2001; Kissmann et al., 2014;
Speck et al., 2025], the situation is more challenging for in-
formed search techniques that rely on admissible heuristics.

To date, only a few admissible heuristics have been ex-
tended to natively support conditional effects, such as the
hmax heuristic [Bonet and Geffner, 2001] and the LM-Cut
heuristic [Helmert and Domshlak, 2009; Röger et al., 2014].
More recently, Büchner et al. [2024] showed how to com-
pute abstractions for factored tasks, a restricted class of
conditional-effect tasks where each effect condition consid-
ers only the effect variable. As for tasks without conditional
effects, abstractions of factored tasks are induced, i.e., each
abstract transition corresponds to a concrete transition.

To handle arbitrary conditional effects, we over-
approximate the abstract transition system and obtain
non-induced abstractions. Dropping the requirement that
abstractions are induced is necessary for handling condi-
tional effects, because even for projections it is NP-hard to
decide whether an abstract transition is induced [Büchner
et al., 2024]. Adding conditional-effect support requires
only minor modifications for projections, the abstractions
underlying pattern databases (PDBs) [Edelkamp, 2001;
Haslum et al., 2007; Sievers et al., 2012] and merge-and-
shrink (M&S) abstractions [Sievers and Helmert, 2021].

Our main contribution, however, concerns Cartesian ab-
stractions [Seipp and Helmert, 2018], where extending sup-
port for conditional effects requires not only redefining how
to decide the presence of abstract transitions but also adapting
the counterexample-guided abstraction refinement (CEGAR)
algorithm, which remains the only method for constructing
Cartesian abstractions. We show that all flaw detection strate-
gies from the literature, forward [Seipp and Helmert, 2018],
backward [Pozo et al., 2024b] and sequence flaws [Pozo et
al., 2024a], can be adapted to handle conditional effects.

Our experimental results for factored tasks show that the
CEGAR algorithm for PDBs designed for this setting is
preferable to the general counterpart, but for tasks with arbi-
trary conditional effects, our techniques solve more tasks than
state-of-the-art methods across many benchmark domains.

2 Background
We begin by introducing the necessary background on classi-
cal planning, abstractions and the CEGAR algorithm.



2.1 Planning Tasks
We consider finite-domain (FDR) planning tasks with ac-
tion costs but without axioms and derived variables [Helmert,
2009]. Such planning tasks Π = ⟨V,O, I,G⟩ are defined by
a set of finite-domain variables V , a finite-set of operators
O, an initial state I and a goal description G. Each variable
v ∈ V has a finite domain Dv . A partial state p is a par-
tial variable assignment over some variables vars(p) ⊆ V .
A (concrete) state s is a full assignment, i.e., vars(s) = V .
We write p[v] for the value assigned to variable v ∈ vars(p)
in partial state p. Two partial states p1 and p2 are consistent,
p1 ∼= p2, if p1[v] = p2[v] for all v ∈ vars(p1) ∩ vars(p2).
We let S denote the set of all states and let JpK ⊆ S be the set
of states consistent with p. We often treat (partial) states as
sets of atoms v 7→ x, where x ∈ Dv .

Each operator o = ⟨pre(o), eff (o), cost(o)⟩ ∈ O con-
sists of the partial state pre(o), called its precondition, a finite
set of effects eff (o) and a non-negative cost cost(o) ∈ R+

0 .
Each effect e ∈ eff (o) is a pair ⟨conds(e), atom(e)⟩, where
conds(e) is a partial state, called the effect conditions, and
v 7→ x = atom(e) is the effect atom, where v and x are called
the effect variable and effect value. Operator o is forward-
applicable or, in short, applicable in state s iff s is consis-
tent with pre(o). In the resulting state s′ = progr(s, o)
we have s′[v] = d for all effects ⟨conds(e), v 7→ x⟩ with
conds(e) ∼= s and s′[v] = s[v] for all variables v where no ef-
fect is triggered. We assume that all operator effects are non-
conflicting. Note that conds(e) can be empty, in which case
the effect is triggered in all states s ∈ S. We write s o−→ s′ as a
shorthand whenever o is applicable in s and s′ = progr(s, o).

2.2 Search in Transition Systems
A task Π = ⟨V,O, I,G⟩ induces the labelled transition sys-
tem Θ = ⟨S,O, T, I, SG⟩, where SG = {s ∈ S | s ∼= G}
is the set of goal states and T = {⟨s, o, s′⟩ | s, s′ ∈ S, o ∈
O, s

o−→ s′} is the set of transitions. An s-plan is a sequence
of operators ⟨o1, o2, . . . , on⟩, s.t. the trace s

o1−→ s1
o2−→

. . .
on−→ sn reaches a goal state sn ∈ SG. The cost of a plan is

the summed-up cost of its operators. An s-plan is optimal if it
has the minimum cost among all s-plans. An I-plan is a plan
for Π. Regression reasons backwards, starting from a par-
tial state p′ and deriving from which states JpK we can reach
some state in Jp′K by applying an operator [Rintanen, 2008;
Alcázar et al., 2013]. We write p

o←− p′ as a shorthand.
Heuristics. One of the most successful approaches to find
optimal plans is to use A∗ with an admissible heuristic
[Dechter and Pearl, 1985]. A heuristic is a function h : S →
R+

0 ∪{∞}. The perfect heuristic h∗ assigns to each state s the
cost of an optimal s-plan, or∞ if no s-plan exists. A heuristic
is admissible if h(s) ≤ h∗(s) for every state s ∈ S, it is con-
sistent if h(s) ≤ h(s′) + cost(o) for all s o−→ s′ ∈ T and it is
goal-aware if h(s) = 0 for all goal states s ∈ SG. Consistent
and goal-aware heuristics are admissible [Pearl, 1984].
Cost Partitioning. Cost partitioning allows for the combi-
nation of several admissible heuristicsH into a single heuris-
tic while preserving admissibility [Katz and Domshlak, 2010;
Pommerening et al., 2015]. It does so by distributing the cost

of each operator among the heuristics, such that the sum of
the assigned costs does not exceed the original operator cost.
Formally, given a tuple of heuristics H = ⟨h1, . . . , hn⟩ for
task Π, the cost functions C = ⟨c1, . . . , cn⟩ form a cost parti-
tioning for H if

∑n
i=1 ci(o) ≤ cost(o) for all o ∈ O. The re-

sulting cost-partitioned heuristic is hC(s) =
∑n

i=1 hi(ci, s),
where hi(ci, s) is the heuristic value of hi for state s evalu-
ated under cost function ci.

2.3 Abstractions
We focus on heuristics based on abstraction [Helmert et al.,
2008]. An abstraction is a surjective function α : S → Sα,
where Sα is a finite set of abstract states. The abstract transi-
tion system Θα = ⟨Sα, O, Tα, Iα, Sα

G⟩ is a homomorphism
of the concrete transition system, i.e., Tα = {(α(s) o−→ α(t) |
s

o−→ t ∈ T )}, Iα = α(I), Sα
G = {α(s) | s ∈ SG}. We also

call a homomorphism a conservative abstraction [Sievers and
Helmert, 2021]. An abstraction is induced (a strict homomor-
phism) if each abstract transition corresponds to a concrete
transition. Each abstract state sα ∈ Sα is identified with the
set of states mapped to it, JsαK = {s ∈ S | α(s) = sα}.
Abstraction heuristics are a family of admissible heuristics
hα, where hα(s) is the cost of the cheapest α(s)-plan in the
abstract transition system.

Projections. The most basic type of abstraction is a projec-
tion αP to a subset of variables P ⊆ V . We call P a pat-
tern and projection-based heuristics pattern database (PDB)
heuristics [Edelkamp, 2001].

Merge-and-Shrink Abstractions. The most general type
of abstraction for classical planning are merge-and-shrink ab-
stractions (M&S) [Sievers and Helmert, 2021]. M&S begins
by computing a projection for each variable v ∈ V to obtain
its initial factored transition system. Then it iteratively selects
two factors and replaces them by their synchronized product
(merge). To adhere to a given size limit, in between such
merge operations, M&S may shrink a factor by applying an
abstraction function on it. The two remaining operations that
the M&S framework uses, label reduction and state pruning,
are not important for our contributions, so we refer the reader
to Sievers and Helmert [2021]. The M&S procedure ends
once there is only a single factor left or in case a time limit is
reached, in which case we can combine the estimates of the
remaining factors with cost partitioning [Sievers et al., 2024].

Cartesian Abstractions. On the generality scale, Carte-
sian abstractions lie in between projections and M&S ab-
stractions. An abstract state sα is Cartesian if JsαK has the
form A1 × A2 × · · · × An, where Ai ⊆ Dvi for all vi ∈ V .
(We treat V as a tuple where it simplifies notation.) If all
states in an abstraction are Cartesian, we call the abstraction
Cartesian [Seipp and Helmert, 2018]. Given a Cartesian set
a, we denote by a[vi] the set of values that vi can take in a,
i.e., a[vi] = Ai ⊆ Dvi . The intersection of two Cartesian
sets a and b is the Cartesian set c, with c[v]=a[v] ∩ b[v] for
all v ∈V . We write a ∼= p for (partial) state p if there is
a state s ∈ JaK with s ∼= p. Also, for any such p, we can
build a Cartesian set C(p) = b such that JbK=JpK, by setting
b[v]={p[v]} if v ∈ vars(p) and b[v]=Dv otherwise.



Algorithm 1: CEGAR loop for a task Π.
1 Θα ← TrivialAbstraction(Π)
2 while not TerminationCondition() do
3 τα ← FindOptimalTrace(Θα)
4 if τα = “no trace” then
5 return task is unsolvable
6 φ← FindFlaw(Π, τα)
7 if φ = “no flaw” then
8 return plan extracted from τα

9 Θα ← Refine(Θα, φ)
10 return Θα

2.4 Cartesian Abstraction Refinement
Currently, the only way to build Cartesian abstractions is
via counterexample-guided abstraction refinement (CEGAR)
[Clarke et al., 2000; Seipp and Helmert, 2013; Seipp and
Helmert, 2018], shown in Algorithm 1. This iterative pro-
cedure starts from the trivial abstraction, which consists of
a single abstract state a0 such that a0[v]=Dv for all v ∈V .
Then, the abstraction is refined until finding a plan, proving
the task unsolvable or hitting a termination condition like a
time or memory limit.

In each iteration, an optimal abstract plan trace τα=a0
o1−→

. . .
on−→ an is executed in the concrete state space, resulting

in a trace s0
o1−→ . . .

om−−→ sm,m ≤ n (line 6). An abstract
plan trace τα = a0

o1−→ . . .
on−→ an is mappable to a concrete

plan trace τ = s0
o1−→ . . .

on−→ sn iff α(si) = ai for all
i ∈ [0, n]. If τα is mappable and sn = sm ∈ SG, then it is an
optimal plan for the task (line 8). If it fails at some step i, this
is a flaw and the abstraction is refined by splitting the abstract
state ai into two, in such a way that the same flaw cannot
happen again (line 9). A flaw is a pair ⟨si, c⟩ of a concrete
state si ∈ S and a Cartesian set c.

There are three causes for a flaw, which correspond to dif-
ferent reasons that can cause the execution of τα to fail at
step i: (1) precondition flaw: si is the first state in which oi+1

is inapplicable and c is the set of states consistent with ai in
which oi+1 is applicable, i.e., c = ai ∩ C(pre(oi+1)); (2)
deviation flaw: si is the first state where oi+1 is applicable
but its successor is not consistent with ai+1, and c is the set
of states consistent with ai from which ai+1 is reached when
applying oi, i.e., c = ai ∩ regr(ai+1, oi+1);1 and (3) goal
flaw: the sequence can be executed but sn is not a goal state,
which results in the flaw ⟨sn, an ∩ C(G)⟩.

3 Abstractions for Conditional-Effect Tasks
Heuristics based on (conservative) abstractions are admissi-
ble because all concrete plans are preserved, which guaran-
tees that abstract plans cannot be more expensive than their
concrete counterparts. To preserve admissibility in the pres-
ence of conditional effects, we need to ensure that the ab-
straction remains conservative. We have to give up on in-
ducedness, though, and instead over-approximate the set of

1The regression of a Cartesian set is not Cartesian for operators
with conditional effects. We deal with this in Section 4.2.

Algorithm 2: Compute outgoing transitions from abstract
state a via operator o in a projection to pattern P .

1 if pre(o) ≇ a then
2 return ∅
3 forall v ∈ P do
4 post [v]←{x | ⟨C, v 7→x⟩ ∈ eff (o), C|P ∼= a}∪{a[v]}
5 forall ⟨C, v 7→x⟩ ∈ eff (o) | C|P ∼= a, vars(C)⊆P do
6 post [v]← {x}
7 return {a o−→ b | b ∈×v∈P post [v]}

abstract transitions, since even for the basic class of projec-
tions, it is NP-hard to test whether an abstract transition is
induced [Büchner et al., 2024].

3.1 Projections
We define the projection of a (partial) state s to a set of vari-
ables P as the partial state s|P that contains only the atoms of
s for the variables in P . Algorithm 2 shows how to compute
the over-approximation of outgoing transitions from abstract
state a induced by operator o in a projection to P . If the pre-
condition of o projected to P is not satisfied in a, we return
the empty set. Otherwise, we compute for each variable v in
P the set post [v] of possible values for v after applying o,
accounting for the possibility that no effect is triggered for v
and v keeps the value it has in a. We set post [v] to {x} for
v ∈ P if there is an effect ⟨C, v 7→ x⟩ that is guaranteed to
be triggered. Finally, we compute the Cartesian product of all
sets post [v] for v ∈ P to obtain the set of successor states b.
Theorem 1. Projection heuristics computed with Algo-
rithm 2 for tasks with conditional effects are admissible.

Proof Sketch. Abstractions computed by Algorithm 2 are
conservative, since the algorithm considers all subsets of ef-
fects that could be triggered.

3.2 Merge-and-Shrink Abstractions
Since merge-and-shrink abstractions start from (atomic) pro-
jections, we can use Algorithm 2 to over-approximate them.
Theorem 2. Merge-and-shrink heuristics that use Algo-
rithm 2 for computing the initial factors are admissible for
tasks with conditional effects.

Proof Sketch. M&S is compositional. If the initial factors are
conservative and only conservative transformations are ap-
plied, the resulting abstraction is also conservative.

4 Cartesian Abstractions for Tasks with
Conditional Effects

We now describe how to adapt Cartesian abstractions and
the CEGAR algorithm to tasks with conditional effects. Of
the five subroutines in Algorithm 1, TrivialAbstraction,
TerminationCondition and FindOptimalTrace are not re-
lated to conditional effects, so no modification is needed.
FindFlaw retrieves the next flaw and Refine repairs it by
splitting the abstract state and rewiring transitions. We first
explain the rewiring of transitions, and then describe the mod-
ifications needed for finding the different types of flaws.



Algorithm 3: Compute outgoing transitions from abstract
state a via operator o in Cartesian abstraction α.

1 if pre(o) ≇ a then
2 return ∅
3 post ← a ∩ C(pre(o))
4 forall ⟨C, v 7→ x⟩ ∈ eff (o) with C ∼= a do
5 post [v]← post [v] ∪ {x}
6 forall ⟨C, v 7→ x⟩ ∈ eff (o) do
7 if a[w] = {y} for all w 7→ y ∈ C then
8 post [v]← {x}
9 return {a o−→ b | b ∈ Sα, b ∩ post ̸= ∅}

4.1 Rewiring Transitions
A flaw ⟨s, c⟩ is repaired by splitting the abstract state α(s)
into two child abstract states d and e with s∈ d and c⊆ e.
Such a split is always possible and is done by partitioning the
abstract domain α(s)[v] into d[v] and e[v] for a suitable split
variable v ∈ V . After such a split, the transitions adjacent to
α(s) must be rewired for d and e.

Algorithm 3 shows how to compute the outgoing transi-
tions from a Cartesian state a via operator o ∈ O. If the pre-
condition of o is not satisfied in a, we return the empty set.
Otherwise, we use three steps to compute the possible values
post [v] for each variable v ∈ V after applying o in a. First,
we intersect a with the Cartesian partial state pre(o) to obtain
the subset JpostK ⊆ JaK of states in a in which o is applicable.
Second, we iterate over the effects ⟨C, v 7→ x⟩ ∈ eff (o) that
might be triggered in a and add x to post [v]. Third, we iter-
ate over the effects ⟨C, v 7→ x⟩ ∈ eff (o) that are guaranteed
to be triggered in a and replace post [v] with {x}. There is a
transition a

o−→ b if b ∈ Sα contains at least one value from
post [v] for each variable v ∈ V .

Example 1. Briefcase [Pednault, 1988] is a domain with
three types of operators: store puts an object into the brief-
case, takeout leaves an object from the briefcase at the cur-
rent location, and move moves all objects in the briefcase and
the briefcase itself between two given locations. In our exam-
ple task from this domain, a worker who is initially at work
(W ) has forgotten an important document (D) and must re-
turn home (H), take it and return to work (the only goal is to
have the document at work). The variables for this task are the
location of the briefcase vB , with domain {H,W}; the loca-
tion of the document vD, with domain {H,W}; and whether
the document is in the briefcase, vI , with domain {⊥,⊤}.
The move operators are defined as move(ℓ,m) = ⟨pre =
{vB 7→ ℓ}, eff = {⟨{v 7→ ℓ}, v 7→ m⟩ | v ∈ V }, cost = 1⟩.
Figure 1 shows the rewiring after splitting abstract state a into
d and e. Since vI is abstracted in all states, the store and
takeout operators only induce self-loops. After the split, the
transitions that were adjacent to a are rewired to e, as e is
the only new state that contains the effect atom and precon-
dition vB 7→H . Moreover, the move self-loops for a become
transitions between d and e.

Theorem 3. Abstraction heuristics obtained with CEGAR us-
ing Algorithm 3 are admissible for conditional-effect tasks.

{H,W}
×

{H}
×

{⊥,⊤}
a

{H,W}
×

{W}
×

{⊥,⊤}

b

move(H,W )

move(W,H)

{W}
×

{H}
×

{⊥,⊤}

d

{H}
×

{H}
×

{⊥,⊤}
e

{H,W}
×

{W}
×

{⊥,⊤}

b

move(W,H)

move(H,W )

move(H,W )

move(W,H)

Figure 1: For an abstraction of the task in Example 1, we split a for
atom vB 7→ H , yielding states d and e. Self-loops are omitted and
the variable order is vB , vD, vI .

Proof Sketch. The refinement loop maintains a conservative
abstraction at all steps, by considering all effects that could
be triggered.

Theorem 4. Cartesian CEGAR with Algorithm 3 may yield
non-induced abstractions for tasks with conditional effects.

Proof. Consider planning task Π = ⟨V,O, I,G⟩, with
V={v0, v1, v2}, Dv0=Dv1=Dv2={0, 1}, O={o}, o =

⟨pre = {}, eff =

{
⟨{v0 7→ 0}, {v1 7→ 1}⟩,
⟨{v0 7→ 1}, {v2 7→ 1}⟩

}
, cost = 1⟩,

I = {v0 7→ 0, v1 7→ 0, v2 7→ 0}, and G = {v2 7→ 1}. After
separating the values of v1 and v2 in all abstract states, we
obtain an abstract transition system that has the four states
a0 = {0, 1} × {0} × {0}, a1 = {0, 1} × {1} × {1},
a2 = {0, 1}×{0}×{1}, and a3 = {0, 1}×{1}×{0}, with an
optimal plan trace τα = ⟨a0

o−→ a1⟩. Transition a0
o−→ a1 has

no counterpart in the concrete transition system, as both states
mapped to a0 satisfy only one of the effect conditions.

4.2 Progression Flaws
Having discussed how to rewire the transition system after a
given split, we now focus on deciding which splits to perform
in the first place. Out of the three flaw causes—precondition
flaws, deviation flaws and goal flaws—conditional effects
impact only deviation flaws, as operator applicability only
depends on operator preconditions (not their effects) and
the goal status of a state does not depend on any operator.
There are three main strategies for finding (deviation) flaws
in CEGAR: progression flaws, regression flaws and sequence
flaws, and we now discuss how to adapt them to tasks with
conditional effects, beginning with progression flaws.

A deviation exists for a transition a
o−→ b in an abstract plan

trace τα = a0
o1−→ . . .

oi−→ a
o−→ b

ok−→ . . .
on−→ an, if s∈ JaK

and t /∈ JbK for the state s= progr(I, o1, . . . , oi) and the state
t= progr(s, o). In such a case, the deviation flaw is ⟨s, c⟩
with c = a ∩ regr(b, o). An obstacle here is that regression
is not Cartesian for operators with conditional effects. How-
ever, we only need to know the possible values for each vari-
able to detect deviations. Therefore, we over-approximate the
regression of a Cartesian state b over operator o with condi-
tional effects as the Cartesian set regr(b, o). For each variable



v ∈ V , we define the set of possible values before applying o
as regr(b, o)[v] =
{pre(o)[v]} if v ∈ vars(pre(o))
Dv if ⟨C, v 7→x⟩ ∈ eff (o), x ∈ b[v]
b[v] ∪ {x} if ⟨{v 7→x, ...}, w 7→ y⟩ ∈ eff (o), y ∈ b[w]
b[v] otherwise,

(1)

where we always use the first case that applies. We omit the
case where regr(b, o)[v] is empty, as it cannot happen during
the CEGAR loop.

It is often the case that multiple variables are the cause for
a single deviation. Fixing all causes simultaneously would
require to modify the CEGAR algorithm to apply multiple
splits in the same iteration of the refinement loop. However,
it is simpler to split only for a single variable in each itera-
tion, and to account for the rest of the flaw in later iterations.
A similar situation already occurs for tasks without condi-
tional effects when several preconditions are not satisfied by
a concrete state. Here, existing methods refine for only one
of the preconditions in each iteration.

Example 2. A deviation flaw exists in state e of the bot-
tom abstraction shown in Figure 1, because move(H,W )
does not change the location of the document if the doc-
ument is not inside the briefcase. Thus, vD 7→H contin-
ues to hold after applying move(H,W ) in the concrete state
{vB 7→H, vD 7→H, vI 7→⊥}, but not in the abstract state b.
This flaw can be fixed by splitting off vI 7→ ⊤ from e.

Theorem 5. Let τα = a0
o1−→ a1

o2−→ . . .
on−→ an be an

abstract plan trace of a task Π with conditional effects. Then,
τα is mappable iff τα has no progression flaw.

Proof Sketch. (⇒) If τα is mappable, then there is a concrete
trace τ without deviation flaws. Since those are the only flaws
that can be caused by conditional effects, we know that τ has
no flaws at all. (⇐) If there are no flaws, then there are also
no deviation flaws, which means that τα is mappable.

4.3 Regression Flaws
Regression flaws are found by executing an abstract plan in
regression from the goals [Pozo et al., 2024b]. Given a tran-
sition a

o−→ b ∈ τα = a0
o1−→ . . .

oi−→ a
o−→ b

ok−→ . . .
on−→

an, a deviation exists if p ∼= b and q ≇ a for the Carte-
sian state p= C(regr(G, on, . . . , ok)) and the Cartesian state
q= C(regr(p, o)). Handling deviation flaws in regression is
easier than in progression because effect conditions are not
evaluated in the abstract state b that will be split, but in a.
Therefore, the way to find deviations is the same as without
conditional effects except that the effect is possibly not trig-
gered, so a deviation may happen in an atom v 7→ x only if
p[v] = x and |b[v]| > 1.

Regression flaws are found in an optimal abstract plan by
applying the plan from G to I in a Cartesian state space.
Again, the obstacle here is that regression over operators with
conditional effects is not Cartesian. Therefore, representing
the regression of a Cartesian state b over an operator o re-
quires a disjunction of up to cf Cartesian sets, where f is the
number of effect atoms of o that hold in b and c is the highest
number of conditions of those effects. To avoid this blow-up,

we apply regression as the Cartesian over-approximation in
Equation 1. But this over-approximation comes with a com-
promise: regressed Cartesian sets are supersets of the actual
regression, so they may not find all regression flaws.

Theorem 6. Let τα = a0
o1−→ . . .

on−→ an be an abstract
plan trace for a task Π. Then, although τα has no regres-
sion flaw with regression by Cartesian over-approximation,
the sequence ⟨o1, o2, . . . , on⟩ may not be a plan for Π.

Proof. Let Π be the planning task from the proof of The-
orem 4. The trace a0

o−→ a1 has no regression flaw with
Cartesian over-approximation because I ∈ Jregr(G, o) =
{0, 1} × {0, 1} × {0, 1}K but ⟨o⟩ is not a plan for Π because
progr(I, o) = {v0 7→ 0, v1 7→ 1, v2 7→ 0} /∈ SG.

Given an abstract plan trace τα = a0
o1−→ . . .

on−→ an and a
backward plan trace τ = pm

om+1←−−− . . .
on←− pn,m ∈ [0, n),

we mitigate this issue with two adjustments. The first one
is to intersect each pi with ai, that is, we start the search of
flaws from an instead of G and intersect each regr(pi, oi)
with ai−1. However, this does not guarantee finding a flaw
when ⟨o1, o2, . . . , on⟩ is not a plan for the task [Pozo et al.,
2024b], so the CEGAR algorithm may finish before finding
a solution or reaching the termination condition. The second
adjustment addresses this issue by searching for a progression
flaw as a fallback when no regression flaw is found.

Theorem 7. Let τα = a0
o1−→ . . .

on−→ an be an abstract
plan trace for a task Π. Then, τα is mappable iff τα has no
regression flaw with the progression flaw fallback.

Proof Sketch. A progression flaw is searched if no regression
flaw is found, so the proof of Theorem 5 applies.

4.4 Sequence Flaws
Sequence flaws allow finding flaws in the middle of a plan by
continuing the search for flaws “behind” a progression flaw or
“before” a regression flaw in an abstract plan trace [Pozo et
al., 2024a]. This is achieved by two sequence relaxations: al-
lowing to apply an inapplicable operator o by assigning unmet
preconditions to variables v /∈ vars(eff (o)); and the undevia-
tion of a successor Cartesian state r by setting r[v] = a[v] for
all v ∈V where r[v]∩ a[v] =∅.

The deviation of sequence flaws in progression and regres-
sion is exactly the same as their “first-flaw” counterparts,
since these relaxations do not affect deviations. Neverthe-
less, an important difference exists compared to sequence
flaws for tasks without conditional effects: given a suc-
cessor abstract state b and a Cartesian state r′, intersecting
them as in previous work [Pozo et al., 2024a] is not suffi-
cient to guarantee that there is no deviation flaw. This is
the case because the absence of deviation requires that the
set of outgoing transitions from r′ is a subset of outgoing
transitions from b. This is true for the intersection without
conditional effects but not for an operator o with an effect
e∈ eff (o) s.t. conds(e)∼= r′, conds(e)≇ b. However, there
is a sufficient condition that guarantees the absence of devia-
tion flaws for operators with conditional effects: r′⊆ b. If this
condition holds, then we do not need to check for deviation
flaws. Otherwise, we perform the deviation check.



5 Experiments
We implemented our algorithms in the Scorpion planning sys-
tem [Seipp et al., 2020a], which is an extension of Fast Down-
ward [Helmert, 2006]. For all configurations we use the h2

preprocessor [Alcázar and Torralba, 2015] and limit time and
memory for each planner run to 30 minutes and 8 GiB, re-
spectively. We use Downward Lab [Seipp et al., 2017] and
run experiments on Xeon Gold 6130 processors.

As our benchmark set, we use the domains with condi-
tional effects from the last two IPCs, the domains used by
Röger et al. [2014], the matrix multiplication domain [Speck
et al., 2023], and the domain for transforming quantum cir-
cuits into CNOT-only layouts [Shaik and van de Pol, 2024].
This benchmark set consists of 1963 tasks from 21 domains.
All code, benchmarks, and experiment data is available on-
line [Pozo and Seipp, 2025].

We evaluate our techniques in four subsections: computing
a single abstraction, multiple abstractions of the same abstrac-
tion type, combinations of multiple abstraction types, and a
comparison versus baselines. Table 1 shows coverage results.

5.1 Single Abstraction
We begin by comparing a single merge-and-shrink (M&S) to
a single Cartesian abstraction. For M&S, we use the recom-
mended values for all parameters [Sievers, 2018] and up to
100 000 abstract states. For Cartesian abstractions, we use in-
cremental search to find abstract plans [Seipp et al., 2020b]
and a time limit of 900 seconds for the CEGAR loop.

We focus on the “M&S” and “Single Cartesian” columns
in Table 1 for now. Among these algorithms, hMS solves the
highest number of tasks overall, mainly due its high coverage
for CNOT tasks. Cartesian abstractions with regression flaws
and progression flaw fallback (B) yield the highest coverage
among Cartesian abstractions, and they dominate hMS in all
domains with general conditional effects except for Miconic
and the CNOT domains because refining closer to goal states
yields more informative heuristics. However, Cartesian ab-
stractions using sequence flaws (S) solve the most tasks in
all factored domains and Briefcase, where fewer regression
flaws are found and the progression flaw fallback is needed
often.

5.2 Multiple Abstractions
We compare saturated cost partitioning (SCP) over Carte-
sian abstractions for landmark and goal subtasks2 [Seipp
and Helmert, 2018] with SCP over M&S abstractions (hMSSCP)
[Sievers et al., 2020], and Sys-SCP PDBs combined by SCP
(hPDBSCP) [Seipp, 2019].

Again, regression flaws with the progression flaw fallback
(B) obtain the highest coverage for Cartesian abstractions for
all domains except the FSC Domains. However, SCP over
Cartesian abstractions solves fewer tasks than a single ab-
straction in Rubik′s Cube, CNOT domains and factored do-
mains, where the interaction between goals is more intricate
and not captured by subtasks. PDBs solve many Miconic

2We do not compute domain abstractions for subtasks because
they do not support conditional effects [Seipp and Helmert, 2018].
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Figure 2: Expansions before the last f -layer for the best combination
of abstractions, SCP over M&S and PDBs for factored tasks.

tasks and hMSSCP has its strength in factored tasks and CNOT
domains.

5.3 Combinations of Abstractions

Finally, we combine abstractions of different types via satu-
rated cost partitioning. As the base ingredient, we use PDBs,
because they proved to be complementary to Cartesian ab-
stractions. To this, we add different collections of Cartesian
abstractions (see caption of Table 1). We use at most 100 sec-
onds to compute PDBs and at most 50 million non-looping
transitions in total for Cartesian abstractions. Table 1 shows
that CfBSB is the strongest among the combinations in all do-
mains. It combines multiple Cartesian abstractions over sub-
tasks using regression flaws, a single Cartesian abstraction
over the full task using regression flaws and a single Carte-
sian abstraction over the full task using sequence flaws. In
total, this configuration solves 39 more tasks than the second-
best combination, CB, mainly because repairing flaws for the
full task refines parts of the abstract state space that are kept
coarse for individual landmark and goal subtasks, especially
in CNOT domains and factored tasks.

5.4 State of the Art

As baselines, we use LM-Cut with context splitting (hLMC)
[Röger et al., 2014] and symbolic bidirectional search (Sym)
[Speck et al., 2025]. For factored tasks, we use a single Carte-
sian abstraction (hCartfact) and multiple PDBs (hPDBsfact) [Büchner
et al., 2024] as our baselines.

hLMC is very good for Miconic—where delete-relaxation
works well because each operator appears at most once in
optimal plans—but it solves even fewer tasks than a sin-
gle Cartesian abstraction in the other domains. Sym is the
strongest baseline, especially for factored tasks, but it is still
weaker than hPDBsfact for these tasks. However, CfBSB dominates
all baselines in 9 domains, solving 59 more tasks in total than
Sym. hMSSCP is the best technique for CNOT domains, but it
struggles in Miconic. Finally, for factored tasks the dedi-
cated algorithm that computes PDBs is the clear winner in all
domains, solving 51 more tasks than CfBSB . Figure 2 shows
that the heuristic quality of CfBSB is higher than hMSSCP except in
CNOT domains, but lower than hPDBsfact for factored tasks.



Baselines Factored M&S Single Cartesian SCP Abs. SCP Cartesian Combinations

Domain #Tasks hLMC Sym hCart
fact hPDBs

fact hMS F B S hMS
SCP hPDB

SCP F B S CF CB CfBS
B

General Conds. 543 296 316 – – 239 245 245 240 250 322 245 255 245 330 339 341

Briefcase 50 9 9 – – 8 9 9 10 8 12 7 7 7 16 16 17
Caldera 20 10 10 – – 12 12 12 12 12 12 12 17 12 12 17 17
CalderaSplit 20 8 11 – – 7 8 8 8 8 8 8 11 8 8 9 9
Citycar 20 16 18 – – 16 15 16 14 16 16 16 16 16 16 17 17
FSC Domains 57 20 20 – – 19 20 19 19 19 19 20 19 19 19 19 19
GED Domains 26 15 20 – – 20 20 20 20 20 20 20 20 20 20 20 20
Miconic 150 142 150 – – 88 85 83 83 88 147 83 84 83 147 147 147
Nurikabe 20 12 11 – – 12 12 12 12 12 13 14 14 14 14 14 14
Rubik′s Cube 20 7 6 – – 11 11 11 9 11 10 7 8 7 10 10 10
Settlers 20 8 9 – – 9 10 10 10 10 12 11 12 12 12 12 12
Spider 20 11 8 – – 6 11 11 11 14 15 15 15 15 15 17 18
T0 Domains 120 38 44 – – 31 32 34 32 32 38 32 32 32 41 41 41

CNOT Domains 992 631 688 – – 745 677 707 652 762 707 594 600 594 725 726 733

CNOT 219 196 210 – – 215 207 214 204 215 212 192 193 192 213 213 214
CNOT Hard 526 189 237 – – 284 226 247 205 301 250 163 167 163 266 267 273
CNOT Map 247 246 241 – – 246 244 246 243 246 245 239 240 239 246 246 246

Factored Tasks 428 135 207 182 247 172 156 155 180 176 163 136 141 139 166 166 196

Cavediving 17 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Matrix Mult. 11 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Burnt Pancakes 100 30 49 40 53 40 37 36 41 40 38 32 35 35 38 38 45
Pancakes 100 35 52 44 59 43 39 39 45 43 39 37 39 37 41 41 51
Rubik′s Cube 2 100 37 50 47 66 46 41 45 46 51 44 32 32 32 45 45 51
Topspin 100 22 45 40 58 32 28 24 37 31 31 24 24 24 31 31 38

Total 1963 1062 1211 182 247 1156 1078 1107 1072 1188 1192 975 996 978 1221 1231 1270

Table 1: Number of solved tasks per domain for different algorithms divided into baselines; abstractions for factored tasks; M&S; single
Cartesian abstractions; saturated cost partitioning (SCP) heuristics over M&S abstractions and projections; SCP heuristics over Cartesian
abstractions; and combinations of different types of abstractions. hLMC is the LM-Cut heuristic, Sym is bidirectional symbolic search, hCart

fact

computes a single Cartesian abstraction for factored tasks, hPDBs
fact computes PDBs for factored tasks with CEGAR, hMS is the M&S heuristic

with SCC-DFP merging and bisimulation shrinking, and hMS
SCP and hPDB

SCP are M&S and PDB heuristics combined via SCP. For single/multiple
Cartesian abstractions F /F (forward) denotes progression flaws, B/B (backward) regression flaws, and S/S sequence flaws. CF adds Cartesian
abstractions of landmark and goal subtasks refined for progression flaws, CB instead uses regression flaws, and CfBS

B takes the latter and adds a
single abstraction of the full task with regression flaws and another one in the last flaw. Bold values denote the highest coverage per domain.

6 Conclusions
We showed how to support conditional effects in PDBs,
M&S, and Cartesian abstractions, including support for re-
gression and sequence flaws. Our strongest algorithm, which
combines PDBs and Cartesian abstractions, solves many
more tasks than symbolic search, the previous state of the art.

CEGAR is also suitable for domain abstractions, which fall
in between projections and Cartesian abstractions on the gen-
erality scale [Kreft et al., 2023]. Future work could extend
them to support conditional effects.
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