Abstraction Heuristics for Classical Planning Task with
Conditional Effects

Martin Pozo
Jendrik Seipp

Universidad

0)O) I LINKOPING
Carloslll ©. 05 U

UNIVERSITY

ucadm

[1/12]

>>> Abstractions

-

V ={p,q,t}

D,={L,R},D, =D, ={L,R, I}

I Lo Lo B @ 9 9 \ n
=l o) @ @ — ®
Operators: drive, pick, drop

@ () ()t

[1. Introduction]$ _ [2/12]

>>> Abstractions

- Projections completely abstract one or more variables

- The full domain of abstracted variables is true at the
same time in all states
+ Atomic projections abstract all variables except one
Typically many projections are combined in a PDB
- Merge-and-shrink abstractions start from atomic
projections and apply transformations on them
Merge two abstractions
Shrink an abstraction
Label reduction
Pruning
In Cartesian Abstractions each state is mapped to a
Cartesian set of states
Fine grained and efficient

[1. Introductionl$ _

{pr}
x
{ar}
x

{tr,tr}

{pr} {pe} {pr} {pr}

x x x x

—>| {9z, qr} {av,ar} [«—> {qr} =——> {ar}
x x x x

{tr} {te} {te} {tr}

{pr} {pr}

x x

{ar} [«——> {ar} =—>
x x

{tr} {tr}

{pr}
x
{ar}

x
{tr,tr}

[3/12]

>>> CEGAR (Counterexample-Guided Abstraction Refinement)

 Start from the trivial abstraction

-+ Asingle state consistent with all concrete states

Refine it in a loop until reaching a termination condition

- Typically a memory or time limit

1. While not termination condition:

1.1. Find an optimal abstract plan

+ If not found = unsolvable task

1.2. Executeitinthe concrete state space until 1.2. —>e—>e—>e——>

finding a flaw

- If no flaws found = solution found

1.3. Split the abstract state into 2 states

[1. Introductionl$ _

||‘. o EF%?H
ﬂ‘?ﬁ% i %H%

[4/12]

>>> Conditional effects: why?

+ Compact representation for complex tasks

Each effect now contains a number of facts as conditions

+ o= (pre(o), eff (0), cost(o)) € O, where each e € eff (o) =
- (conds(e) = partial state, atom(e) = atom)

+ Compiling them away — exponential growth

[1. Introductionl$ _

[5/12]

>>> Conditional effects: Briefcase (Pednault, 1988)

V = {UB,UD,’U[}

[« ()
w

I={vg— W,up— H,u; — L} H w H
GI{UDHW}

Operators:
{’UBIK,UD!—%, 1)['—>L},
store(€)=< {{},vi=T)}, > store(£): . —
: EdE
{’UBHK,UDHE, ’U[i—)T},
takeout(£)— < {{{},vi—L1)}, > takeout (¢ . .
1 (@)= =)
{vp—=t},
move(€, m)= < {{vr—=T}, vp—m), ({},vm—)m)},> move (£, m) D D

1

[1. Introductionl$ _ [6/12]

>>> Projections and merge-and-shrink abstractions

- Non-induced abstractions (over-approximations)
- Some abstract transitions have no correspondence in the concrete space
Making induced abstractions for conditional effects is too expensive

Projection with states {vg,vp}

(vr abstracted)

Projections

Outgoing transitions algorithm:

1. If preconditions are not satisfied in the projection, no
transition

2. Else{a>b|be Xoep all possible post values for v}

Merge-and-shrink abstractions

move(H, W)

move(W, H)

(H ‘M)200w
(M ‘H)pa0w

move(H, W)
- Initial atomic projections are computed as above
move(W, H)

[2. Abstractions for Tasks with Conditional Effects]$ _ [7/12]

>>> Cartesian abstractions: rewiring transitions

+ Also non-induced abstractions

- Outgoing transitions algorithm for a child Cartesian state a
after a split:
1. If preconditions are not satisfied in a, no transition
2. Else
2.1. post < anC(pre(o))
2.2. For all effects with effect atom z possibly satisfied in a,
post[v] < post[v] U {z}
2.3. For all effects with effect atom z always satisfied in a,
post[v] + {z}
2.4. {a>b|be S* b post # &}

[2. Abstractions for Tasks with Conditional Effects]$ _

move(W, H)

move(H, W)

move(H, W)

move(W, H)

[8/12]

>>> Cartesian abstractions: progression flaws

- Only deviation flaws (s, ¢) are affected, where ¢ = a N regr(b, 0)

[2. Abstractions for Tasks with Conditional Effects]$ _ [9/12]

>>> Cartesian abstractions: progression flaws

But regression is not Cartesian with conditional effects!

(chuckles)
I'm in danger.

[2. Abstractions for Tasks with Conditional Effects]$ _ [9/12]

>>> Cartesian abstractions: progression flaws

- Only deviation flaws (s, c) are affected, where ¢ = a N regr(b, o)

- Cartesian over-approximation

{pre(o)[v]} if v € vars(pre(o))
) D, if (C,v— z) € eff(0),z € b[v]

regr® o = Uty (v e hwesg) € eff(0).y € bul U
b[v] otherwise

+ Multiple causes for a deviation may happen
- Refined one by one in each iteration of the loop

- As done for tasks without conditional effects for multiple non-satisfied preconditions

[2. Abstractions for Tasks with Conditional Effects]$ _ [9/12]

>>> Cartesian abstractions: regression flaws

- Search for flaws in regression from the goals of the plan
Regression applied as the above Cartesian over-approximation
- Superset of the actual regression = fewer flaws found

Mitigated by searching for a progression flaw as a fallback when no regression flaw is found

[2. Abstractions for Tasks with Conditional Effects]$ _ [10/12]

>>> Experiments

Domain #Tasks h™® Sym hSEE AEREE CIFS Domain #Tasks A™C sSym hSEE AEE: CIFS
General Conds. 543 296 316 = - 341 CNOT Domains 992 631 688 = - 733
Briefcase 50 9 9 = - 17 CNOT 219 196 210 = - 214
Caldera 20 10 10 = - 17 CNOT Hard 526 189 237 = - 273
CalderaSplit 20 8 M = - 9 CNOT Map 247 246 241 = - 246
Citycar 20 16 18 = - 17
ol 57 20 20 » ~ 19 Factored Tasks 428 135 207 182 247 196
GED Domains 26 15 20 - - 20 Cavediving 17 4 4 4 4 4
Miconic 150 142 150 = - 147 Matrix Mult. 1 7 7 7 7 7
Nurikabe 20 12 N = - 14 Burnt Pancakes 100 30 49 40 53 45
Rubik’s Cube 20 7 6 = - 10 Pancakes 100 35 52 44 59 51
Settlers 20 9 - - 12 Rubik’s Cube 2 100 37 50 47 66 51
Spider 20 1 8 = - 18 Topspin 100 22 45 40 58 38
TO Domains 120 38 44 = - 4

Total 1963 1062 1211 182 247 1270

[3. Experiments]$ _

[11/12]

>>> Conclusions

+ Support of tasks with conditional effects

+ Projections
- Merge-and-shrink abstractions
- Cartesian abstractions

- Progression flaws
+ Regression flaws
+ Sequence flaws

+ Combining projections and Cartesian abstractions via online SCP solves more tasks than
symbolic search

Projections for factored tasks are still better suited for these tasks

[4. Conclusions]$ _ [12/12]

	Introduction
	Abstractions for Tasks with Conditional Effects
	Experiments
	Conclusions

