
Abstraction Heuristics for Classical Planning Task with
Conditional Effects

Martín Pozo
Jendrik Seipp

[~]$ _ [1/12]



>>> Abstractions

V = {p, q, t}

Dt = {L, R}, Dp = Dq = {L, R, I}

I = {p 7→ L, q 7→ L, t 7→ R}

G = {p 7→ R, q 7→ R}

Operators: drive, pick, drop

L R

LLRLLR LLLLLL

ILLILL

LILLIL

IILIIL IIRIIR

RIRRIR

IRRIRR

RRRRRR RRLRRL

ILRILR RLRRLR RLLRLL RILRIL

LIRLIR LRRLRR LRLLRL IRLIRL

LLRLLR LLLLLL

ILLILL

LILLIL

IILIIL IIRIIR

RIRRIR

IRRIRR

RRRRRR RRLRRL

ILRILR RLRRLR RLLRLL RILRIL

LIRLIR LRRLRR LRLLRL IRLIRL

[1. Introduction]$ _ [2/12]



>>> Abstractions

· Projections completely abstract one or more variables
· The full domain of abstracted variables is true at the

same time in all states
· Atomic projections abstract all variables except one
· Typically many projections are combined in a PDB

· Merge-and-shrink abstractions start from atomic
projections and apply transformations on them

· Merge two abstractions
· Shrink an abstraction
· Label reduction
· Pruning

· In Cartesian Abstractions each state is mapped to a
Cartesian set of states

· Fine grained and efficient

pTpT

pLpL

pRpR

qTqT

qLqL

qRqR

tLtL tRtR

pL × qLpL × qL

pL × qTpL × qT

pL × qRpL × qR

pT × qLpT × qL

pT × qTpT × qT

pT × qRpT × qR

pR × qLpR × qL

pR × qTpR × qT

pR × qRpR × qR

{pL}
×

{qL, qT }
×

{tR}

{pL}
×

{qL, qT }
×

{tL}

{pT }
×

{qL}
×

{tL}

{pT }
×

{qL}
×

{tR}

{pR}
×

{qR}
×

{tL, tR}

{pR}
×

{qT }
×

{tL, tR}

{pT }
×

{qT }
×

{tR}

{pT }
×

{qT }
×

{tL}

[1. Introduction]$ _ [3/12]



>>> CEGAR (Counterexample-Guided Abstraction Refinement)

· Start from the trivial abstraction
· A single state consistent with all concrete states

· Refine it in a loop until reaching a termination condition
· Typically a memory or time limit

1. While not termination condition:

1.1. Find an optimal abstract plan

· If not found⇒ unsolvable task

1.2. Execute it in the concrete state space until
finding a flaw

· If no flaws found⇒ solution found

1.3. Split the abstract state into 2 states

1.1.

1.2.

Refine1.3.

[1. Introduction]$ _ [4/12]



>>> Conditional effects: why?

· Compact representation for complex tasks

· Each effect now contains a number of facts as conditions

· o = ⟨pre(o), eff (o), cost(o)⟩ ∈ O, where each e ∈ eff (o) =

· ⟨conds(e) ≡ partial state, atom(e) ≡ atom⟩

· Compiling them away → exponential growth

[1. Introduction]$ _ [5/12]



>>> Conditional effects: Briefcase (Pednault, 1988)

V = {vB , vD, vI}

DvB = DvD = {H, W}, DvI = {⊥,⊤}

I = {vB 7→W, vD 7→ H, vI 7→ ⊥}

G = {vD 7→W}

Operators:

I :

H W H W

G:

ℓ ℓ

store(ℓ):

ℓ ℓ

takeout(ℓ):

ℓ m ℓ m

move(ℓ, m):

store(ℓ)=

〈 {vB=ℓ, vD 7→ℓ, vI 7→⊥},
{⟨{}, vI=⊤⟩},

1

〉

takeout(ℓ)7→

〈 {vB 7→ℓ, vD 7→ℓ, vI 7→⊤},
{⟨{}, vI 7→⊥⟩},

1

〉

move(ℓ, m)=

〈 {vB 7→ℓ},
{⟨{vI 7→⊤}, vD 7→m⟩, ⟨{}, vB 7→m⟩},

1

〉

[1. Introduction]$ _ [6/12]



>>> Projections and merge-and-shrink abstractions

· Non-induced abstractions (over-approximations)
· Some abstract transitions have no correspondence in the concrete space
· Making induced abstractions for conditional effects is too expensive

Projections

· Outgoing transitions algorithm:
1. If preconditions are not satisfied in the projection, no

transition
2. Else {a o−→ b | b ∈×v∈P

all possible post values for v}

Merge-and-shrink abstractions

· Initial atomic projections are computed as above

Projection with states {vB , vD}
(vI abstracted)

{W, H} {H, W }

{H, H} {W, W }

m
ove(W

,H
)m

ov
e(

H
,W

)

move(H , W )

move(W , H)

m
ove(H

,W
)m

ov
e(

W
,H

)

[2. Abstractions for Tasks with Conditional Effects]$ _ [7/12]



>>> Cartesian abstractions: rewiring transitions

· Also non-induced abstractions

· Outgoing transitions algorithm for a child Cartesian state a

after a split:
1. If preconditions are not satisfied in a, no transition
2. Else

2.1. post ← a ∩ C(pre(o))
2.2. For all effects with effect atom x possibly satisfied in a,

post[v]← post[v] ∪ {x}
2.3. For all effects with effect atom x always satisfied in a,

post[v]← {x}
2.4. {a o−→ b | b ∈ Sα, b ∩ post ̸= ∅}

{W }
×

{H}
×

{⊥, ⊤}

{H}
×

{H}
×

{⊥}

{H}
×

{H}
×

{⊤}

{W, H}
×

{W }
×

{⊥, ⊤}

move(W , H)

move(H , W )

move(W
,H)

mov
e(H

,W
)

store(W
)

ta
ke

ou
t(

W
)

move(H , W )

move(W , H)

[2. Abstractions for Tasks with Conditional Effects]$ _ [8/12]



>>> Cartesian abstractions: progression flaws

· Only deviation flaws ⟨s, c⟩ are affected, where c = a ∩ regr(b, o)

[2. Abstractions for Tasks with Conditional Effects]$ _ [9/12]



>>> Cartesian abstractions: progression flaws

· But regression is not Cartesian with conditional effects!

[2. Abstractions for Tasks with Conditional Effects]$ _ [9/12]



>>> Cartesian abstractions: progression flaws

· Only deviation flaws ⟨s, c⟩ are affected, where c = a ∩ regr(b, o)

· Cartesian over-approximation

regr(b, o)[v] =


{pre(o)[v]} if v ∈ vars(pre(o))
Dv if ⟨C, v 7→ x⟩ ∈ eff (o), x ∈ b[v]
b[v] ∪ {x} if ⟨{v 7→ x, ...}, w 7→ y⟩ ∈ eff (o), y ∈ b[w]
b[v] otherwise

(1)

· Multiple causes for a deviation may happen

· Refined one by one in each iteration of the loop

· As done for tasks without conditional effects for multiple non-satisfied preconditions

[2. Abstractions for Tasks with Conditional Effects]$ _ [9/12]



>>> Cartesian abstractions: regression flaws

· Search for flaws in regression from the goals of the plan

· Regression applied as the above Cartesian over-approximation

· Superset of the actual regression⇒ fewer flaws found

· Mitigated by searching for a progression flaw as a fallback when no regression flaw is found

[2. Abstractions for Tasks with Conditional Effects]$ _ [10/12]



>>> Experiments

Domain #Tasks hLMC Sym hCart
fact hPDBs

fact CfBS
B

General Conds. 543 296 316 – – 341

Briefcase 50 9 9 – – 17
Caldera 20 10 10 – – 17
CalderaSplit 20 8 11 – – 9
Citycar 20 16 18 – – 17
FSC Domains 57 20 20 – – 19
GED Domains 26 15 20 – – 20
Miconic 150 142 150 – – 147
Nurikabe 20 12 11 – – 14
Rubik′s Cube 20 7 6 – – 10
Settlers 20 8 9 – – 12
Spider 20 11 8 – – 18
T0 Domains 120 38 44 – – 41

Domain #Tasks hLMC Sym hCart
fact hPDBs

fact CfBS
B

CNOT Domains 992 631 688 – – 733

CNOT 219 196 210 – – 214
CNOT Hard 526 189 237 – – 273
CNOT Map 247 246 241 – – 246

Factored Tasks 428 135 207 182 247 196

Cavediving 17 4 4 4 4 4
Matrix Mult. 11 7 7 7 7 7
Burnt Pancakes 100 30 49 40 53 45
Pancakes 100 35 52 44 59 51
Rubik′s Cube 2 100 37 50 47 66 51
Topspin 100 22 45 40 58 38

Total 1963 1062 1211 182 247 1270

[3. Experiments]$ _ [11/12]



>>> Conclusions

· Support of tasks with conditional effects

· Projections
· Merge-and-shrink abstractions
· Cartesian abstractions

· Progression flaws
· Regression flaws
· Sequence flaws

· Combining projections and Cartesian abstractions via online SCP solves more tasks than
symbolic search

· Projections for factored tasks are still better suited for these tasks

[4. Conclusions]$ _ [12/12]


	Introduction
	Abstractions for Tasks with Conditional Effects
	Experiments
	Conclusions

