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>>> Abstractions

V = {p, q, t}

Dt = {L, R}, Dp = Dq = {L, R, I}

I = {p 7→ L, q 7→ L, t 7→ R}

G = {p 7→ R, q 7→ R}

Operators: drive, pick, drop
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>>> Abstractions

· Projections completely abstract one or more variables
· The full domain of abstracted variables is true at the

same time in all states
· Atomic projections abstract all variables except one
· Typically many projections are combined in a PDB

· Merge-and-shrink abstractions start from atomic
projections and apply transformations on them

· Merge two abstractions
· Shrink an abstraction
· Label reduction
· Pruning

· In Cartesian Abstractions each state is mapped to a
Cartesian set of states

· Fine grained and efficient
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>>> CEGAR (Counterexample-Guided Abstraction Refinement)

· Start from the trivial abstraction
· A single state consistent with all concrete states

· Refine it in a loop until reaching a termination condition
· Typically a memory or time limit

1. While not termination condition:

1.1. Find an optimal abstract plan

· If not found⇒ unsolvable task

1.2. Execute it in the concrete state space until
finding a flaw

· If no flaws found⇒ solution found

1.3. Split the abstract state into 2 states

1.1.

1.2.

Refine1.3.
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>>> Conditional effects: why?

· Compact representation for complex tasks

· Each effect now contains a number of facts as conditions

· o = ⟨pre(o), eff (o), cost(o)⟩ ∈ O, where each e ∈ eff (o) =

· ⟨conds(e) ≡ partial state, atom(e) ≡ atom⟩

· Compiling them away → exponential growth
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>>> Conditional effects: Briefcase (Pednault, 1988)

V = {vB , vD, vI}

DvB = DvD = {H, W}, DvI = {⊥,⊤}

I = {vB 7→W, vD 7→ H, vI 7→ ⊥}

G = {vD 7→W}

Operators:

I :

H W H W

G:

ℓ ℓ

store(ℓ):

ℓ ℓ

takeout(ℓ):

ℓ m ℓ m

move(ℓ, m):

store(ℓ)=

〈 {vB=ℓ, vD 7→ℓ, vI 7→⊥},
{⟨{}, vI=⊤⟩},

1

〉

takeout(ℓ)7→

〈 {vB 7→ℓ, vD 7→ℓ, vI 7→⊤},
{⟨{}, vI 7→⊥⟩},

1

〉

move(ℓ, m)=

〈 {vB 7→ℓ},
{⟨{vI 7→⊤}, vD 7→m⟩, ⟨{}, vB 7→m⟩},

1

〉
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>>> Projections and merge-and-shrink abstractions

· Non-induced abstractions (over-approximations)
· Some abstract transitions have no correspondence in the concrete space
· Making induced abstractions for conditional effects is too expensive

Projections

· Outgoing transitions algorithm:
1. If preconditions are not satisfied in the projection, no

transition
2. Else {a o−→ b | b ∈×v∈P

all possible post values for v}

Merge-and-shrink abstractions

· Initial atomic projections are computed as above
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>>> Cartesian abstractions: rewiring transitions

· Also non-induced abstractions

· Outgoing transitions algorithm for a child Cartesian state a

after a split:
1. If preconditions are not satisfied in a, no transition
2. Else

2.1. post ← a ∩ C(pre(o))
2.2. For all effects with effect atom x possibly satisfied in a,

post[v]← post[v] ∪ {x}
2.3. For all effects with effect atom x always satisfied in a,

post[v]← {x}
2.4. {a o−→ b | b ∈ Sα, b ∩ post ̸= ∅}
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>>> Cartesian abstractions: progression flaws

· Only deviation flaws ⟨s, c⟩ are affected, where c = a ∩ regr(b, o)
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>>> Cartesian abstractions: progression flaws

· But regression is not Cartesian with conditional effects!
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>>> Cartesian abstractions: progression flaws

· Only deviation flaws ⟨s, c⟩ are affected, where c = a ∩ regr(b, o)

· Cartesian over-approximation

regr(b, o)[v] =


{pre(o)[v]} if v ∈ vars(pre(o))
Dv if ⟨C, v 7→ x⟩ ∈ eff (o), x ∈ b[v]
b[v] ∪ {x} if ⟨{v 7→ x, ...}, w 7→ y⟩ ∈ eff (o), y ∈ b[w]
b[v] otherwise

(1)

· Multiple causes for a deviation may happen

· Refined one by one in each iteration of the loop

· As done for tasks without conditional effects for multiple non-satisfied preconditions
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>>> Cartesian abstractions: regression flaws

· Search for flaws in regression from the goals of the plan

· Regression applied as the above Cartesian over-approximation

· Superset of the actual regression⇒ fewer flaws found

· Mitigated by searching for a progression flaw as a fallback when no regression flaw is found
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>>> Experiments

Domain #Tasks hLMC Sym hCart
fact hPDBs

fact CfBS
B

General Conds. 543 296 316 – – 341

Briefcase 50 9 9 – – 17
Caldera 20 10 10 – – 17
CalderaSplit 20 8 11 – – 9
Citycar 20 16 18 – – 17
FSC Domains 57 20 20 – – 19
GED Domains 26 15 20 – – 20
Miconic 150 142 150 – – 147
Nurikabe 20 12 11 – – 14
Rubik′s Cube 20 7 6 – – 10
Settlers 20 8 9 – – 12
Spider 20 11 8 – – 18
T0 Domains 120 38 44 – – 41

Domain #Tasks hLMC Sym hCart
fact hPDBs

fact CfBS
B

CNOT Domains 992 631 688 – – 733

CNOT 219 196 210 – – 214
CNOT Hard 526 189 237 – – 273
CNOT Map 247 246 241 – – 246

Factored Tasks 428 135 207 182 247 196

Cavediving 17 4 4 4 4 4
Matrix Mult. 11 7 7 7 7 7
Burnt Pancakes 100 30 49 40 53 45
Pancakes 100 35 52 44 59 51
Rubik′s Cube 2 100 37 50 47 66 51
Topspin 100 22 45 40 58 38

Total 1963 1062 1211 182 247 1270
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>>> Conclusions

· Support of tasks with conditional effects

· Projections
· Merge-and-shrink abstractions
· Cartesian abstractions

· Progression flaws
· Regression flaws
· Sequence flaws

· Combining projections and Cartesian abstractions via online SCP solves more tasks than
symbolic search

· Projections for factored tasks are still better suited for these tasks
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