Abstraction Heuristics for Classical Planning Task with **Conditional Effects**

Martín Pozo Jendrik Seipp

[~]\$ [1/12]

>>> Abstractions

$$V = \{p, q, t\}$$

$$D_t = \{L, R\}, D_p = D_q = \{L, R, I\}$$

$$I = \{ p \mapsto L, q \mapsto L, t \mapsto R \}$$

$$G = \{ p \mapsto R, q \mapsto R \}$$

Operators: drive, pick, drop

[1. Introduction]\$ _ [2/12]

>>> Abstractions

- Projections completely abstract one or more variables
 - The full domain of abstracted variables is true at the same time in all states
 - Atomic projections abstract all variables except one
 - Typically many projections are combined in a PDB
- Merge-and-shrink abstractions start from atomic projections and apply transformations on them
 - Merge two abstractions
 - · Shrink an abstraction
 - · Label reduction
 - Pruning
- In Cartesian Abstractions each state is mapped to a Cartesian set of states
 - Fine grained and efficient

[1. Introduction]\$ _ [3/12]

>>> CEGAR (Counterexample-Guided Abstraction Refinement)

- Start from the trivial abstraction
 - A single state consistent with all concrete states
- Refine it in a loop until reaching a termination condition
 - Typically a memory or time limit
- 1. While not termination condition:
 - 1.1. Find an optimal abstract plan
 - If not found ⇒ unsolvable task
 - **1.2.** Execute it in the concrete state space until $1.2. \rightarrow \bullet \rightarrow \bullet$ finding a flaw
 - If no flaws found ⇒ solution found
 - 1.3. Split the abstract state into 2 states

[1. Introduction]\$ [4/12] >>> Conditional effects: why?

- Compact representation for complex tasks
- Each effect now contains a number of facts as conditions
 - + $o = \langle pre(o), eff(o), cost(o) \rangle \in O$, where each $e \in eff(o) =$
 - $\langle conds(e) \equiv \text{partial state}, atom(e) \equiv \text{atom} \rangle$
- Compiling them away \rightarrow exponential growth

>>> Conditional effects: Briefcase (Pednault, 1988)

$$V = \{v_B, v_D, v_I\}$$

$$D_{v_B} = D_{v_D} = \{H, W\}, D_{v_I} = \{\bot, \top\}$$

$$I = \{v_B \mapsto W, v_D \mapsto H, v_I \mapsto \bot\}$$

$$G = \{v_D \mapsto W\}$$

$$\begin{aligned} & \text{Operators:} \\ & store(\ell) \!=\! \left\langle \begin{array}{c} \{v_B \! = \! \ell, v_D \! \mapsto \! \ell, v_I \! \mapsto \! \bot\}, \\ & \{ \langle \{\}, v_I \! = \! \top \rangle\}, \\ & 1 \\ \\ & takeout(\ell) \! \mapsto \! \left\langle \begin{array}{c} \{v_B \! \mapsto \! \ell, v_D \! \mapsto \! \ell, v_I \! \mapsto \! \top \}, \\ & \{ \langle \{\}, v_I \! \mapsto \! \bot \rangle\}, \\ & 1 \\ \\ & move(\ell, m) \! =\! \left\langle \begin{array}{c} \{v_B \! \mapsto \! \ell\}, \\ \{ \langle \{v_I \! \mapsto \! \top \}, v_D \! \mapsto \! m \rangle, \langle \{\}, v_B \! \mapsto \! m \rangle\}, \\ \\ & 1 \\ \\ \end{aligned} \right. \end{aligned}$$

$$store(\ell)$$
:
$$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ &$$

ш m

>>> Projections and merge-and-shrink abstractions

- Non-induced abstractions (over-approximations)
 - Some abstract transitions have no correspondence in the concrete space
 - Making induced abstractions for conditional effects is too expensive

Projections

- · Outgoing transitions algorithm:
 - 1. If preconditions are not satisfied in the projection, no transition
 - **2.** Else $\{a \xrightarrow{o} b \mid b \in X_{v \in P} \text{ all possible post values for } v\}$

Merge-and-shrink abstractions

Initial atomic projections are computed as above

>>> Cartesian abstractions: rewiring transitions

Also non-induced abstractions

- Outgoing transitions algorithm for a child Cartesian state \boldsymbol{a} after a split:
 - **1.** If preconditions are not satisfied in a, no transition
 - 2. Else
 - **2.1.** $post \leftarrow a \cap \mathcal{C}(pre(o))$
 - **2.2.** For all effects with effect atom x possibly satisfied in a, $post[v] \leftarrow post[v] \cup \{x\}$
 - **2.3.** For all effects with effect atom x always satisfied in a, $post[v] \leftarrow \{x\}$
 - **2.4.** $\{a \xrightarrow{o} b \mid b \in S^{\alpha}, b \cap post \neq \emptyset\}$

- Only deviation flaws $\langle s,c\rangle$ are affected, where $c=a\cap \operatorname{regr}(b,o)$

>>> Cartesian abstractions: progression flaws

But regression is not Cartesian with conditional effects!

>>> Cartesian abstractions: progression flaws

- Only deviation flaws $\langle s,c \rangle$ are affected, where $c=a \cap regr(b,o)$
- Cartesian over-approximation

$$regr(b,o)[v] = \begin{cases} & \{pre(o)[v]\} & \text{if } v \in vars(pre(o)) \\ & \mathcal{D}_v & \text{if } \langle C, v \mapsto x \rangle \in eff(o), x \in b[v] \\ & b[v] \cup \{x\} & \text{if } \langle \{v \mapsto x, \ldots\}, w \mapsto y \rangle \in eff(o), y \in b[w] \\ & b[v] & \text{otherwise} \end{cases}$$

$$(1)$$

- Multiple causes for a deviation may happen
 - Refined one by one in each iteration of the loop
 - · As done for tasks without conditional effects for multiple non-satisfied preconditions

>>> Cartesian abstractions: regression flaws

- Search for flaws in regression from the goals of the plan
 - Regression applied as the above Cartesian over-approximation
 - Superset of the actual regression \Rightarrow fewer flaws found
 - · Mitigated by searching for a progression flaw as a fallback when no regression flaw is found

>>> Experiments

Domain	#Tasks	$h^{ ext{LMC}}$	Sym	$h_{\mathrm{fact}}^{\mathrm{Cart}}$	$h_{\mathtt{fact}}^{\mathtt{PDBs}}$	$\mathcal{C}_\mathtt{B}^{\mathtt{fBS}}$	Domain	#Tasks	$h^{\mathtt{LMC}}$	Sym	$h_{\mathrm{fact}}^{\mathrm{Cart}}$	$h_{\mathtt{fact}}^{\mathtt{PDBs}}$	$\mathcal{C}_{\mathtt{B}}^{\mathtt{fBS}}$
General Conds.	543	296	316	-	-	341	CNOT Domains	992	631	688	-	-	733
Briefcase	50	9	9	-	-	17	CNOT	219	196	210	-	-	214
Caldera	20	10	10	-	-	17	CNOT Hard	526	189	237	-	-	273
CalderaSplit	20	8	11	-	-	9	CNOT Map	247	246	241	-	-	246
Citycar	20	16	18	-	-	17	Factored Tasks	420	425	207	100	2/7	106
FSC Domains	57	20	20	-	-	19		428	135	207	182	247	196
GED Domains	26	15	20	-	-	20	Cavediving	17	4	4	4	4	4
Miconic	150	142	150	-	-	147	Matrix Mult.	11	7	7	7	7	7
Nurikabe	20	12	11	-	-	14	Burnt Pancakes	100	30	49	40	53	45
$\mathtt{Rubik}'\mathtt{s}\ \mathtt{Cube}$	20	7	6	-	-	10	Pancakes	100	35	52	44	59	51
Settlers	20	8	9	-	-	12	Rubik's Cube 2	100	37	50	47	66	51
Spider	20	11	8	-	-	18	Topspin	100	22	45	40	58	38
TO Domains	120	38	44	-	-	41	Total	1963	1062	1211	182	247	1270

[3. Experiments]\$ _

>>> Conclusions

- Support of tasks with conditional effects
 - Projections
 - Merge-and-shrink abstractions
 - · Cartesian abstractions
 - Progression flaws
 - Regression flaws
 - Sequence flaws
- Combining projections and Cartesian abstractions via online SCP solves more tasks than symbolic search

Projections for factored tasks are still better suited for these tasks

[4. Conclusions]\$ _ [12/12]