Combining Heuristics and Transition Classifiers
in Classical Planning

Farid Musayev', Dominik Drexler', Daniel Gnad'? and Jendrik Seipp'

'Linkoping University, Sweden
{farid.musayev, dominik.drexler, daniel.gnad, jendrik.seipp} @liu.se
2Heidelberg University, Germany

Abstract. Recent work on learning for classical planning has pri-
marily focused on exclusively employing the learned heuristics or
policies. However, no purely learning-based method has consistently
outperformed state-of-the-art planners to date. To address this, we
return to the research paradigm that integrates learned domain knowl-
edge with traditional, non-learned planning techniques. We propose
a novel and simple approach for learning transition classifiers, us-
ing tree-based statistical learning over description logic features. In
experiments, we evaluate various strategies for integrating learned
classifiers with the FF heuristic, a state-of-the-art non-learned heuris-
tic. Our results demonstrate that augmenting classical heuristics with
transition classifiers leads to substantial performance improvements.
The strongest variant combines classifier-based lookahead search with
learned knowledge to avoid transitions into unsolvable states, fre-
quently outperforming state-of-the-art traditional and learning-based
planners.

1 Introduction

Recent research has introduced many learning-based approaches to
classical planning. Many works focus on learning heuristics or policies
to guide a search process, using either traditional learning techniques
[28, 4], or modern deep learning architectures [31, 29, 13, 27]. An
alternative approach builds on finding general policies expressed in a
formal target language by encoding the learning task as an optimiza-
tion problem or a new planning task [2, 11, 8, 24]. Both approaches
follow the paradigm of exclusively employing the learned domain
knowledge, either by guiding a best-first search or greedily executing
the learned policy. However, to date, none of these methods out-
performs traditional non-learning planners across arbitrary domains.
Some techniques are only applicable in domains that are optimally
solvable in polynomial time, others do not consistently outperform
planners based on well-established heuristics like KEF [16).

In this work, we combine the strengths of both paradigms, learning
and planning, instead of relying exclusively on a learned model. To
achieve this, we analyze several ways of combining a satisficing
heuristic with our domain knowledge in a search algorithm [32, 5, 18,
12].

On the learning side, our work combines concepts from Frances
et al. [11], who use models based on description logic features, and
from Ferber et al. [10], utilizing tree-based methods for learning
domain knowledge. Given a set of training instances in a planning
domain, we expand the state spaces and label transitions as good,

bad, or unsolvable, meaning that the optimal goal distance decreases,
does not decrease, or the transition leads into a state from which
the goal cannot be reached, respectively. We use description logic
features [1] to characterize the state transitions. The learning task is
then set as a multi-label classification problem, training a decision
tree to separate good, bad, and unsolvable transitions. From a learned
tree, we extract a set of rules for each label and show that this can
be translated into transition classifiers which are closely related to
policies as defined in the framework of Frances et al. [11]. During
the search, we employ these classifiers to 1) greedily follow good
transitions, 2) break tie between states with identical heuristic values,
3) identify preferred operators, 4) compute a path-dependent heuristic
that evaluates the taken transitions according to their label, or 5) detect
unsolvable states.

In our evaluation, we demonstrate that a classifier-based lookahead
search (1) that uses a traditional non-learned heuristic and our domain
knowledge to identify unsolvable states (5) is an effective combination.
It improves both the coverage and the number of state expansions
required to solve instances across several domains when compared
to other combinations, including a plain non-learned heuristic and
purely learning-based methods.

2 Background

In this section, we review classical planning, heuristic search, descrip-
tion logics, transition classifiers and decision trees, drawing from
Frances et al. [11]. If not mentioned otherwise, we assume sets to be
finite.

2.1 Classical Planning

A first-order planning domain D is a tuple (Q, ar, A) where Q is a
set of predicates, ar : @ — N is a function that maps predicates to
their arity, and A is a set of actions schemas of the form (pre, eff),
where pre is the precondition, an arbitrary first-order formula, and
eff is an arbitrary first-order effect.

A planning problem (or problem) P is a pair (D, I) where D is a
planning domain and I = (O, s, G) is problem-specific information
that consists of a set of objects O and two sets of ground atoms s
and G describing the initial state and the goal condition. A ground
atom p(0) over a predicate p denotes that 6 = 01, ..., 0gr(p) With
0; € O forall 1 <14 < nis in the relation with name p. A state s
is a set of ground atoms over the predicates and objects. The set of

all possible states is denoted by S. The initial state is so, and the set
of all goal states is S¢ = {s € S | G C s}. A ground action is an
action schema after substituting all variables with objects. A ground
action is applicable in a state if the ground propositional precondition
formula holds in the state. Applying the effect of a ground action in a
state produces a unique successor state.

A planning problem P induces a state space Sp =
(S, s0, Sa, Succ) where S, so and S¢ are defined as above and Succ
is a binary relation over states where (s, s’) € Succ iff there exists a
ground action that is applicable in s and its application in s yields the
successor state s”. A trajectory seeded at a state s1 of P is a state se-
quence s1, 82, . . ., Sp, such that (s;, s;+1) € Succ forall 1 <i < n.
A state s is reachable in P if there exists a trajectory seeded at sg
that ends in s. A plan for s is a trajectory seeded at s that ends in
a goal state. A plan for s is optimal if it is a plan for s of minimal
length. A state s is solvable if a plan for s exists, and otherwise is
unsolvable. The goal distance V*(s) of a state s is the length of an
optimal plan for s. We set V() to oo if no plan for s exists.

2.2 Heuristic Search

A common approach to solving classical planning tasks is heuristic
search. It uses domain-independent goal distance estimators to guide a
search in the state space, starting from the initial state. More formally,
a heuristic is a function h : S — R U {oo} that maps states into an
estimate for the plan length. In this work, we focus on greedy best-first
search [6], which expands states in order of increasing heuristic value.

2.3 Features & Transition Classifiers

A feature is a function of the state. We consider two types of features.
Boolean features map states into true or false and numeric features
map states into non-negative integers.

We use features to define conditions and effects as follows. The
possible conditions for a Boolean feature p (resp. numeric feature
n) are p, 7p (resp. n > 0,n=0). A state s satisfies the condition
p (resp. —p) iff p (resp. —p) is true in s, and the condition n >0
(resp. n = 0) iff n is greater than O (resp. n is equal to 0). The possible
effects for a Boolean feature p (resp. numeric feature n) are p, —p, p?
(resp. nT,nl, nT,nl,n?). A state pair (s, s’) satisfies the effect p
iff p is true in s', —p iff —p is true in s, nt iff n(s) < n(s'), nl iff
n(s) > n(s"), nTiff n(s) < n(s'), and nJ iff n(s) > n(s’). The
effects p? and n? define that there is no constraint on the value or
feature change.'

A transition classifier cs is a relation over state pairs. A transition
classifier that characterizes good transitions is also called a policy.
We can represent a transition classifier as a set of rules over features
®, each of the form C — FE, where C is a set of feature conditions
and E is a set of feature effects. A state pair (s, s’) is compatible
with a rule iff s satisfies all conditions in C and (s, s’) satisfies all
effects in E. A state pair (s, s’) is in cg, or cg-compatible, iff (s, s")
is compatible with a rule in co. A state trajectory si, Sz, ..., Sp for
s1 that ends in sy, is co-compatible if (s;, S;41) is ca-compatible for
1<t <n.

2.4 Description Logics

Description logics (DLs) are a family of knowledge representation
languages [1] where concepts represent unary derived predicates and

1 We extended the language of general policies with n1 and n.J to capture
precisely the opposite meanings of n) and n? respectively.

roles represent binary derived predicates over a universe A repre-
senting the set of objects O of a problem P over a domain D with
predicates (). We use the grammar of DLs to generate a set of features
®. For details on the concepts and grammar rules, we refer to Frances
et al. [11]. The features ¢ are domain general, meaning that they
are not specific to a single planning instance, but rather represent
knowledge about the planning domain D. Similar to Frances et al.
[11], we limit the exponential growth of the feature set by limiting the
syntactic complexity and the total number of generated features. The
syntactic complexity of a feature is defined as the number of grammar
rules used to construct it.

Example 1. In the Spanner domain, an agent needs to collect span-
ners, reach the end of the corridor and tighten loosened nuts. As
an example, the following DL features {n, h,e} (two numeric, one
Boolean) can be generated:

e n = |tightenedy M —tightened|: number of untightened nuts,

e h = |3at.T|: number of objects not held by the agent,

o ¢ = |Jat.(Vat~'.man)|: Boolean indicating whether the agent
location is empty, i.e., there is no spanner or nut at it.

2.5 Decision Trees

A decision tree [3] over a set of features @ is a single rooted binary
tree. Each inner node v is a tuple v = (v, vy, €1, £,), where v; and
v, are the left and right child nodes of v, and ¢; and ¢, are edge
constraints describing Boolean feature conditions or effects over
a feature in ®. A leaf node v; is a tuple ({(x1,y1), ..., {(Tk;, Yk,))
where each pair (z;,y;) forall 1 < j < k; consists of a transition x;
and its associated label y,. For a given transition (s, s’), the value of
anode v(s, s) is recursively defined as follows: if v is a leaf node,
then the label is the one with the largest occurrence in the node, where
ties are broken arbitrarily. If v is an inner node, then it is the value
of the left child (resp. right child) if (s, s") satisfies £; (resp. ;). A
path in the decision tree is a sequence of nodes v1, v, ..., vx such
that v;41 is a child of v;.

3 Learning Transition Classifiers

We next describe our algorithm for learning domain knowledge and
transforming it into a set of policy rules. The algorithm consists of
three steps: 1) self-supervised generation of training data that consists
of a set of labeled transitions and description logic features, 2) learning
a decision tree over a subset of the features to classify transitions,
and 3) translating the decision tree into a transition classifier for each
label.

3.1 Data Generation

Given a set of training instances P, we generate their induced state
spaces. For each state s in the induced state space, we label each
outgoing transition (s, s’) as good if the optimal goal distance de-
creases, i.e., V*(s) > V*(s’), bad if the optimal goal distance does
not decrease and s’ is solvable, i.e., V*(s) < V*(s') # oo, and un-
solvable if the transition reaches an unsolvable state, i.e., V*(s) < 0o
and V*(s") = oco. We randomly sample transitions from the fully
expanded state spaces of the training instances. To limit the combi-
natorial explosion during state space expansion, we set limits on the
size of the state spaces and the time for expansion. Our aim is to learn
classifiers that can generalize across D, particularly to instances of a
much larger size than those seen during training. Given the qualitative

nature of our features, we assume that uniform random sampling
provides us with transitions that are representative of instances of
arbitrary size and sufficient for generalization to larger instances.
The set of uniformly sampled transitions 7 induces a set of states
St,ie., s,8 € St foreach (s,s’) € T. For feature generation, we
randomly subsample state pairs from S that correspond to transitions
in 7 and obtain a set of subsampled state pairs SS7. The aim is to
generate features that can distinguish transitions in 7~ with different
labels. From SS'7, we generate a pool of candidate features ® over
the description logic grammar as follows. First, we generate sentences

over primitive concepts and roles with the syntactic complexity of one.

Then, we iteratively generate sentences over composite concepts and
roles and Boolean and numeric features from the previously generated
ones with a syntactic complexity of one plus the syntactic complexity
of the sub-sentences. A feature f makes it into the pool @ if no
previously generated feature evaluates equivalently on all states in
S S7. For more details on the feature generation, we refer to Frances
et al. [11] and Drexler and Seipp [7].

3.2 Learning a Decision Tree

We learn a binary decision tree on the training set of transitions 7
using the CART algorithm [3]. We associate each node in the tree
with a set of transitions from 7. Starting from the root node, the
algorithm recursively partitions the feature space at each inner node
using a transition feature (condition or effect) over a feature in ¢
that minimizes the Gini index. Notice that such a transition feature
splits the transitions at each inner node into two sets. The first set
corresponds to the transitions where the condition or effect holds,
and the second set to the transitions where it does not. The algorithm
terminates when a maximum number of leaf nodes or a maximum
tree depth is reached. Each leaf node is assigned a label (“good”,
“bad”, or “unsolvable”) based on the majority voting over the labels
of transitions in the leaf node.

3.3 From a Decision Tree to Transition Classifiers

A decision tree over transition features is closely related to a general
policy [11] which corresponds to a transition classifier that classifies
good transitions without any false positives for the whole domain. We
can translate a decision tree over transition features into the language
of general policies when adding the numeric feature effects n] and
nl that capture precisely the opposite meanings of feature effects n{
and nJ, respectively. Adding the numeric feature effects ensures that
the resulting size of transition classifiers is polynomial in the size of
the decision tree.

Theorem 1. For each decision tree with root node v, there exist
three transition classifiers c; for i € {good, bad, uns} such that the
following condition holds for any given state pair (s, s'): if v(s, s') is
“good” (respectively “bad”, or “unsolvable”) then (s, s') iS I Cgo0d
but not in Cpag OF Cuns (respectively (s, s’) in Cpaq but not in ceo0a OF
Cuns, OF (8, 8') is in Cuns bUt NOL iN Cgood OF Cpad)-

Proof. The proof is constructive. Consider a decision tree with root
node v;. For all paths v1,v2, ..., v in the decision tree from the
root node v1 to a leaf node v we have arule r = C — E whose
feature conditions C' and feature effects E consist of all the feature
conditions, respectively feature effects, along the path. If vy (s, s')
is “good”, “bad”, or “unsolvable”, then r is either in cgo0d, Cpad, OF
cuns TESpECtively. Any given state pair (s, s’) is compatible with a

rule in at most one of the three transition classifiers because the fea-
ture conditions and effects on all inner nodes are mutually exclusive.
Hence, it immediately follows that if v; (s, s’) is “good”, “bad”, or
“unsolvable”, then (s, s’) is in Cgops UL NOL IN Cpag OF Cuns (respectively
(8,8") in Cpaa bUL NOL iN Cgooq OF Cuns, OT (5, 8") is in cuns but not in
Cgood OT Chad)- O

The translation allows us to view a decision tree as three transition
classifiers and apply the syntax and semantics of general policies over
features ®. By establishing the correspondence between decision trees
and general policies, this translation enables us to leverage existing
general policy evaluation methods for efficient assessment of learned
transition classifiers during search.

4 Combining Heuristics and Transition Classifiers

In this section, we describe methods to combine transition classifiers
with heuristics to combine domain-general with problem-specific
knowledge. Since transition classifiers are simple relations over state
pairs and heuristics are functions of the state, we take a general
perspective on the combination.

We have learned three classifiers cgood, Chad, Cuns to identify good,
bad, and unsolvable transitions. In the best case, when cg0q 18 a perfect
classifier, we can strictly follow it and reach a goal state. In most cases,
however, the transition classifiers will not be perfect. To support the
classifiers during search, we use the satisficing A™ heuristic [16]. We
next discuss several combinations of transition classifiers and A™" with
different search methods. The first one mainly trusts the transition
classifiers and uses h™" only as secondary guidance. The second uses
hFF as the primary heuristic and the classifiers as tie-breakers. The
third and fourth methods give equal weight to the classifiers and A"
by using them in a dual-queue approach. Finally, the fifth method uses
cuns to detect unsolvable states.

4.1 Policy Lookahead

The first method is a policy lookahead, introduced by Yoon et al. [32],
which greedily follows the transitions compatible with cgoq. In this
approach, for every state s expanded during search, all successors s’
of s are generated (in random order) and the state pairs (s, s’) are
evaluated using cgooq. If one of the pairs is compatible with cgg0a, the
corresponding successor state is selected for the next expansion. All
states expanded along a trajectory and their successors are added to
an open list that is sorted by one or more heuristics. If following cgo0a
fails before reaching a goal state, i.e., some state s does not have any
successor s such that (s, s’) is compatible with cg004, the next state is
selected from the open list. With the open list as fallback, this method
is complete even with an imperfect policy.

4.2 Tie-Breaking using Transition Classifiers

The second combination is an k™" -based greedy best-first search
(GBFS). We use the transition classifiers as tie-breakers in case
multiple states have the same k' value. This is done by defining
a heuristic h™ that evaluates a state s” according to the transition clas-
sifier that captures the state transition from its parent s. In particular,
™ (s") = 0if {s,s") is in cgoou, A7 (s') = 1 if it is cpeg-compatible,
and h™ (5') = 2 if it is in cyns. This definition leads to prioritizing
good transitions over bad ones, and bad transitions over unsolvable
ones, among transitions to successor states with the same ¥ values.

4.3 Transition Classifiers for Preferring Operators

The concept of preferred operators is commonly used in satisficing
heuristic search to focus the search for goal states on promising
regions of the state space [22]. Usually, preferred operators are a
byproduct of the heuristic evaluation: to estimate the goal distance
of a state s, h'T computes a relaxed plan and marks all operators that
are part of the relaxed plan as preferred [16]. For brevity, we call
states that are reached via preferred operators preferred states and the
transitions they were reached on preferred transitions. Preferred states
are maintained in a separate open list (also sorted by h'), and the
search alternates between expanding a state from the main open list
that contains all states and expanding a state from the list containing
only preferred states.

Preferring cg,0s-Compatible Transitions. Our third combination
of transition classifiers and heuristics marks the transitions that are
compatible with cg.0q as preferred, and thereby biases search towards
executing good transitions. Pruning all non-preferred states would
render the search incomplete. Hence, using preferred operators in a
dual-queue approach, which prioritizes preferred states but does not
prune any non-preferred states, offers a good trade-off, as preferred
states are more likely to be expanded early.

Discrepancy Search. The fourth combination uses the concept of
discrepancy [14, 17] to compute a path-dependent state ranking based
on transition classifiers. The rank r(s’) of a state s’ is defined as the
rank 7(s) of its predecessor s plus the value assigned to the transition
from s to s’, defined as above: good ~ 0, bad ~ 1, unsolvable
2. So the rank of a state s’ is the sum of all transition values on the
first path found from the initial state to s’. The intuition behind this
approach is that states with a low rank have a low discrepancy, that is,
they were reached by paths that seldom deviated from cgo0q. We use
in a dual-queue approach by alternatingly expanding states from the
open list ordered by A and the one ordered by .

4.4 Unsolvability Heuristic

We use c,,s to compute a heuristic A" for detecting unsolvable states.

Here, states s’ generated by unsolvable transitions are assigned a
value of h*"(s") = 1, all other states evaluate to 0. Employed in a
tie-breaking open list, states marked as unsolvable by h*" will only
be considered once all other states have been expanded. The resulting
heuristic is similar in spirit to the work by Stahlberg et al. [28], who
learned compact per-domain characterizations of unsolvable states in
the form of description logic formulas. However, the work did not
evaluate learned classifiers within search.

5 Experiments

We next describe our learning pipeline and show in detail how the
learned transition classifiers are used during planning.

5.1 Common Setup

We use the benchmark set from the Learning Track of the International
Planning Competition (IPC) 2023 [30], which consists of ten domains
with two instance sets each: around 100 instances for training and
90 for testing. We reserve the test instances exclusively for our final
experiment that evaluates different planner configurations. We allocate
the 20 largest training instances per domain for validating our search
configurations and use the remaining instances ~80 for learning. For
running the experiments, we use the Lab toolkit [25] on a compute

cluster with Intel Xeon Gold CPUs and Ubuntu 20.04 LTS 64-bit. All
code, benchmarks and experiment data are available online [19].

5.2 Learning Pipeline

We follow the IPC setup and use 1 CPU core, 24 hours, and 32 GiB for
training per domain. For generating the description logic features, we
use the DLPlan library [7], setting their maximum syntactic feature
complexity to 10 and limiting the total number of Boolean and nu-
meric features to 10,000. In total, we sample 5,000 states and 100,000
transitions from the state spaces that can be fully expanded within
60 seconds and have no more than 10,000,000 states. We reserve
80% of the instances as training data, and 20% as validation data.
We learn decision trees using the CART algorithm as implemented
in the Scikit-learn machine learning library [20]. During learning,
two hyperparameters of a decision tree—a maximum depth in the set
{10, 20, 30} and a maximum number of leaf nodes in the set {100,
200, 300}—are tuned using F1 score-based grid search with 5-fold
cross-validation. After evaluating the models on the validation set,
we merge both datasets and retrain the final model using the best
hyperparameters obtained from the grid search.

5.3 Learning Results

Table 1 summarizes results obtained with our learning pipeline for
the ten domains. We see that Miconic, Spanner and Sokoban are the
only domains where the state spaces of almost all available instances
can be fully expanded. Despite a high imbalance (between bad and
good transitions, approximately 80%/20%) in the training data, the
model learned for Miconic achieves the best results across all metrics
on the validation data. In Spanner, there is also a pronounced imbal-
ance (between bad, good and unsolvable transitions) in the training
data: 0.39%/99.24%/0.37%. Consequently, the model demonstrates
perfect precision and recall for good transitions but low precision
and recall for bad and unsolvable transitions. In contrast, Sokoban
(a PSPACE-complete domain) yields the worst F1 score among all
domains. However, it achieves a high recall for good transitions, cor-
rectly identifying 90% of them, while its precision for these transitions
is only 50%. Sokoban is also one of the four domains (along with
Childsnack, Floortile, and Spanner) that include unsolvable transitions.
However, the model struggles to learn anything useful for correctly
classifying such transitions in the validation data. When examining
the data, we observe that the features generated for Sokoban are not
discriminative enough to distinguish between transitions. This leads
to poor performance on both training and validation data.

Approximately half of the available instances can be expanded for
Ferry and Rovers. Despite resulting in a very large tree, the model
for Ferry achieves high precision and recall, which is also reflected in
its F1 score. In contrast, a similarly sized model does not perform as
well in Rovers. The data in Rovers is more balanced (52.77%/47.23%)
compared to other domains; however, the model struggles to classify
good transitions accurately. One limitation is that in Rovers, the gen-
erated features have a maximum complexity of 8 (due to the limit on
the number of features), the lowest among all domains.

For Blocksworld and Childsnack, the models achieve high preci-
sion, recall, and F1 scores for all transition types.

Satellite, Transport and Floortile are the domains with the smallest
number of expanded instances. In Satellite and Transport, the trees
are large and almost identical in terms of depth and the number of
leaf nodes. While it may seem that the F1 score for Satellite is high, a
closer look at the precision for good transitions reveals that the model

Domain |EIl ®pr Depth Leaves Comp Pre(—) Pre(+) Pre(u) Rec(—) Rec(+) Rec(u) Fl-train Fl-valid
Blocksworld 31 231 25 300 9 0.98 0.97 - 0.97 0.98 - 1.00 0.97
Childsnack 34 114 18 300 10 0.94 0.99 1.00 0.96 0.98 1.00 0.99 0.98
Ferry 38 70 19 200 10 0.98 0.97 - 0.99 0.94 - 0.99 0.97
Floortile 17 87 19 100 10 0.69 0.81 0.93 0.84 0.59 0.99 0.90 0.80
Miconic 79 34 11 52 10 1.00 1.00 - 1.00 0.99 - 1.00 1.00
Rovers 38 235 25 300 8 0.75 0.77 - 0.79 0.72 - 0.90 0.76
Satellite 23 220 21 300 10 0.98 0.83 - 0.97 0.87 - 0.96 0.91
Sokoban 72 19 10 52 10 0.50 0.49 0.34 0.10 0.90 0.05 0.32 0.30
Spanner 69 44 14 194 10 0.77 1.00 0.65 0.45 1.00 0.55 0.85 0.72
Transport 23 167 19 300 10 0.90 0.76 - 0.91 0.74 - 0.91 0.83
Table 1. Learning results across all domains. | EI| is the number of fully expanded instances per domain, ® p is the number of features used by the decision

tree, Depth is the tree depth, Leaves is the number of leaf nodes, Comp is the maximum complexity of generated features. Pre is precision, Rec is recall, both on
validation data, (—)/(+4)/(w) indicates good/bad/unsolvable transitions. For the domains without unsolvable transitions, we cannot report precision and recall.

is precise on only 83% of these transitions. The situation is even
worse for Transport, where recall for good transitions is also low. For
Floortile, the model has the smallest number of expanded instances,
with only 38,000 transitions in total. This domain also exhibits the
highest precision and recall for unsolvable transitions. However, for
good and bad transitions, the metrics are worse, which results in a
smaller overall F1 score.

5.4 Planning with Transition Classifiers

We use the 20 largest IPC training instances to validate our algo-
rithms. The baseline configurations include three traditional heuristic
planners: AT [16], hFFP" (the variant that uses A" with preferred
operators [22]), the first iteration of LAMA [23], and a state-of-the-art
learning-based planner, WL-GOOSE with heuristic h&ips [4]. This
variant of WL-GOOSE uses Gaussian Process Regression (GPR) [21]
over features derived with the Weisfeiler-Leman algorithm [26] to
learn domain-dependent heuristics, and is considered the state-of-the-
art in classical planning for heuristic learning. hg‘%ﬁ is implemented
on top of the Fast Downward planning system [15].

We evaluate the following search configurations:

o hF7) denotes heuristic search with A" where h™ is used as a
tie-breaker,

o R FET) denotes heuristic search with A" and A" where h™ is
used as a tie-breaker,

° Alt’;;:) -pret dENOtEs alternating between hF-sorted states and Cgo0d-
preferred states,

uns 3 FF
. Alti;)d_’lﬁef> denotes alternating between h'F-sorted states en-

hanced with unsolvability and cg.0q-preferred states,

FF
o Alth" denotes alternating between hF-sorted states and r-ranked
states,

(W5 RFFy X FE

o Alt, denotes alternating between A" -sorted states en-
hanced with unsolvability and r-ranked states,

° Lsﬁs’”’d denotes a heuristic-free baseline that does policy lookahead
in BFS manner, sorting states by the shortest distance from the
initial state,

° Lsﬁs’"’d denotes a heuristic-free baseline, doing policy lookahead in
DFS manner and sorting states by the longest distance from the
initial state,

° L;‘;”F"d denotes policy lookahead with A" -sorted states,

° L?iféﬂ, BT denotes policy lookahead with h'F-sorted states en-
hanced with unsolvability.

As done for the IPC Learning Track, we limit runtime and memory

to 30 minutes and 8 GiB. All configurations are part of or were
implemented by us within the Fast Downward planning system [15].

5.5 How to Use Transition Classifiers in Search?

Table 2 shows per-domain coverage results for our different algorithms
(and the baselines). When analyzing plain classifier-first algorithms,
L;fs”"d and L;f-’s“”‘i, it becomes evident that using the learned knowledge
alone is not sufficient. Although L™ solves more tasks in total than
some of the other configurations, it usually requires a significantly
higher number of expansions. Adding a heuristic to the classifier-first
configurations, L}cfg’;"' and L?]’;’;ﬁ,7 LEFy» IMproves the coverage in five
domains: Blocksworld, Childsnack, Rovers, Spanner and Transport,
compared to other algorithms.

The h{"™ approach relies too heavily on A, and using transition
classifiers as tie-breakers does not provide much benefit. Alternating
between transition classifiers and heuristics in Alt?;} -pref IMProves
coverage in four domains, Floortile, Rovers, Satellite and Transport,
compared to hF. However, this performance is still worse than AP,
The results are even worse for AlthF, where the coverage decreases
in Miconic, one of the easiest domains.

To improve performance in domains with unsolvable states—
Childsnack, Floortile, Spanner, and Sokoban—we extend all algo-
rithms with the unsolvability heuristic. This results in improvements
for Floortile for all algorithms. Although the coverage improves in
Childsnack, we observe that the overall performance is still worse
than in other domains. This can also be attributed to the quality of
Cgo0d, Which we elaborate on further in the next section. In Spanner,
we observe that the quality of ¢, is insufficient, as the coverage de-
creases between L%+ and L?i)’:);i,hFF>' Despite this, for both of these
algorithms the coverage remains higher than in other methods. In
Sokoban, the coverage does not improve at all when compared to the
baseline configurations. This is expected given the poor quality of the
learned model.

In summary, our evaluation demonstrates that a classifier-based
lookahead search using a heuristic for guidance and an unsolvability
heuristic offers the best combination of the learned knowledge and
the heuristic. Therefore, we proceed with L?Z}tﬁ,hFF) as the best con-
figuration and analyze it more closely on a per-domain basis in the
next section.

5.6 Are Transition Classifiers Helpful?

When considering improvements to A, h¥P usually offers a com-

putationally cheap enhancement. Thus, we evaluate whether learning

Baselines Heuristic-first Alternating between heuristics and classifiers Classifier-first
uns 3 FF uns 3 FF
Domain RFF pFEpref | AMA h\évrr’dlg B(FF,w) py (uns,FF,m) ?;id_pref élmr} }rbef Y tf}FF Al tih R L;:?somi [, Cood L;w[L?;T"d\ oy
Blocksworld 28 31 60 72 30 30 28 28 26 26 18 36 39 39
Childsnack 22 33 35 31 25 26 20 23 15 20 22 29 33 34
Ferry 69 69 66 76 67 67 65 65 61 61 65 74 68 69
Floortile 11 15 11 2 12 31 22 32 22 30 10 7 17 33
Miconic 90 90 90 90 88 89 89 88 83 83 73 90 90 90
Rovers 32 57 68 37 31 31 38 38 30 29 17 45 47 47
Satellite 64 67 89 48 67 66 66 65 60 60 31 54 67 67
Sokoban 36 37 40 38 36 34 34 34 34 34 26 18 36 35
Spanner 30 30 30 73 30 30 30 30 30 30 90 68 56 49
Transport 38 58 66 28 45 44 52 53 37 36 33 62 57 57
Total (900) 420 487 555 495 431 448 444 456 398 409 385 483 510 520
Table 2. Number of solved tasks per domain and algorithm on the test set.

;v? Expansions = Runtime E Expansions 2 Expansions

& uns. — eENe §O @ ? uns. — @ ENRe S W 9 & uns. & uns. — | NG @B 9

@ 107 > 03 , = &

el & 10 < 5 el

[5 = 10° [

£ 10° = 10° E & =

5 g 5 5

2 1 3
E 103 i & 10 E 10 E
e £ 10° e e
210! s = Z 10! S
1 3 5 7 010l 102 103 & S k
100 10° 10> 10 g 107 10° 10° 10 £ S

Rt (Jower for 110 tasks) Rl (Jower for 345 tasks)

LAMA (lower for 62 tasks)

WLF
hGPR

(lower for 65 tasks)

o Blocksworld ~ mChildsnack e Ferry « Floortile Miconic ~ e Rovers Satellite ~ ®Sokoban = Spanner ¢ Transport
Figure 1. Number of state expansions and runtime of our best algorithm, L?‘;:Z’i_’ ATy compared to traditional (hFFP*f, LAMA) and learning-based (h‘évg‘lg)

planners.

domain knowledge in the form of transition classifiers is worth the ex-
tra effort. A comparison of coverage alone is insufficient here, which
is why we also inspect the number of expansions and planner runtime,
shown in Figure 1. Based on these metrics, we identify several groups
of domains when comparing the performance of the best configuration

Cgood FF-pref
Lo to h P
<hum N hFF>

Miconic, Satellite, and Transport. When comparing the coverage
and the number of expansions of AfF P and L?‘;L",:’,ji, BFFy > there is no
significant improvement from using transition classifiers. Although
there is a clear improvement in coverage for Transport when com-
bining transition classifiers with A, APl solves more tasks by
avoiding the time for classifier evaluation, as reflected in the planner
runtime.

Ferry, Floortile, and Spanner. For Ferry, while we do not observe
any increase in coverage, using transition classifiers helps to reduce
the number of expansions as the task size increases. In Floortile, we
observe a clear benefit from using the unsolvability-enhanced open
list, as our configuration solves the highest number of tasks among
all approaches. For Spanner, both coverage and the number of expan-
sions improve significantly as the task size increases. However, the
quality of the learned c,»s for Spanner is not sufficient to improve the
performance of L?’;’jj’;’ly ey OVer other lookahead variants. A less accu-
rate cu,s can misclassify good transitions as unsolvable. Consequently,
these transitions are explored later in the search, leading to increased
runtime and a reduced number of solved tasks.

Blocksworld and Childsnack. Both domains benefit from using
transition classifiers. This is further supported by inspecting the plan-
ner runtime and the number of expansions for the instances solved
by AP Despite the benefits of transition classifiers and strong
learning performance, the overall coverage in these domains remains
low. Several factors contribute to this behavior. First, the instances that
can be fully expanded in these domains lack diversity in the number
of objects. As a result, instances with the same number of objects but
slightly different goal states appear in both training and validation sets.
This leads to misleadingly good performance on the validation data.
More importantly, we cannot properly evaluate the generalization of
the learned models to larger instances. Another potential issue is the
sampling of states. Although we assume that the uniform random
sampling should provide us with a diverse set of transitions, the infor-
mativeness of state spaces, both across and within instances, can vary
considerably. For example in Childsnack, when sampling transitions
from a given instance, it is possible to sample symmetric transitions
[9], which can reduce the model’s ability to generalize to larger in-
stances. Finally, the learned decision trees for both Childsnack and
Blocksworld are large, which can lead to overfitting. We leave further
investigation of these issues for future work.

Rovers and Sokoban. As discussed in Section 5.3, the learned
classifiers for these domains demonstrate the weakest performance.
Given this, no improvement is observed in either Rovers or Sokoban
when compared to hFFP'; in fact, the number of expansions increases
for some instances in Sokoban.

z)
% 3,000 E
< <
e <
N [\l
& 2,000 . 8
))
3 3
£ 1,000 . ~
g A) {N
0 S oF— |
0 1,000 2,000 3,000 6;3 0 1,000 2,000 3,000
LAMA (lower for 147 tasks) h&EE (lower for 111 tasks)
@ Blocksworld m Childsnack e Ferry * Floortile Miconic
® Rovers Satellite ® Sokoban * Spanner ¢ Transport
Figure 2. Plan-length comparison of our best algorithm, L‘Zi;ﬁ’;’r iy > O

LAMA (left) and h\é\/&g (right) on commonly solved instances.

5.7 Comparison to State of the Art

As mentioned in the previous section, the results demonstrate
that the L?i’;’,‘,ﬂ ,ry algorithm outperforms RFEPel in five domains:
Blocksworld, Chifdsnack, Ferry, Floortile, and Spanner. In our final
analysis, we inspect how chh"j,ji, iy COMpares to two state-of-the-art
methods: 1) the first iteration of LAMA, a traditional heuristic plan-
ner that has been one of the most prominent methods for satisficing
classical planning since many years [23]; and 2) WL-GOOSE with
heuristic &g , the first learning-based planner that comes close to
the performance of LAMA on several domains [4].

When looking at coverage, Lci";’i JFFy performs better than LAMA
in three domains: Ferry, Floortiie, and Spanner. When analyzing the
number of expansions in Figure 1, we observe that despite the overall
lower coverage, in”[,’;ﬂ’) requires a lower number of expansions
to solve tasks compared to LAMA. In Figure 2, we also report that
L((:;’L‘Z’n‘i hFFy tends to yield shorter plans than LAMA, except for a
few outliers in Rovers and Sokoban. An important point here is that
L?Z"jj’s') combines AT with transition classifiers. As future work, it
would be interesting to explore the potential improvement gained by
adding a landmark heuristic to the current configuration.

In contrast to our approach based on transition classifiers, hpg is
a learned heuristic function. It utilizes only states visited by optimal
plans on training instances to learn this heuristic. This enables the
authors to extract optimal plans from IPC training instances using a
state-of-the-art classical planner. However, it also means that obtained
models leverage information from more training instances than our
transition classifiers do. The coverage-based comparison with h&pn
reveals that L?’:’;’,’lﬂ’ B performs better in five domains: Childsnack,
Floortile, Rovers, Satellite, and Transport. The same trend is observed
in the number of expansions shown in Figure 1. As previously dis-
cussed, for Childsnack, Floortile and Transport, transition classifiers
strongly contribute to improved performance, while for Rovers and
Satellite, b plays a more significant role. This highlights the strength
of our approach, where both types of knowledge reinforce each other.
When comparing the number of expansions as seen in Figure 1, we
observe that L?;L"L,”,fﬂ, P performs well even in domains where the cov-
erage is lower, such as Ferry, Miconic, and Sokoban. Finally, Figure 2
shows that LZ‘;:Z’;’\ FFy tends to produce shorter plans than AL , with
some outliers in Sokoban.

6 Conclusions

We present a novel and simple approach to learning transition clas-
sifiers using description logic features and decision trees. Including

several approaches from the literature, we analyze different ways to
combine such transition classifiers with traditional heuristic-search
methods. Our analysis shows that, among the different combinations,
we obtain the strongest algorithm by using the transition classifier for
good transitions in a lookahead search, and a mix of learned and non-
learned heuristics to provide further guidance. Our results highlight
the value of unsolvable transition classifiers during search, which can
significantly enhance overall performance.

Compared to state-of-the-art methods based on traditional meth-
ods, i.e., the LAMA planner, and learning-based methods, i.e., WL-
GOOSE, we underline the strengths of our approach, which success-
fully combines learned domain knowledge with traditional heuristics.
This leads to superior performance in domains where transition clas-
sifiers and heuristics effectively complement each other. Here, our
approach balances the contributions of learned domain knowledge
and traditional heuristics, achieving improvements in coverage and
reducing the number of expansions in several domains.

For future work, we suggest studying state spaces of the instances
to identify which transitions are more likely to be useful for learning
transition classifiers. We also believe that the optimization of the
decision trees should be further explored to avoid overfitting and
improve the generalization. Additionally, exploring approaches that
integrate landmark heuristics, successfully employed in LAMA, into
the current framework could further improve performance.

Acknowledgements

This work was partially supported by the Wallenberg Al, Autonomous
Systems and Software Program (WASP) funded by the Knut and Alice
Wallenberg Foundation. The computations were enabled by resources
provided by the National Academic Infrastructure for Supercomputing
in Sweden (NAISS) partially funded by the Swedish Research Council
through grant agreement no. 2022-06725.

References

[1] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-
Schneider, editors. The Description Logic Handbook: Theory, Implemen-
tation and Applications. Cambridge University Press, 2003.

[2] B.Bonet and H. Geffner. General policies, representations, and planning
width. In K. Leyton-Brown and Mausam, editors, Proceedings of the
Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI 2021),
pages 11764-11773. AAAI Press, 2021.

[3] L.Breiman,J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification
and Regression Trees. Wadsworth, 1984.

[4] D.Z. Chen, F. Trevizan, and S. Thiébaux. Return to tradition: Learning

reliable heuristics with classical machine learning. In S. Bernardini

and C. Muise, editors, Proceedings of the Thirty-Fourth International

Conference on Automated Planning and Scheduling (ICAPS 2024), pages

68-76. AAAI Press, 2024.

T. de la Rosa, S. Jiménez, R. Fuentetaja, and D. Borrajo. Scaling up

heuristic planning with relational decision trees. Journal of Artificial

Intelligence Research, 40:767-813, 2011.

[6] J.E.Doran and D. Michie. Experiments with the graph traverser program.
Proceedings of the Royal Society A, 294:235-259, 1966.

[7] D. Drexler and J. Seipp. DLPlan: Description logics state features for

planning. In ICAPS 2023 System Demonstrations and Exhibits, 2023.

D. Drexler, J. Seipp, and H. Geffner. Expressing and exploiting subgoal

structure in classical planning using sketches. Journal of Artificial

Intelligence Research, 80:171-208, 2024.

D. Drexler, S. Stahlberg, B. Bonet, and H. Geffner. Symmetries and

expressive requirements for learning general policies. In Proceedings of

the Twenty-First International Conference on Principles of Knowledge

Representation and Reasoning (KR 2024). IJCAI Organization, 2024.

[10] P. Ferber, L. Cohen, J. Seipp, and T. Keller. Learning and exploiting

progress states in greedy best-first search. In L. De Raedst, editor, Proceed-
ings of the 31st International Joint Conference on Artificial Intelligence
(IJCAI 2022), pages 4740-4746. 1ICAI, 2022.

[5

—_

[8

—_

[9

—

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

G. Frances, B. Bonet, and H. Geffner. Learning general planning policies
from small examples without supervision. In K. Leyton-Brown and
Mausam, editors, Proceedings of the Thirty-Fifth AAAI Conference on
Artificial Intelligence (AAAI 2021), pages 11801-11808. AAAI Press,
2021.

M. Greco, A. Torralba, J. Baier, and H. Palacios. Scaling up ML-based
black-box planning with partial STRIPS models. In ICAPS 2022 Work-
shop on Bridging the Gap Between Al Planning and Reinforcement
Learning (PRL), 2022.

M. Hao, F. Trevizan, S. Thiébaux, P. Ferber, and J. Hoffmann. Guiding
GBFS through learned pairwise rankings. In K. Larson, editor, Proceed-
ings of the 33rd International Joint Conference on Artificial Intelligence
(IJCAI 2024), pages 6724-6732. IICALI, 2024.

W. D. Harvey and M. L. Ginsberg. Limited discrepancy search. In Pro-
ceedings of the Fourteenth International Joint Conference on Artificial
Intelligence (IJCAI 1995), pages 607-615. Morgan Kaufmann, 1995.
M. Helmert. The Fast Downward planning system. Journal of Artificial
Intelligence Research, 26:191-246, 2006.

J. Hoffmann and B. Nebel. The FF planning system: Fast plan generation
through heuristic search. Journal of Artificial Intelligence Research, 14:
253-302, 2001.

W. Karoui, M.-J. Huguet, P. Lopez, and W. Naanaa. YIELDS: A yet
improved limited discrepancy search for CSPs. In P. Hentenryck and
L. Wolsey, editors, Proceedings of the 4th International Conference on
Integration of Al and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems (CPAIOR 2007), pages 99—-111.
Springer-Verlag, 2007.

M. Krajnansky, J. Hoffmann, O. Buffet, and A. Fern. Learning pruning
rules for heuristic search planning. In T. Schaub, G. Friedrich, and
B. O’Sullivan, editors, Proceedings of the 21st European Conference on
Artificial Intelligence (ECAI 2014), pages 483—-488. 10S Press, 2014.

F. Musayev, D. Drexler, D. Gnad, and J. Seipp. Code and data for the
ECAI 2025 paper “Combining Heuristics and Transition Classifiers in
Classical Planning”. https://doi.org/10.5281/zenodo.16895349, 2025.
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825-2830, 2011.

C. E. Rasmussen. Gaussian processes in machine learning. In Summer
school on machine learning, pages 63—71. Springer, 2003.

S. Richter and M. Helmert. Preferred operators and deferred evaluation
in satisficing planning. In A. Gerevini, A. Howe, A. Cesta, and I. Re-
fanidis, editors, Proceedings of the Nineteenth International Conference
on Automated Planning and Scheduling (ICAPS 2009), pages 273-280.
AAAI Press, 2009.

S. Richter and M. Westphal. The LAMA planner: Guiding cost-based
anytime planning with landmarks. Journal of Artificial Intelligence
Research, 39:127-177, 2010.

J. Segovia-Aguas, S. Jiménez, and A. Jonsson. Generalized planning as
heuristic search: A new planning search-space that leverages pointers
over objects. Artificial Intelligence, 330:104097, 2024.

J. Seipp, F. Pommerening, S. Sievers, and M. Helmert. Downward Lab.
https://doi.org/10.5281/zenodo.790461, 2017.

N. Shervashidze, P. Schweitzer, E. J. Van Leeuwen, K. Mehlhorn, and
K. M. Borgwardt. Weisfeiler-Lehman graph kernels. Journal of Machine
Learning Research, 12(9), 2011.

T. Silver, S. Dan, K. Srinivas, J. Tenenbaum, L. Pack Kaelbling, and
M. Katz. Generalized planning in PDDL domains with pretrained large
language models. In J. Dy and S. Natarajan, editors, Proceedings of the
Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI 2024),
pages 20256-20264. AAAI Press, 2024.

S. Stéhlberg, G. Frances, and J. Seipp. Learning generalized unsolvability
heuristics for classical planning. In Z.-H. Zhou, editor, Proceedings of
the 30th International Joint Conference on Artificial Intelligence (IJCAI
2021), pages 4175-4181. IICAL, 2021.

S. Stahlberg, B. Bonet, and H. Geffner. Learning general optimal poli-
cies with graph neural networks: Expressive power, transparency, and
limits. In S. Thiébaux and W. Yeoh, editors, Proceedings of the Thirty-
Second International Conference on Automated Planning and Scheduling
(ICAPS 2022), pages 629-637. AAAI Press, 2022.

A. Taitler, R. Alford, J. Espasa, G. Behnke, D. FiSer, M. Gimelfarb,
F. Pommerening, S. Sanner, E. Scala, D. Schreiber, J. Segovia-Aguas,
and J. Seipp. The 2023 International Planning Competition. Al Magazine,
45(2):1-17, 2024.

S. Toyer, S. Thiébaux, F. Trevizan, and L. Xie. ASNets: Deep learning
for generalised planning. Journal of Artificial Intelligence Research, 68:
1-68, 2020.

[32] S. Yoon, A. Fern, and R. Givan. Learning control knowledge for forward

search planning. Journal of Machine Learning Research, 9:683-718,
2008.

