Combining Heuristics and Transition Classifiers in Classical Planning

Farid Musavev¹ Dominik Drexler¹ Daniel Gnad^{1, 2} Jendrik Seipp¹

¹Linköping University

²Heidelberg University

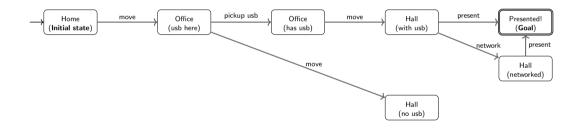
Summary

► Learning for Classical Planning:

- ▶ Learning-based planners often rely solely on learned heuristics or policies.
- ▶ To date, no purely learning-based method consistently outperforms state-of-the-art heuristic planners.

Summary

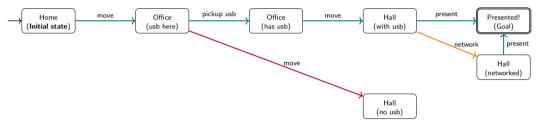
▶ Learning for Classical Planning:


- ▶ Learning-based planners often rely solely on learned heuristics or policies.
- ▶ To date, no purely learning-based method consistently outperforms state-of-the-art heuristic planners.

▶ Contribution:

- ▷ Combine strengths of both paradigms, learning and planning.
- ▷ A simple approach to learn transition classifiers, a domain general knowledge.
- ▶ A detailed study of how to combine learned classifiers with heuristic search methods.

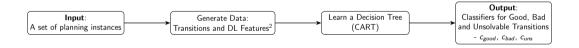
Classical Planning


Classical Planning — Example (Perish or Present¹)

¹Inspired by "Chaotic Researcher" domain from Gnad et al.

What Do We Learn?

Learning Transition Classifiers



Good transition decreases the distance to the goal state.

Bad transition increases or does not change the distance to the goal state.

Unsolvable transition leads to a state from which the goal state can never be reached.

Learning Pipeline

 $^{^2} Francès, \ Bonet, \ and \ Geffner, \ "Learning \ General \ Planning \ Policies \ from \ Small \ Examples \ Without \ Supervision".$

How Do We Plan?

We combine h^{FF} (a state-of-the-art non-learned heuristic³) with c_{good} , c_{bad} , and c_{uns} :

³Hoffmann and Nebel, "The FF Planning System: Fast Plan Generation Through Heuristic Search".

⁴Yoon, Fern, and Givan, "Learning Control Knowledge for Forward Search Planning".

We combine h^{FF} (a state-of-the-art non-learned heuristic³) with c_{good} , c_{bad} , and c_{uns} :

► Heuristic-first:

- ▶ Use h^{FF}to guide Greedy Best-First Search (GBFS).
- \triangleright Break ties using c_{good} , c_{bad} , and c_{uns} .

³Hoffmann and Nebel, "The FF Planning System: Fast Plan Generation Through Heuristic Search".

⁴Yoon, Fern, and Givan, "Learning Control Knowledge for Forward Search Planning".

We combine $h^{\mathrm{FF}}(\mathsf{a} \mathsf{state}\mathsf{-of}\mathsf{-the}\mathsf{-art} \mathsf{non}\mathsf{-learned} \mathsf{heuristic}^3)$ with c_{good} , c_{bad} , and c_{uns} :

► Heuristic-first:

- \triangleright Use h^{FF} to guide Greedy Best-First Search (GBFS).
- \triangleright Break ties using c_{good} , c_{bad} , and c_{uns} .

▶ Alternating between heuristics and classifiers:

- \triangleright Store states in two open lists: one sorted by h^{FF} and another by c_{good} .
- ▷ Expand states in a dual-queue approach.

³Hoffmann and Nebel, "The FF Planning System: Fast Plan Generation Through Heuristic Search".

⁴Yoon, Fern, and Givan, "Learning Control Knowledge for Forward Search Planning".

We combine $h^{\mathrm{FF}}(\mathsf{a} \mathsf{\ state}\mathsf{-of}\mathsf{-the}\mathsf{-art} \mathsf{\ non-learned \ heuristic}^3)$ with $c_{good},\ c_{bad},\ \mathsf{and}\ c_{uns}$:

► Heuristic-first:

- \triangleright Use h^{FF} to guide Greedy Best-First Search (GBFS).
- \triangleright Break ties using c_{good} , c_{bad} , and c_{uns} .

▶ Alternating between heuristics and classifiers:

- \triangleright Store states in two open lists: one sorted by h^{FF} and another by c_{good} .
- ▷ Expand states in a dual-queue approach.

► Classifier-first:

- \triangleright Use c_{good} to guide lookahead⁴ search.
- \triangleright Store states expanded along trajectory in the open list sorted by h^{FF} .
- \triangleright If no c_{good} -compatible transition is found, pick the next state from the open list.

³Hoffmann and Nebel, "The FF Planning System: Fast Plan Generation Through Heuristic Search".

⁴Yoon, Fern, and Givan, "Learning Control Knowledge for Forward Search Planning".

We combine h^{FF} (a state-of-the-art non-learned heuristic³) with c_{good} , c_{bad} , and c_{uns} :

► Heuristic-first:

- \triangleright Use h^{FF} to guide Greedy Best-First Search (GBFS).
- \triangleright Break ties using c_{good} , c_{bad} , and c_{uns} .

▶ Alternating between heuristics and classifiers:

- \triangleright Store states in two open lists: one sorted by h^{FF} and another by c_{good} .
- ▷ Expand states in a dual-queue approach.

► Classifier-first:

- \triangleright Use c_{good} to guide lookahead⁴ search.
- \triangleright Store states expanded along trajectory in the open list sorted by h^{FF} .
- \triangleright If no c_{good} -compatible transition is found, pick the next state from the open list.

Enhance all combinations with unsolvability detection:

ightharpoonup Compute c_{uns} -compatible transitions and sort resulting successor states in the open list.

³Hoffmann and Nebel, "The FF Planning System: Fast Plan Generation Through Heuristic Search".

⁴Yoon, Fern, and Givan, "Learning Control Knowledge for Forward Search Planning",

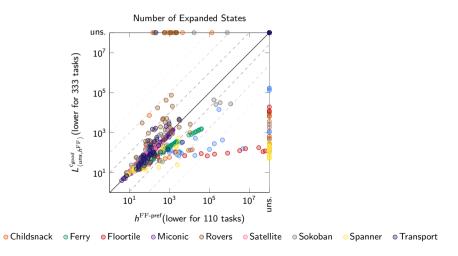
What is an Effective Combination?

What is an Effective Combination?

Domain	Heuri	istic-first + uns	Alte	rnating + uns	Class	ifier-first + uns
		,		,		,
Blocksworld (90)	30	30	28	28	39	39
Childsnack (90)	25	26	20	23	33	34
Ferry (90)	67	67	65	65	68	69
Floortile (90)	12	31	22	32	17	33
Miconic (90)	88	89	89	88	90	90
Rovers (90)	31	31	38	38	47	47
Satellite (90)	67	66	66	65	67	67
Sokoban (90)	36	34	34	34	36	35
Spanner (90)	30	30	30	30	56	49
Transport (90)	45	44	52	53	57	57
Sum (900)	431	448	444	456	510	520

Number of solved tasks per domain and algorithm on the IPC 2023 Learning Track instances.

Are Transition Classifiers Helpful?


Are Transition Classifiers Helpful?

Domain	h^{FF}	$h^{ ext{FF-pref}}$	$L^{c_{good}}_{\langle \mathit{uns}, \mathit{h}^{\mathrm{FF}} angle}$
Blocksworld (90)	28	31	39
Childsnack (90)	22	33	34
Ferry (90)	69	69	69
Floortile (90)	11	15	33
Miconic (90)	90	90	90
Rovers (90)	32	57	47
Satellite (90)	64	67	67
Sokoban (90)	36	37	35
Spanner (90)	30	30	49
Transport (90)	38	58	57
Sum (900)	420	487	520

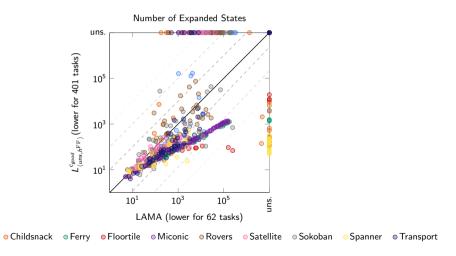
Number of solved tasks per domain and algorithm on the IPC 2023 Learning Track instances.

Are Transition Classifiers Helpful?

Blocksworld

Comparison to State of the Art

Comparison to State of the Art


Domain	LAMA ⁵	$L^{c_{good}}_{\langle \mathit{uns}, \mathit{h}^{\mathrm{FF}} angle}$
Blocksworld (90)	60	39
Childsnack (90)	35	34
Ferry (90)	66	69
Floortile (90)	11	33
Miconic (90)	90	90
Rovers (90)	68	47
Satellite (90)	89	67
Sokoban (90)	40	35
Spanner (90)	30	49
Transport (90)	66	57
Sum (900)	555	520

Number of solved tasks per domain and algorithm on the IPC 2023 Learning Track instances.

⁵Richter and Westphal, "The LAMA Planner: Guiding Cost-Based Anytime Planning with Landmarks".

Comparison to State of the Art

Blocksworld

Conclusions

- ▶ A single decision tree that simultaneously captures three classes of transitions.
- ▶ A detailed study of how to combine heuristic search methods with the learned classifiers.
- ightharpoonup Classifier-based lookahead search using h^{FF} and unsolvability is an effective combination.
- ▶ The strengths of combining techniques from learning and planning.

References I

- Francès, Guillem, Blai Bonet, and Hector Geffner. "Learning General Planning Policies from Small Examples Without Supervision". In: *Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI 2021)*. Ed. by Kevin Leyton-Brown and Mausam. AAAI Press, 2021, pp. 11801–11808.
- Hoffmann, Jörg and Bernhard Nebel. "The FF Planning System: Fast Plan Generation Through Heuristic Search". In: *Journal of Artificial Intelligence Research* 14 (2001), pp. 253–302.
- Richter, Silvia and Matthias Westphal. "The LAMA Planner: Guiding Cost-Based Anytime Planning with Landmarks". In: *Journal of Artificial Intelligence Research* 39 (2010), pp. 127–177.
- Yoon, Sungwook, Alan Fern, and Robert Givan. "Learning Control Knowledge for Forward Search Planning". In: *Journal of Machine Learning Research* 9 (2008), pp. 683–718.