
Learning Interpretable Classifiers for PDDL Planning
Arnaud Lequen

IRIT, Université Toulouse III - Paul Sabatier
Arnaud.Lequen@irit.fr

Abstract. We consider the problem of synthesizing interpretable
models that recognize the behaviour of an agent compared to other
agents, on a whole set of similar planning tasks expressed in PDDL.
Our approach consists in learning logical formulas, from a small set
of examples that show how an agent solved small planning instances.
These formulas are expressed in a version of First-Order Temporal
Logic (FTL) tailored to our planning formalism. Such formulas are
human-readable, serve as (partial) descriptions of an agent’s policy,
and generalize to unseen instances. We show that learning such for-
mulas is computationally intractable, as it is an NP-hard problem.
As such, we propose to learn these behaviour classifiers through a
topology-guided compilation to MaxSAT, which allows us to gener-
ate a wide range of different formulas. Experiments show that inter-
esting and accurate formulas can be learned in reasonable time.

1 Introduction
One of the main strengths of PDDL planning models is that they are
succinct and human-readable, but can nonetheless express general,
complex problems, whose state search spaces are exponential in the
size of the encoding – as can be the solutions. As a consequence,
given a set of examples of the behaviour of an agent (called traces),
understanding and recognizing this behaviour can be tedious.

In order to summarize the behaviour of a planning agent in a con-
cise, interpretable way, we propose to learn properties that are spe-
cific to the solutions proposed by this agent. Such properties, ex-
pressed in a temporal logic tailored to fit PDDL planning models,
are not only human-readable, but are also general, and can be eval-
uated against different instances of the same planning problem. This
allows them to recognize the behaviour of an agent on instances that
are substantially different from the ones used in the set of examples.

More specifically, the problem we tackle is the one where, given
a set of positive example traces (the ones of the agent we seek to
recognize) and negative examples traces (the ones of other agents),
we wish to learn a model that can discriminate as well as possible
between positive and negative traces. A wide variety of techniques
and models of different natures have been proposed in the literature.
Among these, the learning of finite-state automata (DFA) is a well-
studied problem [1, 26, 28], but DFAs can grow quickly (thus be-
coming harder to interpret) and do not generalize to instances not in
the example set. More recently, neural network-based architectures
such as LSTMs [29] have shown very promising results, but lack in-
terpretability, and the rationale for their decision is rarely clear.

In the past decade, significant efforts have been made towards
learning logical formulas expressed in (a form of) temporal logic.
Such works [24, 25, 10, 21, 4, 5] often leverage symbolic methods to
learn Linear Temporal Logic (LTL) formulas [23] that fit the example

traces, and thus share some similarities with our work. Some other
authors propose other techniques, such as Latent Dirichlet Alloca-
tion [15], which stems from the field of natural language processing.

However, in all of these cases, the knowledge extracted from the
sets of examples has the major drawback of not generalizing well to
unknown instances. This is due to the choice of the language used to
express these properties. For instance, since LTL formulas are built
over a set of propositional variables, they do not generalize to models
that do not share the same variables.

To address this issue, we propose to learn properties in a version
of First-Order Temporal Logic (FTL). When tailored to the PDDL
planning formalism, FTL can express a wide range of properties that
generalize from one planning instance to the other, given that they
model similar problems. This was shown in [2], who proposed to
express search control knowledge in a language similar to ours, albeit
with the aim of guiding the search of a planner designed to use such
knowledge. In [5], the authors proposed to synthesize such control
knowledge automatically, and thus address the problem of learning
properties expressed in a fragment of FTL.

In this paper, we show that it is possible to learn richer and more
expressive properties, using the whole range of FTL operators and
modalities. The properties we wish to learn should describe the be-
haviour of a given planning agent, without being true for the be-
haviour of other agents. We show that learning such formulas is com-
putationally intractable, as the associated decision problem is NP-
hard. This is why the core of our approach consists in encoding the
learning problem into a MaxSAT instance, which has the added ben-
efit of showing resilience to any potential noise in the set of train-
ing examples. To make the search more efficient, we fix the general
topology of the target formula before the encoding. In addition to al-
leviating the load on the MaxSAT solver and rendering the algorithm
more parallelizable, this also increases the diversity in the formulas
learned by our algorithm, thus providing varied descriptions of the
behaviour of the agent of interest.

Our article is organised as follows: Section 2 introduces the plan-
ning formalism as well as the FTL language. Section 3 formally in-
troduces the learning problem we tackle in this paper, and shows
that the associated decision problem is intractable. Sections 4 and 5
present some technical choices that we made to solve our problem in
reasonable time in practice. In Section 6, we describe our reduction
of the problem to MaxSAT, and in Section 7, we present our experi-
mental results, as well as a few examples of formulas that are within
reach of our implementation.



2 Background
2.1 Planning with PDDL

This section introduces the model that we use to describe planning
tasks. Our definition of a PDDL planning task differs from [11], as
we require the organization of the objects of our instances into types.
The model we use resembles the one defined in [13]

Definition 1 (Type tree). A type tree T is a non-empty tree where
each node is labeled by a symbol, called a type. For any type τ ∈ T ,
we call strict subtype any descendant τ ′ of τ . τ ′ is a subtype of τ
(denoted τ ′ � τ ) when τ ′ is a strict subtype of τ or when τ ′ = τ .

Definition 2 (Object class). LetO be a set of elements called objects.
We call object class any subset ofO. A class ci is said to be a subclass
of type cj if ci ⊆ cj .
Definition 3 (Type hierarchy). A type hierarchy H over type tree
T is a set of object classes such that O ∈ H, and such that each
object class of H is mapped to a unique type of T . This mapping
τ : H → T is such that for any pair ci, cj of object classes:

• ci is a subclass of cj iff τ(ci) is a subtype of τ(cj);
• ci ∩ cj = ∅ iff τ(ci) is not a subtype of τ(cj) (and conversely).

We say that object o ∈ O is of type τ(o) := τ(c) where c is the
smallest (for inclusion ⊆) class ofH to which o belongs.

Definition 4 (Predicate, atoms and fluents). A predicate p is a sym-
bol, with which is associated:

• An arity ar(p) ∈ N
• A type for each of its arguments. For i ∈ {1, . . . , ar(p)}, the type

of its argument at position i is denoted τp(i) ∈ T
An atom is a predicate for which each argument is associated

with a symbol, which can be a variable symbol, or an object of O.
When the i-th argument of the atom is an object o ∈ O (associ-
ated to type hierarchy H), then we require that τ(o) = τp(i). The
atom consisting of predicate p and symbols x1, . . . , xar(p) is denoted
p(x1, . . . , xar(p)).

A fluent is an atom where each argument corresponds to an object
of O. A state is a set of fluents.

Definition 5 (Action schema and operators). An action schema is a
tuple a = 〈pre(a), add(a), del(a)〉, such that pre(a), add(a) and
del(a) are sets of atoms instantiated with variables only.

An operator o is akin to an action schema, except that the sets
pre(o), add(o) and del(o) are sets of fluents.

Definition 6 (PDDL planning problem). A PDDL planning problem
is a pair Π = 〈D, I〉 where D = 〈P,A, T 〉 is the domain and
I = 〈O,H, I, G〉 is the instance.

The domain D consists of a set P of predicates, a set of actions
schemas A, and a type hierarchy T .

The instance I consists of a set of objects O and an associated
type hierarchy H, as well as two states, I and G, which are respec-
tively the initial state and the goal conditions.

An operator o is applicable in a state s if pre(o) ⊆ s. The state that
results from the application of o in s is s[o] = (s \ del(o))∪add(o).

A sequence of operators o1, . . . , on is called a plan for Π if there
exists a sequence of states s0, . . . , sn where s0 = I , and which is
such that, for all i ∈ {1, . . . , n}, si = si−1[oi] and oi is applicable
in si−1. Such a sequence of states (which is unique for each plan) is
called a trace. A plan is called a solution-plan if, in addition to this,
G ⊆ sn. We say that a fluent p(o1, . . . , oar(p)) is true in state s iff
p(o1, . . . , oar(p)) ∈ s.

2.2 First-Order Temporal Logic (FTL)

Syntax Let X be a set of variable symbols, P a set of predicates,
and T a type tree. We define our language LFTL such that:

ψ := ∃x ∈ τ.ψ | ∀x ∈ τ.ψ | ϕ

where ϕ ∈ LTL, and LTL is such that:

ϕ := > | p(x1, . . . , xar(p)) | ¬ϕ | ©ϕ | ♦ϕ | �ϕ | ©ϕ | ♦ϕ | �ϕ |
ϕUϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ⇒ ϕ

where x1, . . . , xar(p) are variables of X , p a predicate of P , and τ a
type. In the following, we will denote Λ = {∧,∨,⇒,U,©,♦,�}
the set of all logical operators. For each operator λ ∈ Λ, we also note
ar(λ) ∈ {1, 2} the arity of the operator.

This formulation is akin to Linear Temporal Logic on finite traces
(LTLf) [23], where propositional variables are replaced with first-
order predicates and variables. Notice that we only work with for-
mulas in prenex normal form.

Environments The formulas of LTL are built on atoms whose ar-
guments are variables of X , while traces contain fluents. We bridge
that gap with the notion of environments, which are akin to interpre-
tations in first-order logic.

Let us denote X = (x1, . . . , xq). In addition, let I be an instance,
with objectsO = {o1, . . . , o|O|}. We call a partial environment any
assignment of some of the variables x1, . . . , xq to objects of O. Let
us denote var(e) the variables that are assigned an object within the
partial environment e. When var(e) = X , we simply say that e is
an environment. We denote any (partial) environment e = {x1 :=
oi1 , . . . , xq := oiq}, where i1, . . . , iq ∈ J1, |O|K.

The object to which variable x is associated to in e is denoted x[e].
We also denote p(x, y)[e] the grounding of an atom p(x, y) by an en-
vironment e such that x, y ∈ var(e). If e = {x := o1, y := o2, . . .},
then p(x, y)[e] = p(x[e], y[e]) = p(o1, o2). By extension, the for-
mula obtained when grounding each atom of ϕwith e is written ϕ[e].

Semantics Given an environment e, any quantifier-free formula ϕ
of LTL can be evaluated against a trace t = 〈s0, . . . , sn〉, at any step.
When i ∈ J0, nK, we write t, e, i |= ϕ to denote that formula ϕ is
true at state si of trace t with environment e. Temporal modalities,
such as©, ♦, �, etc., are used to reason over the states that follow
or precede the current state si.
©ϕ means that property ϕ is true in the next state, while ♦ϕ

means that ϕ is eventually true, in one of the successors of the current
state. �ϕ means that ϕ is true from this state on, until the end of the
trace, and ϕ1Uϕ2 means that ϕ2 is true in some successor state, and
until then, ϕ1 is true. Operators©, ♦ and � are the past counterparts
of the previous connectors:©ϕ means that ϕ is true in the previous
state, ♦ϕ that ϕ is true in some previous state, and �ϕ that ϕ is true
in every previous state.

To illustrate the language, we introduce the Childsnack problem,
which originates from the International Planning Competition (IPC).
It consists in making sandwiches and serving them to a group of chil-
dren, some of whom are allergic to gluten. Sandwiches can only be
prepared in the kitchen, and then have to be put on trays, which is
the only way they can be brought to the children for service. Among
the following FTL formulas, the first indicates that “All children will
eventually be served” (and will be satisfied by any solution-plan).
The second formula indicates that every sandwich x will eventually
be put on some tray, at a moment t + 1. For every moment that pre-
cedes moment t, x will not be prepared yet (which indicates that the



sandwich is actually put on the tray right after being prepared).

∀x ∈ Child.♦ served(x) (1)

∀x ∈ Sandwich. ∃y ∈ Tray. notprepared(x) U © on(x, y) (2)

Temporal modalities can be expressed in terms of one another. For
any quantifier-free formula ϕ, we have ♦ϕ ≡ >Uϕ, �ϕ ≡ ¬♦¬ϕ
and �ϕ ≡ ¬♦¬ϕ. This leads us to an inductive definition of the
semantics of our language, for quantifier-free formulas of LTL:

t, e, i |= p(x, . . . , x) iff p(x, . . . , x)[e] ∈ si
t, e, i |= ¬ϕ iff t, e, i 6|= ϕ

t, e, i |= ϕ1 ∧ ϕ2 iff t, e, i |= ϕ1 and t, e, i |= ϕ2

t, e, i |=©ϕ iff i < n and t, e, (i+ 1) |= ϕ

t, e, i |=©ϕ iff i > 0 and t, e, (i− 1) |= ϕ

t, e, i |= ♦ϕ iff ∃j ∈ J0, iK s.t. t, e, j |= ϕ

t, e, i |= ϕ1Uϕ2 iff ∃j ∈ Ji, nK s.t. t, e, j |= ϕ2

and ∀k ∈ Ji, j − 1K, t, e, k |= ϕ1

We write t, e |= ϕ as a shorthand for t, e, 0 |= ϕ, which means
that trace t satisfies the formula ϕ, since it is true in the initial state
of t. A formula ψ ∈ LFTL is evaluated against instantiated traces:

Definition 7 (Instantiated trace). An instantiated trace is a pair 〈t, I〉
such that t is a trace where fluents are built on the objects O of the
planning instance I.

For any partial environment e, x ∈ X , o ∈ O, we denote e[x := o]
the environment identical to e, but where variable x is associated o.
The semantics of LFTL is defined as follows:

〈t, I〉, e |= ∀x ∈ τ.ψ iff for all o ∈ O s.t. τ(o) = τ,

〈t, I〉, e[x := o] |= ψ

〈t, I〉, e |= ∃x ∈ τ.ψ iff there exists o ∈ O s.t. τ(o) = τ,

〈t, I〉, e[x := o] |= ψ

〈t, I〉, e |= ϕ iff t, e |= ϕ

where x is a variable, and ϕ is a formula ofLTL (thus quantifier-free).
We will often denote 〈t, I〉 |= ψ as a shorthand for 〈t, I〉,∅ |= ψ,
where ∅ is the empty environment.

Note that it is well known that the past modalities do not change
the expressivity of LTL. As a consequence, our language could have
expressed the same properties without modalities©, ♦ or �. How-
ever, we include these modalities in our language as they may make
some properties more succinct to express [19].

2.3 The MaxSAT problem

Let Var be a set of propositional variables. The boolean satisfiability
problem (SAT) is concerned with finding a valuation that satisfies a
propositional formula φ. Propositional formulas are defined as fol-
lows, where x ∈ Var is a propositional variable:

φ := > | x | ¬φ | φ ∨ φ | φ ∧ φ

The maximum boolean satisfiability problem (MaxSAT) is a variant
of SAT, in which a valuation of the variables Var of a set of formu-
las {φ1, . . . , φn} is sought. Each formula φi is assigned a weight
w(φi) ∈ R ∪ {∞}. The MaxSAT problem consists in finding a val-
uation v of Var such that the sum of the weights of the formulas that
are not satisfied by v is minimal.

3 The LFTL learning problem
3.1 Problem definition

Score function Our problem takes in input a score function, de-
noted σ : T → R, where T is the set of traces. This function allows
us to express preferences on which traces are the most important to
capture in the output formula, and which traces are the most impor-
tant to avoid. In the rest of this article, we will say that an instantiated
trace 〈t, I〉 is positive iff σ(〈t, I〉) ≥ 0. Otherwise, the instantiated
trace is said to be negative.

In the following, we use [〈t, I〉 |= ψ] as a shorthand for the func-
tion equal to 1 if 〈t, I〉 |= ψ and equal to 0 otherwise. The score
function generalizes to formulas ψ ∈ LFTL as follows:

σT(ψ) =
∑
〈t,I〉∈T

σ(〈t, I〉) [〈t, I〉 |= ψ]

Problem 1. LFTL learning
Input: D a domain

T a set of instantiated traces
r ∈ N the maximum number of logical

operators in the output formula
q ∈ N the maximum number of quantifiers
σ : T→ R a function called the score function

Output: A formula ψ ∈ LFTL such that ψ has at most
r logical operators, and q quantifiers, and∑

〈t,I〉∈T σ(〈t, I〉) [〈t, I〉 |= ψ]

is maximal

3.2 Complexity

The decision problem associated to the LFTL learning problem is the
problem for which the output is Yes iff there exists a formula ψ ∈
LFTL satisfying the requirements above, and with score σT(ψ) ≥ `,
where ` is given in input. The proof of intractability consists in a
reduction from the NP-hard Set Cover Problem [14]. It is sketched
below, and a more detailed proof can be read in the supplementary
material of this article [18].

Proposition 1. The decision problem associated to theLFTL learning
problem is NP-hard

Problem 2. Set Cover
Input: A set U = {1, . . . , n}

A set S of subsets: S = {S1, . . . , Sm} ⊆ 2U

k ∈ N
Output: Yes iff there exists a subset T ⊆ S such that |T | ≤ k

and ∪s∈T s = U

No otherwise

Proof of Proposition 1 (Sketch). Let us consider an instance of Set
Cover. We build an instance of LFTL learning that is positive (i.e.
outputs Yes) iff the Set Cover instance is positive.

The proof consists in showing that a set of positive traces can be
described by a formula LFTL satisfying the constraints in input iff
there exists a set cover of size at most k. Each of the positive traces
is associated to an element j of U , and contains a single state (and
thus, temporal modalities have no effect). This single state carries the



information as to which subsets contain j. The information consists
of fluents of the form in(Si). For instance, if only sets S1, S3 ∈ S
contain element j, then the j-th trace is 〈{in(S1), in(S3)}〉.

Each subset Si of S, in the Set Cover instance given in input, is
associated a unique type Seti in the PDDL domain we build. As our
LFTL formulas quantify on these types, and since we restrict the num-
ber of quantifiers to q = k, any output formula of the LFTL learning
problem can only reason on at most k subsets among those in S. If
k quantifiers are enough to distinguish between the positive traces
(associated to elements j ∈ U ) and a mock trace, then k subsets are
enough to cover all elements of U . Otherwise, no set cover of size at
most k exists.

More formally, let us define the input of ourLFTL learning instance
as follows: the domain is D = 〈P,A, T 〉, where types are T =
{Set1, . . . , Setm, Set}, P = {in} (with ar(in) = 1 and τin(1) =
Set), and A = ∅ (as all traces have length 1, no action is needed).

Each instantiated trace is associated its own instance, which is
in turn associated to a unique element j ∈ U : for j ≤ n, Ij =
〈O,H, Ij , Gj〉. The shared set of objects contains the sets of the Set
Cover input instance, and is such that O = {S1, . . . , Sm, d} (where
d is a mock object that we use to discriminate traces later). The type
hierarchy H = {{Si} | Si ∈ S} ∪ O associates each set to its own
unique type in our PDDL domain: types are such that τ(Si) = Seti
for all i ≤ m, and τ(O) = Set. The information regarding which
sets j belongs to is encoded in the initial state and goal of Ij : for
j ≤ n, Ij = Gj = {in(Si) | j ∈ Si}.

We also define a mock, negative instance Id = 〈O,H, Id, Gd〉,
with Id = {in(d)}, andGd = Id. We have T = {〈tj , Ij〉 | j ≤ n}∪
{〈td, Id〉}, where tj = 〈Ij〉 and td = 〈Id〉. We set r = m− 1, q =
k, and the score σ(〈tj , Ij〉) of every trace to 1, except 〈td, Id〉 for
which σ(〈td, Id〉) = −1. The decision problem consists in finding
whether there exists a formula ψ ∈ LFTL that is satisfied by every
trace, except 〈td, Id〉. Thus, the score threshold we set is ` = m. Let
us now show that this instance is positive iff our Set Cover instance
is positive.

Suppose that there exists a set cover T = {Si1 , . . . , Sik}. Then
there exists a formula ψ ∈ LFTL with score exactly m:

ψ := ∃x1 ∈ Seti1 , . . . , ∃xk ∈ Setik .
∨
j≤k

in(xj)

We have that 〈td, Id〉 6|= ψ, but all other traces satisfy ψ, since T
is a set cover. So the formula has score exactly m, and is a positive
instance of LFTL learning.

Now suppose that there exists no set cover of size at most k for the
input instance. By contradiction, suppose that there exists a formula
ψ with score m. We denote T ′ the set of types on which ψ quantifies
upon. We have that |T ′| ≤ k. Since there exists no set cover of size
at most k, then there exists w ≤ n such that w 6∈ ∪s∈T ′s. The
rest of the proof consists in showing that if 〈tw, Iw〉 |= ψ, then
〈td, Id〉 |= ψ, which contradicts the fact that ψ has score m. This
can be proven by structural induction on ψ.

Since the LFTL learning instance we built is positive iff the set
cover instance is positive, the LFTL learning problem is NP-hard.

In [7, 20], the authors tackle the LLTL learning problem, where
LLTL is the fragment of LTL without past modalities. Along with
other past modalities-free fragments, they showed the corresponding
decision problem to be NP-complete.

Given an environment e, a trace t, and a formula ϕ ∈ LTL, check-
ing that t, e |= ϕ can be done in space polynomial in |t|, |e| and
|ϕ| (ex. [8]). The model-checking of ψ ∈ LFTL against some 〈t, I〉

can be done by enumerating all relevant environments e ∈ Oq , and
checking that t, e |= ϕ, where ϕ is the quantifier-free part of ψ. As a
consequence, the LFTL learning problem is in PSPACE. Even though
this shows membership, the potential PSPACE-hardness of our prob-
lem is still an open problem.

4 Planning problem preprocessing
We present in this section the transformations we bring to the PDDL
planning problem before it is passed to our algorithm for learning
LFTL formulas.

Predicate splitting Each predicate is split into several predicates
of size 2, in order to curb the number of fluents while conserving the
links between pairs of objects. This allows us to synthesize formu-
las containing predicates of high arity, while keeping the number of
quantifiers of the formula low.

Concretely, a predicate of the form p(x, y, z) will be split into
newly-created predicates p12(x, y), p13(x, z), and p23(y, z). Predi-
cate splitting leads to significantly fewer fluents than if the task was
to be grounded as is: for a predicate of arity n ≥ 2, to be grounded
with instance I, there are O(n2|O|2) associated fluents, while there
would be O(|O|n) if the predicate was not split.

Even though the planning model thus obtained is less rich than
the original one, we argue that predicate splitting allows us to learn
formulas that would be otherwise out of computational reach.

Goal predicates In order to allow the learnt formulas to reason
on the goal state, we introduce goal predicates. For every predicate
p ∈ P , we introduce the predicate pG. Then, for each instance I, we
introduce the latent state sI , which is intuitively a set of fluents that
are true in every state of every trace associated to I.

For every fluent p(o1, . . . , oar(p)) of the goal state G of I, we add
the fluent pG(o1, . . . , oar(p)) to sI .

5 Topology-based guiding
TL chains An interesting representation for formulas ϕ of LTL is a
representation as TL chains. They are the adaptation to our language
of the notion of chain [16, 25], which is useful for representing for-
mulas of modal or propositional logic.

U

∧ p

q r

xt

uv yz

Figure 1: A TL chain example, which has been assigned symbols to
its nodes. It represents the formula (q(v, u) ∧ r(z, y)) U p(t, x)

A TL chain is a Directed Acyclic Graph (DAG) which has three
types of nodes: logical connector nodes (represented as ◦ in the ex-
ample of Figure 1), predicate nodes (represented as �) and variable
nodes (represented as �). In order to represent a correct LTL for-
mula, logical connector nodes can only be children of logical con-
nector nodes, predicate nodes children of logical connector nodes,
and variable nodes children of predicate nodes. We also impose that
every leaf is a variable node. In addition, to stay consistent with the
choices we made in Section 4, we only work with TL chains that are
binary trees, whose inner nodes have exactly two children.



By assigning a symbol of the correct type (i.e., a logical connector,
a predicate symbol or a variable) to each node, we end up with a
representation of a LTL formula, as illustrated in Figure 1.

For each connector node i of the TL chain, we will denote
succL(i) (resp. succR(i)) the left (resp. right) child of node i. It is
guaranteed to exist, but might sometimes be a predicate node. In the
case of connectors α ∈ {¬,©,©,♦,♦,�,�} that have arity 1, we
will use the convention that the value of the right successor is ig-
nored (and will not appear in the LFTL formula that ensues), and the
left successor will be the root of the formula under the operator α.

In order to alleviate the pressure on the MaxSAT solver, we im-
pose the topology of the output quantifier-free formula before en-
coding the problem into a propositional formula. This idea was first
introduced in [25], in the case of a search for LTL formulas. We also
fix the quantifiers of the formula before the encoding, as well as the
associated types. All that is left to the MaxSAT solver is to “fill in the
blanks” in the TL chains that it is given, so that the associated LFTL

formula fits the input as well as possible.

Quantifiers In the rest of the article, for practical rea-
sons, we restrict ourselves to learning formulas of the form
∀x1 · · · ∀xb∃xb+1 · · · ∃xqϕ, where ϕ is a formula of LTL, for which
every argument of every predicate is a variable xi. This allows us to
curb the size of the MaxSAT encoding.

6 Reduction to MaxSAT
6.1 Learning algorithm

Algorithm 1 summarizes the procedure that we use to learn LFTL

formulas out of our input. The subroutines work as follows:
gen_TLchains(r) enumerates every TL chain having exactly r con-
nectors. gen_quantifiers(q) enumerates sequences of quantifier sym-
bols of size q, such that all universal quantifiers ∀ appear be-
fore existential quantifiers ∃. gen_types(D, q) enumerates every q-
combination of types in the type tree T of D. Finally, the main sub-
routine, find_formula(D,T, ρ, {Qi}, {τ i}, σ), encodes the problem
of finding an LFTL formula fitting the instantiated traces of T, with
the constraints imposed by the TL chain ρ, the quantifiers {Qi}, and
the types {τ i}. find_formula then returns (one of) the best formula(s)
it finds, or the token FAIL if none is found.

Algorithm 1: LFTL learning
Input: Domain D, traces T, parameters r, q, and function σ
Output: A set of LFTL formulas
found_formulas := [ ]
for ρ ∈ gen_TLchains(r) do

for Q1, . . . , Qq ∈ gen_quantifiers(q) do
for τ1, . . . , τq ∈ gen_types(D, q) do

ψ ← find_formula(D,T, ρ, {Qi}, {τ i}, σ);
if ψ 6= FAIL then found_formulas.add(ψ);

return found_formulas

6.2 Preliminaries to the encoding

Variables Our MaxSAT encoding is built on the set of variables
that follows. When possible, we use the following conventions, as
closely as possible: nodes of the FL-chain are denoted by iwhen they
are logical connectors (represented by© in Figure 1), by `when they
are predicate nodes (represented by ♦), and by v when they are first-
order variable nodes (represented by �). A trace is denoted by t, and

a position in this trace is denoted by k (i.e., the k-th state). Moreover,
j is an index for a variable of the quantifiers, and p is a predicate.

This leads us to the following variables, as will be used in the
MaxSAT encoding. Greek letters denote decision variables while
latin characters are for “technical” variables.

◦ yt,ki [e]: In position k of trace t, with environment e, the formula
rooted at node i is true.

◦ δ`j,v: The v-th variable of predicate node ` is the variable of quan-
tifier j.

◦ θp` : The predicate of node ` is p.
◦ λqi : The logical connector at node i is q.
◦ st: Trace t is currently satisfied by the first order formula

“Exactly one” constraints In the encoding of a problem into
SAT, some situations require that exactly one variable, out of a set
of variables, is true. Efficient encodings have been widely stud-
ied: see for instance [12, 22]. In the following, we will denote
ExactlyOnes∈S(vs) the set of propositional constraints enforcing
that exactly one of the variables of {vs | s ∈ S} is true.

6.3 Core constraints

Some of the constraints below are adapted from [10, 25, 21], which
are concerned with LTL. Our main contribution is the adaptation of
the encoding to our language LFTL, which differs from LTL by its
tighter links with PDDL planning models through first-order compo-
nents.

In the following, we suppose that an empty TL chain ρ has been
computed, and that the associated quantifiers and types have been
decided. We will denote n its number of connector nodes, and m its
number of predicate nodes. As a consequence, there are 2m variable
nodes. As previously, the number of quantifiers is denoted q. The first
b ≤ q quantifiers are universal, while the others are existential.

We also suppose that the types on which the quantifiers range,
denoted τ1, . . . , τq , are already chosen. As a consequence, in this
section, the set of relevant environments for instance It associated
to trace t, denoted EIt , only consists of environments of the form
{xu := ou}1≤u≤q where, τ(ou) = τu, for u ∈ J1, qK.

Syntactic constraints This section describes the constraints that
ensure that the formula is syntactically well-formed.

The following constraints respectively ensure that every logical
connector node has exactly one logical connector assigned, that every
predicate node has exactly one predicate, and that each argument of
each predicate is bound to a variable on which the formula quantifies.∧

i≤n

ExactlyOnec∈Λ(λci ) ∧
∧
`≤m

ExactlyOnep∈P(θp` )

∧
`≤m

∧
s∈{1,2}

ExactlyOnej≤b(δ
`
j,s)

Semantic constraints These constraints ensure that the formula
found by the solver is consistent with the traces, and is reminiscent
of the model-checking algorithm for modal logic.

The following clauses ensure that the formula ψ that is synthe-
sized is consistent with the traces of T. This is made in accordance
with the environments imposed by the quantifier, which are iterated
upon. The variable st is true iff for every required environment e,
ϕ [e] is satisfied by t (where ϕ [e] is the evaluation of formula ϕ in
environment e, and ϕ is the quantifer-free part of the formula we



synthesize). Thus, for every trace t ∈ T, we add the following:

st ⇔
∧

o1∈O1
···

ok∈Ok

∨
ok+1∈Ok+1

···
oq∈Oq

yt,11 [{xu := ou}1≤u≤q] (3)

The following constraints ensure that formulas that consist of a single
literal (i.e., a positive or negative fluent) are consistent with the y
variables, that give the truth value of a trace at a certain position in
the trace, at each node of the TL chain.

Such constraints appear once for every trace t ∈ T, for every posi-
tion k ≤ |t| of this trace, for every predicate node ` ≤ m and every
predicate p ∈ P , for every pair of quantifiers (positions) j1, j2 ≤ q,
and for each relevant environment e ∈ EIt .

θp` ∧ δ
`
j1,1 ∧ δ

`
j2,2 ⇒

{
yt,k` [e] if t[k] |= p(xj1 , xj2)[e]

¬yt,k` [e] otherwise
(4)

Constraints (5) to (8) appear once for each connector node i ≤ n
of the formula, each position k ≤ |t| of each trace t ∈ T, and for
each environment e ∈ EIt . They ensure that the logical operators
are correctly interpreted.

In the case where the logical connector at node i is a negation ¬,
or ∆ ∈ {∧,∨,⇒}, or the next operator©, we have:

λ¬i ⇒
(
yt,ki [e]⇔ ¬yt,ksuccL(i)[e]

)
(5)

λ∆
i ⇒

(
yt,ki [e]⇔

(
yt,ksuccL(i)[e] ∆ yt,ksuccR(i)[e]

))
(6)

λ©i ⇒
(
yt,ki [e]⇔ yt,k+1

succL(i)[e]
)

(7)

with the convention that yt,|t|+1

succL(i)[e] is replaced by ⊥ during the
encoding itself. In the case of the finally operator ♦:

λ♦
i ⇒

yt,ki [e]⇔
∨
k′

k≤k′≤|t|

yt,k
′

succL(i)[e]

 (8)

The case of the temporal operators �,©, ♦, � and U can be en-
coded in a way that is similar to the constraints above.

Well-formed fluents constraints The following constraints ensure
that, in the output formula ψ, there is a consistency between the types
of the variables and the arguments of predicates are assigned to. In
other words, when a variable x of type τ is chosen to be the v-th
argument of a predicate p that occurs inψ, we require that τ = τp(v).
This can be done through the following constraints:∧

j≤q

∧
`≤m

∧
p∈P

∧
j≤q

∧
v≤2

τp(v)6=τj

¬θp` ∨ ¬δ
`
j,v (9)

Weights for the MaxSAT solver Recall that we wish to find a
formula ψ that maximizes the function given in Problem 1. The ob-
jective of the MaxSAT solver is to minimize the total weight of the
falsified soft clauses. As such, for each instantiated trace 〈t, I〉, we
add the clause st, with weight σ(〈t, I〉). This penalizes formulas that
falsify traces with a positive score, while rewarding formulas that fal-
sify traces with a negative score.

Pruning non-discriminatory formulas With a given configura-
tion of TL chain, quantifiers and types, it is not guaranteed that there
exists a formula ψ that captures (some of) the positive traces while
falsifying (some of) the negative traces. To prevent tautology or un-
satisfiable formulas from occurring, we enforce the constraint that at
least one positive trace is captured and one negative trace is not.

6.4 Formula quality enhancement

The constraints of this section filter the solutions so that less inter-
esting formulas, or formulas that could be computed by a run of our
algorithm with smaller parameters, are barred from being output.

Syntactic redundancies prevention These constraints prevent
idempotent and involutive modalities and operators from being
chained in the output formula. These include the negation ¬, as well
as the temporal operators ♦ (for which ♦♦ϕ ≡ ♦ϕ) and � (which
is, likewise, idempotent).

In addition, we prevent redundancies of the form
p(x, y) ∆ p(x, y), where ∆ ∈ {∧,∨,U,⇒} is a binary opera-
tor. In every case, there exists a smaller (sub-)formula that can be
found and that expresses the same property, without the redundant
atom. For space reasons, we skip the presentation of the constraints.

Variable visibility We wish to ensure that every variable that we
quantify upon in the output formula ψ also appears in an atom of
ψ. Otherwise, an equivalent formula could be found by running the
algorithm with fewer quantifiers. This is why we force each variable
to appear at least once in some atom.

7 Experiments
We implemented Algorithm 1 in Python 3.10, using the MaxSAT
solver Z3 [6]. Experiments were conducted on a machine running
Rocky Linux 8.5, powered by an Intel Xeon E5-2667 v3 processor,
with a 9-hours cutoff and using at most 8GB of memory per run. The
code of our implementation and our data are available online [17].
Additional, more detailed test results can also be found in [17].

Even though we often managed to quickly find a formula that per-
fectly captures the set of examples, we let the algorithm run to the
end, so that all TL chains and combinations of quantifiers and types
are enumerated.

Building the data sets To assess the performances of our algo-
rithm, we considered domains from the International Planning Com-
petition (IPC), 2 of which are described in Section 7.1. For each of
these domains, we generated 23 instances that model problems with
similar goals. Then, for each domain, we designed three domain-
specific planners, that solve the tasks in a distinctive way.

We built our training sets by selecting 3 small planning instances
of each domain, and the associated traces for each planner – for a
total of 9 traces per domain. We then created the tasks of finding a
formula recognizing the behaviour of each planner, out of 1, 2 or
3 of the training instances. The 20 remaining instances (and their
associated plans) were used in the test set. The traces of our training
set have length 5 to 21, with an average of 11.8 states.

7.1 Examples of learnt formulas

Childsnack We designed three different agents that solve Child-
snack instances, as introduced in Section 2.2. Agents NGF and NGL
compute solution plans of minimal size, and differ in that agent NGF
makes sandwiches with no gluten first, and agent NGL makes sand-
wiches with no gluten last. Both agents make all sandwiches, put
them on a tray, then serve the children. Agent GS greedily serves
children: as soon as a sandwich is made, it is put on a tray and brought
to a child. It also prioritizes gluten-free sandwiches.

For each of these behaviours, the total computation time and the
total number of formulas found are depicted in Table 3 and Table 2,
respectively. As shown on Table 1, we manage to learn formulas that



Table 1: Proportion of traces correctly classified by the most accu-
rate formula on our test set, expressed in percentage (%). Each table
presents a different agent solving a set of Childsnack problems. # ins.
indicates the number of instances in the training set, q the number of
quantifiers allowed, and |ϕ| the number of logical operators allowed.
Dots correspond to configuration where the run did not terminate.

GS
# ins. 1 2 3

q 1 2 1 2 1 2
|ϕ| = 2 67 100 67 100 67 100

3 100 100 100 100 100 100
4 . 100 . 100 . .

NGF
# ins. 1 2 3

q 1 2 1 2 1 2
|ϕ| = 2 67 67 67 67 67 67

3 100 100 100 100 100 67
4 . . . . . .

NGL
# ins. 1 2 3

q 1 2 1 2 1 2
|ϕ| = 2 100 100 100 100 100 100

3 100 100 100 100 100 100
4 . . . . . .

Table 2: Total number of formulas found for Childsnack.

GS
# ins. 1 2 3

q 1 2 1 2 1 2
|ϕ| = 2 22 110 22 112 22 123

3 92 624 92 624 92 671
4 . 746 . 757 . .

NGF
# ins. 1 2 3

q 1 2 1 2 1 2
|ϕ| = 2 23 126 23 126 23 140

3 92 670 92 679 94 723
4 . 797 . 858 . .

NGL
# ins. 1 2 3

q 1 2 1 2 1 2
|ϕ| = 2 7 76 7 78 8 92

3 79 604 79 681 82 725
4 . 784 . 845 . .

perfectly capture the test set, even when the number of examples is
very limited, and when few quantifiers and logical operators are al-
lowed. Formula 2, given in Section 2.2, is an example of a concise
formula that describes the policy of agent GS perfectly. Other formu-
las include the following:

∀x ∈ Kitchen.∃y ∈ Tray.♦(at(y, x) ∧ ♦¬at(y, x)) (10)

Formula (10) expresses that agent GS eventually comes back to the
(only) kitchen with some tray y, even though the tray was brought
out of the kitchen at some point in the past. The formula perfectly
captures our test set, but does not perfectly capture our training set.
Indeed, the smallest instance of our training set contains as many
children as there are trays, and thus, no tray has to be brought back
to the kitchen. Our use of a reduction to MaxSAT allows us to be re-
silient to this kind of edge cases, and the formula above is satisfactory
despite not perfectly fitting the training set.

Spanner Instances of the Spanner domain involve an operator that
has to go from a shed to a gate to tighten some nuts, passing through
a sequence of locations where single-use spanners can be picked up.
Once a location is left, it can not be returned to. Thus, collecting
enough spanners before reaching the gate is essential.

Table 3: Total computation times for Childsnack (hh:mm:ss). Rows
correspond to the number of allowed logical connectors. Dots corre-
spond to configuration where the run did not terminate.

GS
# ins. 1 2 3

q 1 2 1 2 1 2
2 0:00:08 0:05:03 0:00:08 0:16:43 0:01:14 0:44:48
3 0:00:35 0:19:53 0:00:35 1:07:27 0:06:46 3:35:18
4 . 0:25:27 . 1:32:07 . .

NGF
# ins. 1 2 3

q 1 2 1 2 1 2
2 0:00:08 0:05:08 0:00:08 0:17:07 0:01:09 0:47:51
3 0:00:37 0:20:13 0:00:37 1:11:13 0:07:05 3:44:11
4 . 0:26:29 . 1:33:27 . .

NGL
# ins. 1 2 3

q 1 2 1 2 1 2
2 0:00:06 0:04:55 0:00:06 0:14:59 0:00:48 0:40:28
3 0:00:31 0:19:00 0:00:31 1:07:48 0:05:42 3:14:13
4 . 0:25:20 . 1:30:16 . .

We developed three different behaviours for this domain. Agent
ALL picks every possible spanner on its way to the gate, while agent
SME picks exactly as many spanners as are needed to tighten the nuts
at the gate. Agent SGL takes a single spanner and rushes to the gate,
and can then only tighten one nut. Our algorithm learnt the following
formulas, that perfectly recognize agent ALL:

∀x ∈ Spanner. ∃y ∈ Operator.♦� carrying(y, x) (11)

∀x ∈ Spanner. ∃y ∈ Location. at(x, y) ∧ ♦¬at(x, y) (12)

Formula (11) expresses that every spanner will be picked up by the
(only) operator and carried for the rest of the plan, and Formula (12)
expresses that every spanner will be moved from its initial position.

When searching formulas with a single variable, we split the predi-
cates so that the maximum arity of a fluent is 1. Our algorithm outputs
the following very simple formula, which was learnt in a few sec-
onds, while completely characterizing the behaviour of agent ALL:

∀x ∈ Spanner.♦ carrying2(x)

8 Conclusion

In this paper, we have presented a method to learn temporal logic for-
mulas that recognize agents based on examples of their behaviours.
We showed that such formulas can be learned using an algorithm that
boils down to a reduction to MaxSAT, and that very few examples are
sometimes enough to perfectly capture the behaviour of an agent on
instances that can differ from the ones used in the training set. This
justifies the cost of resorting to a first-order language, which gener-
alizes to new instances, but is also very concise and easily readable
by a human. The formulas that we learn can serve as higher-order
descriptions of the behaviour of a planning agent.

In future works too, we wish to tailor our algorithm and our
datasets so that they can generate domain-specific control knowl-
edge. More specifically, we wish to work on its integration into var-
ious systems that can be guided with temporal logic, be them auto-
mated planning systems [2] or reinforcement learning agents [27].
This is in line with previous works on generalized planning, which
learn logic-based policies fully capable of solving a set of planning
problems, out of a set of example instances and plans [3, 9].
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Abstract. This document contains the proof of NP-hardness of the
problem we tackle in the main article. In this document, we show
that with our construction, a negative Set Cover instance results in a
negative LFTL learning instance. The rest of the proof is, in essence,
the same as in the main article.

1 The LFTL learning problem
1.1 Problem definition

In this section, we introduce the main problem we are tackling in this
paper.

Score function Our problem takes in input a score function, which
associated a score σ(〈t, I〉) ∈ R to each trace. We say that an in-
stantiated trace 〈t, I〉 is positive iff σ(〈t, I〉) ≥ 0. Otherwise, the
instantiated trace is said to be negative.

In the following, we use [〈t, I〉 |= ψ] as a shorthand for the func-
tion equal to 1 if 〈t, I〉 |= ψ and equal to 0 otherwise. The score
function generalizes to formulas ψ ∈ LFTL as follows:

σT(ψ) =
∑
〈t,I〉∈T

σ(〈t, I〉) [〈t, I〉 |= ψ]

Problem 1. LFTL learning
Input: D a domain

T a set of instantiated traces
r ∈ N the maximum number of logical

operators in the output formula
q ∈ N the maximum number of quantifiers
σ : T→ R a function called the score function

Output: A formula ψ ∈ LFTL such that ψ has at most
r logical operators, and q quantifiers, and∑

〈t,I〉∈T σ(〈t, I〉) [〈t, I〉 |= ψ]

is maximal

1.2 Complexity

The decision problem associated to the LFTL learning problem is the
problem for which the output is Yes iff there exists a formula ψ ∈
LFTL satisfying the requirements above, and with score σT(ψ) ≥ `,
where ` is given in input.

∗ Email: Arnaud.Lequen@irit.fr

Proposition 1. The decision problem associated to theLFTL learning
problem is NP-hard

To show this result, we start by introducing the NP-hard problem
we reduce to ours.

Problem 2. Set Cover
Input: A set U = {1, . . . , n}

A set S of subsets: S = {S1, . . . , Sm} ⊆ 2U

k ∈ N
Output: Yes iff there exists a subset T ⊆ S such that |T | ≤ k

and ∪s∈T s = U

No otherwise

Proof of Proposition 1. Using the notation above, let us consider an
instance of Set Cover. We build an instance of LFTL learning that is
positive (i.e. outputs Yes) iff the Set Cover instance is positive.

The proof consists in showing that a set of positive traces can
be described by a formula LFTL satisfying the constraints in input
iff there exists a set cover of size at most k. Each of the positive
traces is associated to an element j of U , and contains a single state
(and thus, temporal modalities have no effect). This single state car-
ries the information as to which subsets contain j. The information
consists of fluents of the form in(Si). For instance, if the j-th trace
is 〈{in(S1), in(S3)}〉, then only sets S1, S3 ∈ S contain element
j ∈ U .

Each subset Si of S, in the Set Cover instance given in input, is
associated a unique type Seti in the PDDL domain we build. As our
LFTL formulas quantify on these types, and since we restrict the num-
ber of quantifiers to q = k, any output formula of the LFTL learning
problem can only reason on at most k subsets among those in S. If
k quantifiers are enough to distinguish between the positive traces
(associated to elements j ∈ U ) and a mock trace, then k subsets are
enough to cover all elements of U . Otherwise, no set cover of size at
most k exists.

More formally, let us define the input of ourLFTL learning instance
as follows: the shared domain is D = 〈P,A, T 〉, where the set of
types is T = {Set1, . . . , Setm, Set}, P = {in} (with ar(in) = 1 and
τin(1) = Set), and A = ∅ (since all traces have length 1, no action
is needed).

Each instantiated trace is associated its own instance, which is
in turn associated to a unique element j ∈ U : for j ≤ n, Ij =
〈O,H, Ij , Gj〉. The shared set of objects contains the sets of the Set
Cover input instance, and is such that O = {S1, . . . , Sm, d} (where
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d is a mock object that we use to discriminate traces later). The type
hierarchy H = {{Si} | Si ∈ S} ∪ O associates each set to its own
unique type in our PDDL domain: types are such that τ(Si) = Seti
for all i ≤ m, and τ(O) = Set. The information regarding which
sets j belongs to is encoded in the initial state and goal of Ij : for
j ≤ n, Ij = Gj = {in(Si) | j ∈ Si}.

We also define a mock, negative instance Id = 〈O,H, Id, Gd〉,
with Id = {in(d)}, andGd = Id. We have T = {〈tj , Ij〉 | j ≤ n}∪
{〈td, Id〉}, where tj = 〈Ij〉 and td = 〈Id〉. We set r = m− 1, q =
k, and the score σ(〈tj , Ij〉) of every trace to 1, except 〈td, Id〉 for
which σ(〈td, Id〉) = −1. The decision problem consists in finding
whether there exists a formula ψ ∈ LFTL that can that is satisfied
by every trace, except 〈td, Id〉. Thus, the score threshold we set is
` = m. Let us now show that this instance is positive iff our Set
Cover instance is positive.

Suppose that there exists a set cover T = {Si1 , . . . , Sik}. Then
there exists a formula ψ ∈ LFTL with score exactly m:

ψ := ∃x1 ∈ Seti1 , . . . , ∃xk ∈ Setik .
∨
j≤k

in(xj)

We have that 〈td, Id〉 6|= ψ, but all other traces satisfy ψ, since T
is a set cover. So the formula has score exactly m, and is a positive
instance of LFTL learning.

Now suppose that there exists no set cover of size at most k for the
input instance. By contradiction, suppose that there exists a formula
ψ with score m (which is the maximum possible score). We denote
T ′ the set of types on which ψ quantifies upon. We have that |T ′| ≤
k.

Since there exists no set cover of size at most k, then there ex-
ists w ≤ n such that w 6∈ ∪s∈T ′s. We proceed to show that if
〈tw, Iw〉 |= ψ, then 〈td, Id〉 |= ψ, which contradicts the fact that ψ
has score m.

Since all instances share the same set of objects (and the same
environments), in the rest of this proof, we denote t, e |= ψ as a
shorthand for 〈t, I〉, e |= ψ. We introduce two lemmas, which are
stronger results than needed here, but that are necessary for the proof.
Let Cw = {o ∈ O | in(o) ∈ Iw}, Cd = {d}, Cw = O \ Cw, and
Cd = O \ Cd.

Lemma 2. Let ψ ∈ LFTL, v ∈ {d,w}, and v′ ∈ {d,w} \ {v}.
If there exists an environment e s.t. tv, e |= ψ, then there exists an
environment e′ s.t. tv′ , e′ |= ψ, and e′ is such that for every x ∈ X
s.t. x[e] ∈ Cv (resp. Cv), we have x[e′] ∈ Cv′ (resp. Cv′ )

In the following lemma, for v ∈ {d,w}, we say that two envi-
ronments e and e′ are indistinguishable for Cv if, for every x ∈ X ,
x[e] ∈ Cv iff x[e′] ∈ Cv (and thus, x[e] ∈ Cv iff x[e′] ∈ Cv).

Lemma 3. Let ψ ∈ LFTL, v ∈ {d,w}. Suppose that there exists an
environment e s.t. tv, e |= ψ. Then for every environment e′ such that
e and e′ are indistinguishable for Cv , we have tv, e′ |= ψ.

Intuitively, these lemmas translate the fact that trace tw (resp. td)
can not distinguish two objects that occur in Iw (resp. Id), and that
objects of Cw (resp. Cw) that occur in an environment e that satisfies
ψ with tw can be replaced by objects of Cd (resp. Cd) to create a
new environment e′, so that ψ is satisfied by td with e′.

We prove both lemmas simultaneously, by induction over the
structure of ψ. We only show the cases where v = w, although the
cases where v = d are shown analogously. We start by proving by
induction that these lemmas hold when ψ = ϕ ∈ LTL.

The case ϕ = in(x) is immediate, by construction.

Suppose that ϕ = ¬ϕ′. (Lemma 2) Suppose that there exists e s.t.
tw, e |= ϕ. Then tw, e 6|= ϕ′, and there exists e′ such that td, e′ 6|= ϕ′

(which is something that we obtain by using the induction hypothesis
of both lemmas). So td, e′ |= ϕ. The converse is shown in a similar
way. (Lemma 3) Suppose that tw, e |= ϕ. Then tw, e 6|= ϕ′, and for
every environment e′ such that e and e′ are indistinguishable for Cv ,
tw, e

′ 6|= ϕ′ (by induction hypothesis). So tw, e′ |= ϕ.
Suppose that ϕ = ϕ1∧ϕ2. (Lemma 2) Suppose that there exists e

such that tw, e |= ϕ. By induction hypothesis, there exists e′1 and e′2
such that td, e′1 |= ϕ1 and td, e′2 |= ϕ2. Using the induction hypoth-
esis of Lemma 3, we have that (since e′1 and e′2 are indistinguishable
for Cd) there exists e′ an environment such that td, e′ |= ϕ1 and
td, e

′ |= ϕ2, so td, e′ |= ϕ. Showing that the induction hypothesis of
Lemma 3 carries over is straightforward.

The cases of temporal modalities are immediate, since all traces
have length 1.

Suppose that ψ = ∃x ∈ E.ψ′, where E ∈ T . Now suppose
that E = Seti for some i (the proof when E = Set is similar).
(Lemma 2) Suppose that there exists e such that tw, e |= ψ. Then
there exists o ∈ O, τ(o) = Seti such that tw, e[x := o] |= ψ.
Note that o ∈ Cw (by hypothesis on tw, since w is not covered
by the set of subsets T ′ on which ψ quantifies upon). There exists
o′ ∈ Cd and an environment e′ such that tw, e′[x := o′] |= ψ′. Since
o ∈ Cd, Lemma 3 ensures that tw, e′[x := o] |= ψ. So tw, e′ |= ψ.
Lemma 3 is proven in a similar way, since by induction hypothesis,
any environment e′′ indistinguishable with e′ for Cd.

Suppose that ψ = ∀x ∈ E.ψ′, where E ∈ T . Since there exists a
unique o ∈ O such that τ(o) = Seti for all i, the case E = Seti can
be shown in the same way as above. Now suppose that E = Set, and
that there exists an environment e such that tw, e |= ψ. For all o ∈ O,
tw, e[x := o] |= ψ′. Let o1 ∈ Cw and o2 ∈ Cw. Then by induction
hypothesis, there exist e′1, e′2 two environments, o′1 ∈ Cd and o′2 ∈
Cd such that td, e′1[x := o′1] |= ψ′ and td, e′2[x := o′2] |= ψ′. Since
e′1 and e′2 are indistinguishable for Cd, and by induction hypothesis,
we have that td, e′1[x := o′1] |= ψ′ and td, e′1[x := o′2] |= ψ′. Since,
for any o′′1 ∈ Cd (and o′′2 ∈ Cd), e′1[x := o′1] and e′1[x := o′′1 ]
are indistinguishable for Cd (as well as e′1[x := o′2] and e′1[x :=
o′′2 ]), we have that, for any o′′ ∈ O, td, e′1[x := o′′] |= ψ′. Hence,
td, e

′
1 |= ψ′. Since any other environment e′′ indistinguishable with

e′1 over Cd could have been chosen, Lemma 3 also holds.
This concludes the proof of both lemmas. An immediate corollary

of Lemma 2 is that 〈tw, Iw〉 |= ψ iff 〈td, Id〉 |= ψ. As a conse-
quence, σT(ψ) < m, which is a contradiction with ψ being a solu-
tion to our LFTL learning instance.

As such, the LFTL learning instance we built is positive iff the set
cover instance is positive. As a consequence, the LFTL learning prob-
lem is NP-hard.
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1 Example of learnt formulas
Childsnack Problem Childsnack consists in making sandwiches
and serving them to a group of children, some of whom are allergic
to gluten. Sandwiches can only be prepared in the kitchen, and then
have to be put on trays, which is the only way they can be brought to
the children for service.

We designed three different agents that solve Childsnack in-
stances. Agents NGF and NGL compute solution plans of minimal
size, and differ in that agent NGF makes sandwiches with no gluten
first, and agent NGL makes sandwiches with no gluten last. Both
agents make all sandwiches, put them on a tray, then serve the chil-
dren. Agent GS greedily serves children: as soon as a sandwich is
made, it is put on a tray and brought to a child. It also prioritizes
gluten-free sandwiches.

As shown on Table 4, we manage to learn formulas that perfectly
capture the test set, even when the number of examples is very lim-
ited, and when few quantifiers and logical operators are allowed. The
following formula, which expresses that every sandwich is put on
a tray right after it is prepared, perfectly captures the behaviour of
agent GS, compared to the other agents:

∀x ∈ Sandwich.∃y ∈ Tray. notprepared(x)U © on(x, y)

Other formulas include the following:

∀x ∈ Kitchen. ∃y ∈ Tray.♦(at(y, x) ∧ ♦¬at(y, x)) (1)

∀x ∈ Kitchen.∃y ∈ Tray.♦(¬at(y, x) ∧©at(y, x)) (2)

Formula (1) expresses that agent GS eventually comes back to the
(only) kitchen with some tray y, even though the tray was brought
out of the kitchen at some point in the past. Formula (2) expresses
the same idea, but pinpoints the moment when a tray is brought back
to the kitchen. The formula perfectly captures our test set, but does
not perfectly capture our training set. Indeed, the smallest instance of
our training set contains as many children as there are trays, and thus,
no tray has to be brought back to the kitchen. Our use of a reduction
to MaxSAT allows us to be resilient to this kind of edge cases, and the
formula above is satisfactory despite not perfectly fitting the training
set.
∗ Email: Arnaud.Lequen@irit.fr

When it comes to the other agents, the following formula perfectly
captures the behaviour of agent NGF. It does not capture the be-
haviour of agent NGL since it starts with a gluten-free sandwich,
and it does not capture the behaviour of agent GS since the sandwich
is not immediately shipped.

∃x ∈ Sandwich.©(no_gluten_sandwich(x)∧
© at_kitchen_sandwich(x))

The behaviour of agent NGL, which is the only one to start with
making sandwiches with gluten, is simply captured by the following
formula:

∃x ∈ Sandwich.©(at_kitchen_sandwich(x)∧
¬no_gluten_sandwich(x))

Spanner Instances of the Spanner domain involve an operator that
has to go from a shed to a gate to tighten some nuts, passing through
a sequence of locations where single-use spanners can be picked up.
Once a location is left, it can not be returned to. Thus, collecting
enough spanners before reaching the gate is essential.

We developed three different behaviours for this domain. Agent
ALL picks every possible spanner on its way to the gate, while agent
SME picks exactly as many spanners as are needed to tighten the nuts
at the gate. Agent SGL takes a single spanner and rushes to the gate,
and can then only tighten one nut. Our algorithm learnt the following
formulas, that perfectly recognize agent ALL:

∀x ∈ Spanner. ∃y ∈ Operator.♦� carrying(y, x) (3)

∀x ∈ Spanner. ∃y ∈ Location. at(x, y) ∧ ♦¬at(x, y) (4)

Formula (3) expresses that every spanner will be picked up by the
(only) operator and carried for the rest of the plan, and Formula (4)
expresses that every spanner will be moved from its initial position.

When searching formulas with a single variable, we split the pred-
icates so that the maximum arity of a fluent is 1. Our algorithm out-
puts the following very simple formulas, which were learnt in a few
seconds, while completely characterizing the behavior of agent ALL:

∀x ∈ Spanner.♦ carrying2(x)

∀x ∈ Spanner. useable(x)U carrying2(x)

The behaviour of agent SGL, which is the only one who fails to
solve the problem, is captured by the following formula, for instance:

∀x ∈ Nut.� loose(x)

However, no formula could capture the behaviour of agent SME
in a significant way.
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Rovers Domain Rovers simulates a planetary exploration mission,
where a fleet of mobile rovers has to navigate between various way-
points on a planet to collect data or samples, and to transmit the data
back to a lander. The rovers have instruments, which have to be cali-
brated before they can collect data.

The set of instances we designed all required a single rover to col-
lect two kinds of samples (soil and rock), and to take pictures of one
or various objectives. We designed three different agents, that each
prioritize a certain kind of tasks above all others. Agent CIF will
calibrate its cameras first and take a picture of the objectives, agent
CRF will collect rock samples first, and agent CSL will collect soil
samples first.

The following formula captures the behaviour of agent CIF with
93.3% accuracy. It translates the fact that CIF is the only Rovers
agent to not fetch any sample at first. However, since not all samples
are within reach of three actions in all instances, other agents may
also satisfy this property on some particular instances.

∀x ∈ Store. ©©© empty(x)

A property that describes agent CIF’s behaviour with 91.7% accu-
racy is the following. It expressed the fact that, within two actions,
agent CIF has calibrated its camera (on at least one rover).

∃x ∈ Rover. ∃y ∈ Camera.©(calibrated(x, y)∨© calibrated(x, y))

The following formula captures agent CRF’s behaviour with
81.7% accuracy (where Goal(communicated_soil_data(x)) means
that communicated_soil_data(x) is in the goal). It expresses the fact
that soil samples are not collected until some rock sample is pro-
cessed. Even though this formula often successfully discriminates
agents CRF and CSF, it sometimes with to tell agent CRF from agent
CIF.

∀x ∈ Waypoint. ∃y ∈ Waypoint.

Goal(communicated_soil_data(x))⇒
(at_soil_sample(x)U communicated_rock_data(y))

2 Additional statistics
For each domain and for each domain-specific behaviour, the to-
tal computation time and the total number of formulas found are
depicted in Table 1 and Table 5, respectively. In addition, Table 4
presents the best accuracy obtained by a single formula for each con-
figuration.

Figures 1, 2 and 3 summarize the distributions of the accuracies of
the formulas we learnt.

Table 1: Total computation times for Childsnack (hh:mm:ss). Rows
correspond to the number of allowed logical connectors. Dots corre-
spond to configuration where the run did not terminate.

GS
# ins. 1 2 3

q 1 2 1 2 1 2
2 0:00:08 0:05:03 0:00:08 0:16:43 0:01:14 0:44:48
3 0:00:35 0:19:53 0:00:35 1:07:27 0:06:46 3:35:18
4 . 0:25:27 . 1:32:07 . .

NGF
# ins. 1 2 3

q 1 2 1 2 1 2
2 0:00:08 0:05:08 0:00:08 0:17:07 0:01:09 0:47:51
3 0:00:37 0:20:13 0:00:37 1:11:13 0:07:05 3:44:11
4 . 0:26:29 . 1:33:27 . .

NGL
# ins. 1 2 3

q 1 2 1 2 1 2
2 0:00:06 0:04:55 0:00:06 0:14:59 0:00:48 0:40:28
3 0:00:31 0:19:00 0:00:31 1:07:48 0:05:42 3:14:13
4 . 0:25:20 . 1:30:16 . .

Table 2: Total computation times for Spanner (hh:mm:ss). Rows cor-
respond to the number of allowed logical connectors. Dots corre-
spond to configuration where the run did not terminate.

ALL
# ins. 1 2 3

q 1 2 1 2 1 2
|ϕ| = 2 0:00:03 0:07:11 0:00:03 0:31:13 0:00:37 1:28:33

3 0:00:12 0:25:32 0:00:12 2:08:30 0:02:58 6:35:33
4 . 0:32:00 . . . .

SGL
# ins. 1 2 3

q 1 2 1 2 1 2
|ϕ| = 2 0:00:03 0:07:13 0:00:03 0:30:12 0:00:35 1:27:01

3 0:00:12 0:25:30 0:00:12 1:58:35 0:02:17 6:01:47
4 . 0:31:45 . 2:51:37 . .

SME
# ins. 1 2 3

q 1 2 1 2 1 2
|ϕ| = 2 0:00:03 0:07:14 0:00:03 0:30:59 0:00:37 1:28:48

3 0:00:13 0:25:24 0:00:13 2:03:55 0:02:48 6:21:49
4 . 0:31:41 . 2:58:58 . .

Table 3: Total computation times for Rovers (hh:mm:ss). Rows corre-
spond to the number of allowed logical connectors. Dots correspond
to configuration where the run did not terminate.

CIF
# ins. 1 2 3

q 1 2 1 2 1 2
|ϕ| = 2 0:00:42 0:26:35 0:00:42 1:14:41 0:05:23 3:39:21

3 0:03:44 2:20:57 0:03:44 5:02:09 0:51:29 .
4 . . . . . .

CRF
# ins. 1 2 3

q 1 2 1 2 1 2
|ϕ| = 2 0:00:39 0:25:41 0:00:39 1:11:16 0:05:27 3:28:22

3 0:03:06 1:50:59 0:03:06 5:47:15 0:29:34 .
4 . . . . . .

CSF
# ins. 1 2 3

q 1 2 1 2 1 2
|ϕ| = 2 0:00:41 0:25:12 0:00:41 1:03:39 0:05:01 3:06:28

3 0:03:41 1:58:30 0:03:41 4:05:01 0:35:34 .
4 . 2:18:24 . . . .
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Figure 1: Distribution of the percentages of accuracy on the test set of the formulas learnt for Childsnack problems. Each subfigures gives the
distributions for each agent, along with the number of instances used in the training set.
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Figure 2: Distribution of the percentages of accuracy on the test set of the formulas learnt for Spanner problems. Each subfigures gives the
distributions for each agent, along with the number of instances used in the training set.
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Figure 3: Distribution of the percentages of accuracy on the test set of the formulas learnt for Rovers problems. Each subfigures gives the
distributions for each agent, along with the number of instances used in the training set.



Table 4: Proportion of traces correctly classified by the most accurate formula on our test set, expressed in percentage (%). Each table of the first,
second, and third row presents a different agent solving a set of Childsnack, Spanner, and Rovers problems, respectively. # ins. indicates the
number of instances in the training set, q the number of quantifiers allowed, and |ϕ| the number of logical operators allowed. Dots correspond
to configuration where the run did not terminate.

GS
# ins. 1 2 3

q 1 2 1 2 1 2
|ϕ| = 2 67 100 67 100 67 100

3 100 100 100 100 100 100
4 . 100 . 100 . .

NGF
1 2 3

1 2 1 2 1 2
67 67 67 67 67 67

100 100 100 100 100 67
. . . . . .

NGL
1 2 3

1 2 1 2 1 2
100 100 100 100 100 100
100 100 100 100 100 100

. . . . . .

ALL
# ins. 1 2 3

q 1 2 1 2 1 2
|ϕ| = 2 . 100 . 100 67 100

3 . 100 . 100 67 100
4 . 100 . . . .

SGL
1 2 3

1 2 1 2 1 2
. 67 . 100 100 100
. 67 . 100 100 100
. 98 . 100 . .

SME
1 2 3

1 2 1 2 1 2
. 67 . 67 67 67
. 67 . 67 67 67
. 67 . 67 . .

CIF
# ins. 1 2 3

q 1 2 1 2 1 2
|ϕ| = 2 92 78 92 78 92 78

3 93 . 93 90 92 .
4 . . . . . .

CRF
1 2 3

1 2 1 2 1 2
75 82 75 82 75 82
75 77 75 82 75 .

. . . . . .

CSF
1 2 3

1 2 1 2 1 2
42 83 42 83 82 92
62 . 62 97 92 .

. . . . . .

Table 5: Total number of formulas found for each agent, and for each configuration. Each table of the first, second, and third row presents a
different agent solving a set of Childsnack, Spanner, and Rovers problems, respectively.

GS
# ins. 1 2 3

q 1 2 1 2 1 2
|ϕ| = 2 22 110 22 112 22 123

3 92 624 92 624 92 671
4 . 746 . 757 . .

NGF
1 2 3

1 2 1 2 1 2
23 126 23 126 23 140
92 670 92 679 94 723

. 797 . 858 . .

NGL
1 2 3

1 2 1 2 1 2
7 76 7 78 8 92

79 604 79 681 82 725
. 784 . 845 . .

ALL
# ins. 1 2 3

q 1 2 1 2 1 2
|ϕ| = 2 . 71 . 257 20 257

3 . 377 . 1043 78 1040
4 . 490 . . . .

SGL
1 2 3

1 2 1 2 1 2
. 62 . 226 20 225
. 237 . 864 57 866
. 379 . 1160 . .

SME
1 2 3

1 2 1 2 1 2
. 59 . 246 20 246
. 237 . 898 78 902
. 379 . 1201 . .

CIF
# i. 1 2 3
q 1 2 1 2 1 2
2 43 572 43 740 79 800
3 200 1797 200 1200 200 .
4 . . . . . .

CRF
1 2 3

1 2 1 2 1 2
35 545 35 728 80 800

179 1595 179 1850 200 .
. . . . . .

CSF
1 2 3

1 2 1 2 1 2
43 511 43 725 80 800

200 1797 200 1850 200 .
. 1680 . . . .


