
1/22

Learning Interpretable Classifiers for PDDL
Planning

Arnaud Lequen

A. Lequen

2/22

A planning example: Childsnack

Problem: Serve sandwiches to children seated in a dining hall.
Some children are allergic to gluten. Adequate sandwiches must be
prepared in the kitchen, put on a tray, and brought to the tables

Properties of the plans (= sequences of actions) for the problem?

A. Lequen

3/22

Expressing properties on traces

Multiple motives to reason about properties of plans:

I Landmarks, goal-achievement... characterize solution-plans
I Falsified invariants characterize partial plans that can not be

extended into a solution (dead ends)

Learning such properties automatically is interesting in itself,
and can extend beyond these applications

I Guiding search for a solution on bigger instances
I Behaviour recognition
I Reward function learning, goal recognition
I High-level policy description/explanation

In which unifying language to express these properties?

A. Lequen

4/22

A language for expressing properties on traces

Linear Temporal Logic can express properties on sequences
of states

I We extend it with first-order quantifications, so that
I properties generalize to multiple instances
I it takes advantage of the PDDL planning model

I We can then learn a wide range of properties that
characterize a set of example traces given in input

I The language is very interpretable, even for non-experts

Language we use: First-Order Temporal Logic (LFTL)

A. Lequen

5/22

Language

Childsnack in typed PDDL

All children will eventually ♦ be served a sandwich

∀x ∈ Child. ♦served(x)

Children always � sit at the same table

∀x ∈ Child.∃y ∈ Table. � sitting_at(x , y)

A. Lequen

6/22

Language

We can learn properties that characterize agents:

On the state that’s next © to the next © state, there exists
a sandwich which is gluten-free and on some tray.

∃x ∈ Sandwich. ∃y ∈ Tray. ©©(ontray(x , y)∧
no_gluten_sandwhich(x))

Every sandwich is, at first, not prepared, until U we reach a
state where, in the next © state, it is on some tray:

∀x ∈ Sandwich.∃y ∈ Tray. notprepared(x)U © on(x , y)

A. Lequen

7/22

Model-checking example

Example with sandwich w1 and tray r1, for some plan π and trace t

State seq. t s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

on(w1, r1) x x x x x x X X X X x
© on(w1, r1) x x x x x X X X X x x
notprepared(w1) X X X X X x x x x x x
ϕ X X X X X X X X X x x

where ϕ := notprepared(w1)U © on(w1, r1)

Since ϕ is satisfied in s0, we have that t |= ϕ

A. Lequen

8/22

First-Order Temporal Logic

PDDL planning domain: D = 〈P,A, T 〉, where P is a set of
predicates, A a set of action schemas, and T a type tree.

We define our language LFTL such that:

ψ := ∃x ∈ τ.ψ | ∀x ∈ τ.ψ | ϕ

where ϕ ∈ LTL, and LTL is such that:

ϕ := > | p(x1, . . . , xar(p)) | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ⇒ ϕ |
© ϕ | ♦ϕ | �ϕ | ϕUϕ |
©ϕ | ♦ϕ | �ϕ

where x , x1, . . . , xar(p) are variables of X (a set of variables
symbols), p a predicate of P, and τ a type of T .

A. Lequen

9/22

Behaviour classification: how to

Goal: Learn LFTL properties characterizing an agent A’s behaviour

Outline of our method
I Build a set of positive and negative examples

I Create planning instances and ask agents to solve them
· Positive ex.: traces associated to plans made by agent A
· Negative ex.: traces associated to plans made by other agents

I Assign a score σ(t) in [−100, 100] to each trace t

· Positive traces t have positive scores σ(t) > 0 (reward)
· Negative traces t have negative scores σ(t) < 0 (penalty)

I Find a formula ψ ∈ LFTL that gets the highest score:
· ψ scores the points of t iff t |= ψ

A. Lequen

10/22

Learning problem

Instantiated trace: pair 〈t, I〉, where
t is a trace (= sequence of states associated to a plan)
I is a PDDL instance

Problem: LFTL learning

Input: D a PDDL domain
T a set of instantiated traces
σ : T→ R a function called the score function
r ∈ N the max number of logical operators
q ∈ N the max number of quantifiers

Output: A formula ψ ∈ LFTL such that ψ has at most
r logical operators, and q quantifiers, and∑

〈t,I〉∈T σ(〈t, I〉) [〈t, I〉 |= ψ]

is maximal

A. Lequen

11/22

Computational complexity

Associated decision problem
Is there a formula ψ ∈ LFTL that has score at least k?

Hardness
The LFTL learning problem is NP-hard

Upper bound
The LFTL learning problem is in PSPACE

A. Lequen

12/22

TL chains
TL Chains

LTL formulas can be represented using TL chains:
◦ represent logical connectors
� represent predicates
� represent variables

U

∧ p

q r

xt

uv yz

Represents the quantifer-free FTL formula:

(q(v , u) ∧ r(z , y)) U p(t, x)

A. Lequen

13/22

A procedure to learn LFTL formulas

Learning algorithm (Simplified)

1○ For all possible TL chains

2○ For all combinations of quantifiers and types

3○ Call a MaxSAT solver to fill in the blanks in the chain,
so that the formula fits best the dataset

1 2 3

⇒

∀x ∈ τ1. . . .∃u ∈ τ6.

⇒

∀x ∈ τ1. . . .∃u ∈ τ6.
U

∧ p

q r

xt

uv yz

A. Lequen

14/22

MaxSAT encoding

Core constraints

Syntactic, semantic constraints: ensure well-formed formulas
and consistency with the example traces

Very reminiscent of the model-checking algorithm for modal logic

Formula quality enhancement

Syntactic redundancies prevention: prevent formulas which have
idempotent or involutive operators chained.
Ex: ♦♦ϕ, ¬¬ϕ, etc.

Variable visibility enforcement: ensure that all variables
quantified upon are visible in the quantifier-free parts of the formula

A. Lequen

15/22

MaxSAT encoding

MaxSAT is a cornerstone of our approach:

Learning problem: Maximize the score of the learnt formula

For each trace t, use a variable ct
I ct is true iff ct |= ψ

I Soft clause: ct with weight σ(t)

Score of the MaxSAT encoding = Score of the learnt formula ψ

Pros (compared to a pure SAT approach)

I Resilience to noise in the training set
I When no perfect formula exists, still learns a classifier with the

best accuracy

A. Lequen

16/22

Experimental evaluation - Generating the dataset

To have distinctive behaviours, we hand-coded 3 domain-specific
agents, for each of 3 different domains found in the IPC
(Childsnack, Spanner, Rovers).

Training set

For each domain:
I Three small planning problems, and the plans of the agents

Test set

For each domain:
I 20 planning problems of various sizes, and the plans generated

by the agents

A. Lequen

17/22

Experimental evaluation - Childsnack examples

Agents that solve Childsnack problems:

I NGL - optimally solve the problem, start with sandwiches with
gluten first

I NGF - same as NGF but start with gluten-free sandwiches
I GS - greedily serves children: prepare a sandwich, put it on

the tray, go and serve it directly. Prioritizes gluten-free
sandwiches

A. Lequen

18/22

Experimental evaluation - Childsnack examples

Agents that solve Childsnack problems:

I NGL - optimally solve the problem, start with sandwiches with
gluten first

I NGF - same as NGF but start with gluten-free sandwiches
I GS - greedily serves children: prepare a sandwich, put it on

the tray, go and serve it directly. Prioritizes gluten-free
sandwiches

They are respectively completely recognized by the following:

∀x ∈ Sandwich. ©¬no_gluten_sandwich(x)

∃x ∈ Sandwich.©(no_gluten_sandwich(x)∧
© at_kitchen_sandwich(x))

∀x ∈ Kitchen. ∃y ∈ Tray.♦(at(y , x) ∧ ♦¬at(y , x))
A. Lequen

19/22

Experimental evaluation – Statistics

Average time to find a (possibly imperfect) formula for a Childsnack
agent, in seconds

Rows: # of allowed logical connectors. q: # of quantifiers
ins.: # of instances in the training set

ins. 1 2 3
q 1 2 1 2 1 2

|ϕ| = 2 0.4 2.9 0.4 9.3 3.6 22.5
3 0.4 1.9 0.4 6.2 4.4 17.9
4 . 2.0 . 6.7 . .

A. Lequen

20/22

Experimental evaluation – Statistics

Total computation times for Childsnack (top, hh:mm:ss), and total
number of formulas (bottom), for agent GS.

Rows: # of allowed logical connectors. q: # of quantifiers
ins.: # of instances in the training set

ins. 1 2 3
q 1 2 1 2 1 2

|ϕ| = 2 0:00:08 0:05:03 0:00:08 0:16:43 0:01:14 0:44:48
3 0:00:35 0:19:53 0:00:35 1:07:27 0:06:46 3:35:18
4 . 0:25:27 . 1:32:07 . .

ins. 1 2 3
q 1 2 1 2 1 2

|ϕ| = 2 22 110 22 112 22 123
3 92 624 92 624 92 671
4 . 746 . 757 . .

A. Lequen

21/22

Experimental evaluation – Discussion

Computation time

I Total computation times are shown, but lots of possibilities of
parallelization

I A perfect solution is found within a couple minutes, but we let
the algorithm run nevertheless

Few-shot learning

I Often, very few instances (even sometimes 1) are enough to
learn a classifier that has the perfect score on our test set

MaxSAT for imperfect datasets

I Sometimes, the training set is so small that it contains a little
noise

I The solver still learns imperfect formulas, that have high
accuracy on the test set

A. Lequen

22/22

Perspective

In this presentation

I A framework for learning interpretable formulas that generalize
and characterize a set of plans

I Application to behaviour classification
I A reduction to MaxSAT that learns classifiers from small

datasets in reasonable time

Perspective: Recombining formulas

I Combine the (sometimes imperfect) formulas into another
more robust classifier

Perspective: Usage in search

I Assist a RL agent in its learning phase (≈ Imitation learning)

A. Lequen

