Learning Interpretable Classifiers for PDDL Planning

Arnaud Lequen

A planning example: Childsnack

Problem: Serve sandwiches to children seated in a dining hall. Some children are allergic to gluten. Adequate sandwiches must be prepared in the kitchen, put on a tray, and brought to the tables

Properties of the plans (= sequences of actions) for the problem?

Expressing properties on traces

Multiple motives to reason about properties of plans:

- Landmarks, goal-achievement... characterize solution-plans
- Falsified invariants characterize partial plans that can not be extended into a solution (dead ends)

Learning such properties automatically is interesting in itself, and can extend beyond these applications

- Guiding search for a solution on bigger instances
- Behaviour recognition
- Reward function learning, goal recognition
- High-level policy description/explanation

In which unifying language to express these properties?

Linear Temporal Logic can express properties on sequences of states

- We extend it with first-order quantifications, so that
 - properties generalize to multiple instances
 - it takes advantage of the PDDL planning model
- We can then learn a wide range of properties that characterize a set of example traces given in input
- The language is very interpretable, even for non-experts

Language we use: First-Order Temporal Logic (\mathcal{L}_{FTL})

Language

Childsnack in typed PDDL

All children will **eventually** \Diamond be served a sandwich

 $\forall x \in \text{Child. } \Diamond \text{served}(x)$

Children **always** \Box sit at the same table

 $\forall x \in \text{Child. } \exists y \in \text{Table. } \Box \text{ sitting } \mathtt{at}(x, y)$

We can learn properties that characterize agents:

On the state that's **next** \bigcirc to the **next** \bigcirc state, there exists a sandwich which is gluten-free and on some tray.

 $\exists x \in \mathsf{Sandwich}. \exists y \in \mathsf{Tray}. \bigcirc \bigcirc (\mathsf{ontray}(x, y) \land \mathsf{no_gluten_sandwhich}(x))$

Every sandwich is, at first, not prepared, **until** U we reach a state where, in the **next** \bigcirc state, it is on some tray:

 $\forall x \in \text{Sandwich}. \exists y \in \text{Tray. notprepared}(x) \cup \bigcirc \text{on}(x, y)$

Example with sandwich w_1 and tray r_1 , for some plan π and trace t

State seq. t	<i>s</i> ₀	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> 3	<i>s</i> 4	<i>S</i> 5	<i>s</i> ₆	<i>S</i> 7	<i>s</i> 8	<i>S</i> 9	<i>s</i> ₁₀
$on(w_1, r_1)$	х	х	х	х	х	х	\checkmark	\checkmark	\checkmark	\checkmark	х
\bigcirc on(w_1, r_1)	х	х	х	х	х	\checkmark	\checkmark	\checkmark	\checkmark	х	х
notprepared (w_1)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	х	х	х	х	х	х
arphi	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	х	х

where $\varphi := \mathsf{notprepared}(w_1) \cup \bigcirc \mathsf{on}(w_1, r_1)$

Since φ is satisfied in s_0 , we have that $t \models \varphi$

PDDL planning domain: $\mathcal{D} = \langle \mathcal{P}, \mathcal{A}, \mathcal{T} \rangle$, where \mathcal{P} is a set of predicates, \mathcal{A} a set of action schemas, and \mathcal{T} a type tree.

We define our language \mathcal{L}_{FTL} such that:

$$\psi := \exists x \in \tau.\psi \mid \forall x \in \tau.\psi \mid \varphi$$

where $\varphi \in \mathcal{L}_{\mathsf{TL}}$, and $\mathcal{L}_{\mathsf{TL}}$ is such that:

$$\varphi := \top | p(x_1, \dots, x_{ar(p)}) | \neg \varphi | \varphi \land \varphi | \varphi \lor \varphi | \varphi \Rightarrow \varphi |$$
$$\bigcirc \varphi | \Diamond \varphi | \Box \varphi | \varphi | \varphi \cup \varphi |$$
$$\bigcirc \varphi | \overline{\Diamond} \varphi | \overline{\Box} \varphi$$

where $x, x_1, \ldots, x_{ar(p)}$ are variables of \mathcal{X} (a set of variables symbols), p a predicate of \mathcal{P} , and τ a type of \mathcal{T} .

Goal: Learn $\mathcal{L}_{\mathsf{FTL}}$ properties characterizing an agent A's behaviour

Outline of our method

Build a set of positive and negative examples

- Create planning instances and ask agents to solve them
 - · Positive ex.: traces associated to plans made by agent A
 - $\cdot\,$ Negative ex.: traces associated to plans made by other agents
- Assign a score $\sigma(t)$ in [-100, 100] to each trace t
 - Positive traces t have positive scores $\sigma(t) > 0$ (reward)
 - Negative traces t have negative scores $\sigma(t) < 0$ (penalty)

Find a formula $\psi \in \mathcal{L}_{\mathsf{FTL}}$ that gets the highest score:

 $\cdot \ \psi$ scores the points of *t* iff $t \models \psi$

Learning problem

Instantiated trace: pair $\langle t, \mathcal{I} \rangle$, where

t is a trace (= sequence of states associated to a plan)

 ${\mathcal I}$ is a PDDL instance

Problem: \mathcal{L}_{FTL} learning

Input:	${\cal D}$ a PDDL domain
	T a set of instantiated traces
	$\sigma: {\mathcal T} \to {\mathbb R}$ a function called the $\mathit{score\ function}$
	$r\in\mathbb{N}$ the max number of logical operators
	$oldsymbol{q} \in \mathbb{N}$ the max number of quantifiers
Output:	A formula $\psi \in \mathcal{L}_{FTL}$ such that ψ has at most
	r logical operators, and q quantifiers, and
	$\sum_{\langle t,\mathcal{I} \rangle \in \mathcal{T}} \sigma(\langle t,\mathcal{I} \rangle) [\langle t,\mathcal{I} \rangle \models \psi]$
	is maximal

Associated decision problem

Is there a formula $\psi \in \mathcal{L}_{\mathsf{FTL}}$ that has score at least k?

Hardness

The \mathcal{L}_{FTL} learning problem is NP-hard

Upper bound

The \mathcal{L}_{FTL} learning problem is in PSPACE

TL chains

TL Chains

 $\mathcal{L}_{\mathsf{TL}}$ formulas can be represented using TL chains:

- O represent logical connectors
- \diamondsuit represent predicates
- \Box represent variables

Represents the quantifer-free FTL formula:

 $(q(v, u) \wedge r(z, y)) \cup p(t, x)$

Learning algorithm (Simplified)

- 1 For all possible TL chains
 - (2) For all combinations of quantifiers and types
 - (3) Call a MaxSAT solver to fill in the blanks in the chain, so that the formula fits best the dataset

Core constraints

Syntactic, semantic constraints: ensure well-formed formulas and consistency with the example traces

Very reminiscent of the model-checking algorithm for modal logic

Formula quality enhancement

Syntactic redundancies prevention: prevent formulas which have idempotent or involutive operators chained. Ex: $\Diamond \Diamond \varphi$, $\neg \neg \varphi$, etc.

Variable visibility enforcement: ensure that all variables quantified upon are visible in the quantifier-free parts of the formula

MaxSAT is a cornerstone of our approach:

Learning problem: Maximize the score of the learnt formula

For each trace t, use a variable c_t

•
$$c_t$$
 is true iff $c_t \models \psi$

Soft clause:
$$c_t$$
 with weight $\sigma(t)$

Score of the MaxSAT encoding = Score of the learnt formula ψ

Pros (compared to a pure SAT approach)

- Resilience to noise in the training set
- When no perfect formula exists, still learns a classifier with the best accuracy

To have distinctive behaviours, we hand-coded 3 domain-specific agents, for each of 3 different domains found in the IPC (Childsnack, Spanner, Rovers).

Training set

For each domain:

Three small planning problems, and the plans of the agents

Test set

For each domain:

20 planning problems of various sizes, and the plans generated by the agents

Experimental evaluation - Childsnack examples

Agents that solve Childsnack problems:

- NGL optimally solve the problem, start with sandwiches with gluten first
- NGF same as NGF but start with gluten-free sandwiches
- GS greedily serves children: prepare a sandwich, put it on the tray, go and serve it directly. Prioritizes gluten-free sandwiches

Experimental evaluation - Childsnack examples

Agents that solve Childsnack problems:

- NGL optimally solve the problem, start with sandwiches with gluten first
- ► NGF same as NGF but start with gluten-free sandwiches
- GS greedily serves children: prepare a sandwich, put it on the tray, go and serve it directly. Prioritizes gluten-free sandwiches

They are respectively completely recognized by the following:

 $\forall x \in \text{Sandwich.} \bigcirc \neg \text{no_gluten}_\text{sandwich}(x)$

$$\exists x \in \mathsf{Sandwich}. \bigcirc (\mathsf{no_gluten_sandwich}(x) \land \\ \bigcirc \mathsf{at_kitchen_sandwich}(x))$$

 $\forall x \in \mathsf{Kitchen}. \exists y \in \mathsf{Tray}. \Diamond (\mathsf{at}(y, x) \land \overline{\Diamond} \neg \mathsf{at}(y, x))$

Average time to find a (possibly imperfect) formula for a Childsnack agent, in seconds

Rows: # of allowed logical connectors. q: # of quantifiers # ins.: # of instances in the training set

Experimental evaluation – Statistics

Total computation times for Childsnack (top, hh:mm:ss), and total number of formulas (bottom), for agent GS.

Rows: # of allowed logical connectors. q: # of quantifiers # ins.: # of instances in the training set

# ins.	-	L		2	3		
q	1	2	1	2	1	2	
$ \varphi = 2$	0:00:08	0:05:03	0:00:08	0:16:43	0:01:14	0:44:48	
3	0:00:35	0:19:53	0:00:35	1:07:27	0:06:46	3:35:18	
4		0:25:27		1:32:07			
·	# ins.		2	3	3		

q	1	2	1	2	1	2
$ \varphi = 2$	22	110	22	112	22	123
3	92	624	92	624	92	671
4	.	746	.	757		

Experimental evaluation – Discussion

Computation time

- Total computation times are shown, but lots of possibilities of parallelization
- A perfect solution is found within a couple minutes, but we let the algorithm run nevertheless

Few-shot learning

 Often, very few instances (even sometimes 1) are enough to learn a classifier that has the perfect score on our test set

MaxSAT for imperfect datasets

- Sometimes, the training set is so small that it contains a little noise
- The solver still learns imperfect formulas, that have high accuracy on the test set

In this presentation

- A framework for learning interpretable formulas that generalize and characterize a set of plans
- Application to behaviour classification
- A reduction to MaxSAT that learns classifiers from small datasets in reasonable time

Perspective: Recombining formulas

 Combine the (sometimes imperfect) formulas into another more robust classifier

Perspective: Usage in search

• Assist a RL agent in its learning phase (\approx Imitation learning)