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• Recent years: new strong bidirectional search algorithms

⇝ Can we transfer these works to classical planning?
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Heuristic Search

• Most prominent algorithm: A∗ (backward A∗b)
• Explores the state space unidirectionally

• Bidirectional heuristic search performs two searches simultaneously
• Can outperform unidirectional search
• Generally considered inefficient [BK15]

Rekindled interest in bidirectional heuristic search
• Improved theoretical understanding [ECS+17]
• Development of new successful algorithms

• NBS [ECS+17]
• BAE∗ [Sad13, ARB20]
⇝ Excellent performance (compared to more complex algorithms)
⇝ Promising candidate for planning

2 / 12 Kilian Hu, David Speck – An Analysis of BAE* for Classical Planning



Heuristic Search

• Most prominent algorithm: A∗ (backward A∗b)
• Explores the state space unidirectionally

• Bidirectional heuristic search performs two searches simultaneously
• Can outperform unidirectional search
• Generally considered inefficient [BK15]

Rekindled interest in bidirectional heuristic search
• Improved theoretical understanding [ECS+17]
• Development of new successful algorithms

• NBS [ECS+17]
• BAE∗ [Sad13, ARB20]

⇝ Excellent performance (compared to more complex algorithms)
⇝ Promising candidate for planning

2 / 12 Kilian Hu, David Speck – An Analysis of BAE* for Classical Planning



Heuristic Search

• Most prominent algorithm: A∗ (backward A∗b)
• Explores the state space unidirectionally

• Bidirectional heuristic search performs two searches simultaneously
• Can outperform unidirectional search
• Generally considered inefficient [BK15]

Rekindled interest in bidirectional heuristic search
• Improved theoretical understanding [ECS+17]
• Development of new successful algorithms

• NBS [ECS+17]
• BAE∗ [Sad13, ARB20]
⇝ Excellent performance (compared to more complex algorithms)
⇝ Promising candidate for planning

2 / 12 Kilian Hu, David Speck – An Analysis of BAE* for Classical Planning



BAE* in a Nutshell

• Bidirectional A∗ with Error [Sad13, ARB20]
• Performs two A∗-like searches
• Exploits inaccuracy of consistent heuristics

• Priority function: bx(n) = fx(n) + dx(n)
• Diff-value: dx(n) = gx(n)− hx(n)

• Termination: lower bound ≥ upper bound
• Lower: bMinf+bMinb2
• Upper: cost of best solution found so far

• gF(n) = 3
• hF(n) = 4
• fF(n) = 7
• hB(n) = 1
• dF(n) = 3− 1 = 2
• bF(x) = 7+ 2 = 9
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Bidirectional Search in Planning

Algorithms like BAE∗ come with some challenges
• Forward search is easy
• Backward search is tricky

• Multiple goal states (sometimes exponentially many)
• Regressing a state with an action⇝ multiple predecessors

Backward search in Planning
• Generation of a reversed task [Sud13, GB13, ABFF13]
• Reversed SAS+ tasks often use partial states

• Adjustment of the heuristic computations
• Non-trivial intersection check of search frontiers

⇝ Here: Reversed task with an explicit state representation
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Reversed Task Generation

Initial states
• Goal states of the actual task
• Add initial states directly to open list

• Alternative: single dummy initial state
• Can negatively affect heuristics

• Reducing the number of initial states

Reversed Operators
• Multiple reversed actions for an action
• In practice often unproblematic

• 1.44 reversed actions per action

Number of initial states
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Empirical Evaluation

• Implemented A∗b and BAE∗ in Fast Downward [Hel06]
• Backward search based on the reversed task

• 3 different consistent heuristics
• Max heuristic hmax [BG01]
• Incremental pattern database heuristic hiPDB [HBH+07]
• Diverse potentials heuristic hpot [SPH15]

• Planning tasks from optimal track of IPCs
• 30 min and 4 GB memory for each task
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Coverage

hmax hiPDB hpot

A∗ A∗b BAE∗ A∗ A∗b BAE∗ A∗ A∗b BAE∗

Sum (1816) 847 558 706 1009 732 805 989 732 841
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Coverage

hmax hiPDB hpot

A∗ A∗b BAE∗ A∗ A∗b BAE∗ A∗ A∗b BAE∗

blocks (35) 21 22 30 28 32 31 28 28 30
ged (20) 15 15 20 19 13 20 19 13 20
termes (20) 10 8 15 13 12 16 12 11 16

… … …

Sum (1816) 847 558 706 1009 732 805 989 732 841
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Coverage – Possible to Generate Reversed Task

hmax hiPDB hpot

A∗ A∗b BAE∗ A∗ A∗b BAE∗ A∗ A∗b BAE∗

Sum (1256) 719 558 706 853 732 805 848 732 841

How do these algorithms perform in detail?
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BAE* vs. A*

Node Expansions
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BAE* vs. Backward A*

Node Expansions

100 102 104 106 ∅
A∗b + hpot

100

102

104

106

∅
B

A
E
∗ +

h
p

ot

Runtime (seconds)

100 101 102 103 ∅
A∗b + hpot

100

101

102

103

∅

B
A

E
∗ +

h
p

ot
10 / 12 Kilian Hu, David Speck – An Analysis of BAE* for Classical Planning



Complementary Strengths

Single Oracle Simple Classifier C

A∗ A∗b BAE∗ {A∗, A∗b} {A∗, BAE∗} {A∗, A∗b, BAE∗} {A∗, BAE∗}

hmax 847 558 706 848 878 878 856
hiPDB 1009 732 805 1026 1022 1031 986
hpot 989 732 841 1007 1019 1030 995

C: Use BAE∗ if the reversed task satisfies
• #initial states ≤ 100 and
• generation time ≤ 1sec
⇝ 20% of instances
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Conclusion

• Analysis of bidirectional heuristic search for classical planning
• In particular BAE∗

• Reversed tasks with explicit state representation
• Mutexes + reachability analysis pruning to reduce #initial states

• BAE∗ performs better than A∗ in multiple domains
• Analysis shows the merits of BAE∗, A∗ and A∗b

Future Work
• More compact representations of a reversed task

• Allow partial states in the backward search
• Other bidirectional heuristic search algorithms
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