On Bidirectional Heuristic Search in Classical Planning: An Analysis of BAE*

Kilian Hu¹ David Speck²

¹University of Freiburg

²Linköping University

1

• Recent years: new strong bidirectional search algorithms

- Recent years: new strong bidirectional search algorithms
- → Can we transfer these works to classical planning?

Heuristic Search

- Most prominent algorithm: A* (backward A^{*}_b)
 - Explores the state space unidirectionally
- Bidirectional heuristic search performs two searches simultaneously
 - Can outperform unidirectional search
 - Generally considered inefficient [BK15]

Heuristic Search

- Most prominent algorithm: A* (backward A^{*}_b)
 - Explores the state space unidirectionally
- Bidirectional heuristic search performs two searches simultaneously
 - Can outperform unidirectional search
 - Generally considered inefficient [BK15]

Rekindled interest in bidirectional heuristic search

- Improved theoretical understanding [ECS⁺17]
- Development of new successful algorithms
 - NBS [ECS⁺17]
 - BAE* [Sad13, ARB20]

Heuristic Search

- Most prominent algorithm: A* (backward A^{*}_b)
 - Explores the state space unidirectionally
- Bidirectional heuristic search performs two searches simultaneously
 - Can outperform unidirectional search
 - Generally considered inefficient [BK15]

Rekindled interest in bidirectional heuristic search

- Improved theoretical understanding [ECS⁺17]
- Development of new successful algorithms
 - NBS [ECS⁺17]
 - **BAE*** [Sad13, ARB20]
 - → Excellent performance (compared to more complex algorithms)
 - $\rightsquigarrow~$ Promising candidate for planning

- Bidirectional A* with Error [Sad13, ARB20]
- Performs two A*-like searches
- Exploits inaccuracy of consistent heuristics

- Bidirectional A* with Error [Sad13, ARB20]
- Performs two A*-like searches
- Exploits inaccuracy of consistent heuristics
- Priority function: $b_x(n) = f_x(n) + d_x(n)$
 - Diff-value: $d_x(n) = g_x(n) h_{\overline{x}}(n)$

- Bidirectional A* with Error [Sad13, ARB20]
- Performs two A*-like searches
- Exploits inaccuracy of consistent heuristics
- Priority function: $b_x(n) = f_x(n) + d_x(n)$
 - Diff-value: $d_x(n) = g_x(n) h_{\overline{x}}(n)$

•
$$g_F(n) = 3$$

- Bidirectional A* with Error [Sad13, ARB20]
- Performs two A*-like searches
- Exploits inaccuracy of consistent heuristics
- Priority function: $b_x(n) = f_x(n) + d_x(n)$
 - Diff-value: $d_x(n) = g_x(n) h_{\overline{x}}(n)$

- $g_F(n) = 3$
- $h_F(n) = 4$

•
$$f_F(n) = 7$$

- Bidirectional A* with Error [Sad13, ARB20]
- Performs two A*-like searches
- Exploits inaccuracy of consistent heuristics
- Priority function: $b_x(n) = f_x(n) + d_x(n)$
 - Diff-value: $d_x(n) = g_x(n) h_{\overline{x}}(n)$

- $g_F(n) = 3$
- $h_F(n) = 4$
- $f_F(n) = 7$
- $h_B(n) = 1$

- Bidirectional A* with Error [Sad13, ARB20]
- Performs two A*-like searches
- Exploits inaccuracy of consistent heuristics
- Priority function: $b_x(n) = f_x(n) + d_x(n)$
 - Diff-value: $d_x(n) = g_x(n) h_{\overline{x}}(n)$

- $g_F(n) = 3$
- $h_F(n) = 4$
- $f_F(n) = 7$
- $h_B(n) = 1$
- $d_F(n) = 3 1 = 2$

- Bidirectional A* with Error [Sad13, ARB20]
- Performs two A*-like searches
- Exploits inaccuracy of consistent heuristics
- Priority function: $b_x(n) = f_x(n) + d_x(n)$
 - Diff-value: $d_x(n) = g_x(n) h_{\overline{x}}(n)$

- $g_F(n) = 3$
- $h_F(n) = 4$
- $f_F(n) = 7$
- $h_B(n) = 1$
- $d_F(n) = 3 1 = 2$
- $b_F(x) = 7 + 2 = 9$

- Bidirectional A* with Error [Sad13, ARB20]
- Performs two A*-like searches
- Exploits inaccuracy of consistent heuristics
- Priority function: $b_x(n) = f_x(n) + d_x(n)$
 - Diff-value: $d_x(n) = g_x(n) h_{\overline{x}}(n)$
- Termination: lower bound \geq upper bound
 - Lower: $\frac{bMin_f + bMin_b}{2}$
 - Upper: cost of best solution found so far

- $g_F(n) = 3$
- $h_F(n) = 4$
- $f_F(n) = 7$
- $h_B(n) = 1$
- $d_F(n) = 3 1 = 2$
- $b_F(x) = 7 + 2 = 9$

Bidirectional Search in Planning

Algorithms like BAE* come with some challenges

- Forward search is easy
- Backward search is tricky
 - Multiple goal states (sometimes exponentially many)
 - Regressing a state with an action \rightsquigarrow multiple predecessors

Bidirectional Search in Planning

Algorithms like BAE* come with some challenges

- Forward search is easy
- Backward search is tricky
 - Multiple goal states (sometimes exponentially many)
 - Regressing a state with an action ~> multiple predecessors

Backward search in Planning

- Generation of a reversed task [Sud13, GB13, ABFF13]
- Reversed SAS+ tasks often use partial states
 - Adjustment of the heuristic computations
 - Non-trivial intersection check of search frontiers

Bidirectional Search in Planning

Algorithms like BAE* come with some challenges

- Forward search is easy
- Backward search is tricky
 - Multiple goal states (sometimes exponentially many)
 - Regressing a state with an action \rightsquigarrow multiple predecessors

Backward search in Planning

- Generation of a reversed task [Sud13, GB13, ABFF13]
- Reversed SAS+ tasks often use partial states
 - Adjustment of the heuristic computations
 - Non-trivial intersection check of search frontiers

 \rightsquigarrow Here: Reversed task with an explicit state representation

Reversed Task Generation

Initial states

- Goal states of the actual task
- Add initial states directly to open list
 - Alternative: single dummy initial state
 - Can negatively affect heuristics

Reversed Task Generation

Initial states

- Goal states of the actual task
- Add initial states directly to open list
 - Alternative: single dummy initial state
 - Can negatively affect heuristics
- Reducing the number of initial states

Number of initial states

Reversed Task Generation

Initial states

- Goal states of the actual task
- Add initial states directly to open list
 - Alternative: single dummy initial state
 - Can negatively affect heuristics
- Reducing the number of initial states

Reversed Operators

- Multiple reversed actions for an action
- In practice often unproblematic
 - 1.44 reversed actions per action

Number of initial states

Empirical Evaluation

- Implemented A^{*}_b and BAE^{*} in Fast Downward [Hel06]
 - Backward search based on the reversed task
- 3 different consistent heuristics
 - Max heuristic h^{\max} [BG01]
 - Incremental pattern database heuristic *h*^{iPDB} [HBH+07]
 - Diverse potentials heuristic $h^{\rm pot}$ [SPH15]
- Planning tasks from optimal track of IPCs
- 30 min and 4 GB memory for each task

	$h^{ m max}$				$h^{ m iPDB}$			$h^{ m pot}$		
	A*	A_b^*	BAE*	A *	A_b^*	BAE*	A *	A_b^*	BAE*	
Sum (1816)	847	558	706	1009	732	805	989	732	841	

		h^{\max}			$h^{ m iPDB}$			$m{h}^{ m pot}$		
	A*	A_b^*	BAE*	A *	A_b^*	BAE*	A *	A_b^*	BAE*	
blocks (35)	21	22	30	28	32	31	28	28	30	
ged (20)	15	15	20	19	13	20	19	13	20	
termes (20)	10	8	15	13	12	16	12	11	16	
	•••				•••			•••		
Sum (1816)	847	558	706	1009	732	805	989	732	841	

Coverage – Possible to Generate Reversed Task

		h^{\max}			$h^{ m iPDB}$			$h^{ m pot}$		
	A *	A_b^*	BAE*	A *	A_b^*	BAE*	A *	A_b^*	BAE*	
Sum (1256)	719	558	706	853	732	805	848	732	841	

Coverage – Possible to Generate Reversed Task

		$h^{ m max}$			$h^{ m iPDB}$			$h^{ m pot}$		
	A *	A_b^*	BAE*	A *	A_b^*	BAE*	A *	A_b^*	BAE*	
Sum (1256)	719	558	706	853	732	805	848	732	841	

How do these algorithms perform in detail?

BAE* vs. A*

BAE* vs. Backward A*

Kilian Hu, David Speck – An Analysis of BAE* for Classical Planning

		Single			Oracle					
	A*	A_b^*	BAE*	$\{A^*, A^*_b\}$	$\{A^*, BAE^*\}$	$\{A^*, A^*_b, BAE^*\}$				
h^{\max}	847	558	706	848	878	878				
$h^{ m iPDB}$	1009	732	805	1026	1022	1031				
$h^{ m pot}$	989	732	841	1007	1019	1030				

	Single				Oracle	Simple Classifier ${\mathcal C}$	
	A *	A_b^*	BAE*	$\{A^*, A^*_b\}$	$\{A^*, BAE^*\}$	$\{A^*, A^*_b, BAE^*\}$	$\{A^*, BAE^*\}$
h^{\max}	847	558	706	848	878	878	856
$h^{ m iPDB}$	1009	732	805	1026	1022	1031	986
$h^{ m pot}$	989	732	841	1007	1019	1030	995

\mathcal{C} : Use BAE* if the reversed task satisfies

- + #initial states \leq 100 and
- generation time \leq 1sec
- $\rightsquigarrow~$ 20% of instances

Conclusion

- Analysis of bidirectional heuristic search for classical planning
 - In particular BAE*
- · Reversed tasks with explicit state representation
 - Mutexes + reachability analysis pruning to reduce #initial states

Conclusion

- Analysis of bidirectional heuristic search for classical planning
 - In particular BAE*
- Reversed tasks with explicit state representation
 - Mutexes + reachability analysis pruning to reduce #initial states
- BAE* performs better than A* in multiple domains
- Analysis shows the merits of BAE*, A* and A_b^*

Conclusion

- Analysis of bidirectional heuristic search for classical planning
 - In particular BAE*
- · Reversed tasks with explicit state representation
 - Mutexes + reachability analysis pruning to reduce #initial states
- BAE* performs better than A* in multiple domains
- Analysis shows the merits of BAE*, A* and A_b^*

Future Work

- More compact representations of a reversed task
 - Allow partial states in the backward search
- Other bidirectional heuristic search algorithms

- Vidal Alcázar, Daniel Borrajo, Susana Fernández, and Raquel Fuentetaja, *Revisiting regression in planning*, Proc. IJCAI 2013, 2013, pp. 2254–2260.
- Vidal Alcázar, Patricia J. Riddle, and Mike Barley, A unifying view on individual bounds and heuristic inaccuracies in bidirectional search, Proc. AAAI 2020, 2020, pp. 2327–2334.
- Blai Bonet and Héctor Geffner, Planning as heuristic search, AIJ 129 (2001), no. 1, 5–33.
- Joseph Kelly Barker and Richard E. Korf, *Limitations of front-to-end bidirectional heuristic search*, Proc. AAAI 2015, 2015, pp. 1086–1092.

- Jürgen Eckerle, Jingwei Chen, Nathan R. Sturtevant, Sandra Zilles, and Robert C. Holte, *Sufficient conditions for node expansion in bidirectional heuristic search*, Proc. ICAPS 2017, 2017, pp. 79–87.
- Héctor Geffner and Blai Bonet, A concise introduction to models and methods for automated planning, vol. 7, Synthesis Lectures on Artificial Intelligence and Machine Learning, no. 2, Morgan & Claypool, 2013.
- Patrik Haslum, Adi Botea, Malte Helmert, Blai Bonet, and Sven Koenig, Domain-independent construction of pattern database heuristics for cost-optimal planning, Proc. AAAI 2007, 2007, pp. 1007–1012.
- Malte Helmert, *The Fast Downward planning system*, JAIR **26** (2006), 191–246.

- Samir K. Sadhukhan, *Bidirectional heuristic search based on error* estimate, CSI Journal of Computing **2** (2013), no. 1–2, S1:57–S1:64.
- Jendrik Seipp, Florian Pommerening, and Malte Helmert, *New optimization functions for potential heuristics*, Proc. ICAPS 2015, 2015, pp. 193–201.
- Martin Suda, *Duality in STRIPS planning*, arXiv:1304.0897v1 [cs.AI], 2013.

