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Abstract

Saturated cost partitioning (SCP) is one of the strongest meth-
ods for admissibly combining heuristics for optimal classical
planning. The quality of an SCP heuristic depends heavily
on the order in which its component heuristics are considered.
For high accuracy, it is essential to maximize over multiple
SCP heuristics computed using different component orders.
However, for n component heuristics, even enumerating all
n! orders is usually infeasible. Consequently, previous work
resorted to using greedy algorithms and local optimization. In
contrast, we present the first practical method for computing
the perfect SCP heuristic that is equivalent to considering all
component orders. We show that a set of SCP heuristics forms
an additive disjunctive heuristic, which allows us to concisely
represent component orders as a directed acyclic graph. Fur-
thermore, once certain components have been considered, the
order of the remaining components often becomes irrelevant.
By exploiting this characteristic, we can reduce the size of
the heuristic representation by several orders of magnitude in
practice. Finally, our work makes it possible to compare the
quality of existing SCP methods with that of the perfect SCP
heuristic, revealing that existing approximations are nearly
optimal for standard benchmarks.

1 Introduction
The A* algorithm (Hart, Nilsson, and Raphael 1968), to-
gether with an admissible heuristic, is the most widely used
approach for solving classical planning problems optimally
(e.g., Haslum et al. 2007; Helmert and Domshlak 2009;
Karpas and Domshlak 2009; Sievers and Helmert 2021).
Today’s strongest such heuristics use some form of cost
partitioning, which admissibly combines a set of compo-
nent heuristics by dividing the cost of each action among
them (Katz and Domshlak 2010). One such algorithm is
saturated cost partitioning (SCP) (Seipp and Helmert 2014;
Seipp, Keller, and Helmert 2020). Given an ordered sequence
of component heuristics, SCP greedily assigns as little cost
as necessary to each component heuristic so that all esti-
mates are preserved, before using the remaining costs for the
next heuristic in the same way, until all heuristics have been
considered.

Computing an SCP is much more efficient than optimal
cost partitioning (Katz and Domshlak 2010; Pommerening et
al. 2015; Pommerening et al. 2021) and usually more informa-
tive than (saturated) post-hoc optimization (Pommerening,

Röger, and Helmert 2013; Höft, Speck, and Seipp 2023;
Höft et al. 2024) and (opportunistic) uniform cost partition-
ing (Seipp, Keller, and Helmert 2017a). SCP has been con-
sidered both for abstraction heuristics (Rovner, Sievers, and
Helmert 2019; Seipp 2019; Kreft et al. 2023; Sievers, Keller,
and Röger 2024) and landmark heuristics (Seipp, Keller, and
Helmert 2017a). In this paper, we focus on SCP over abstrac-
tion heuristics, the basis of the winning entries in the Interna-
tional Planning Competition (IPC) 2023 (Drexler et al. 2023;
Seipp 2023; Taitler et al. 2024).

One drawback of SCP is that for most tasks, it is impossible
to find a single order that provides accurate estimates across
all evaluated states. Previous work therefore maximized over
a diverse set of SCP heuristics, optimized for different states
(Seipp 2017). While this approach works well in practice,
it has three fundamental limitations. First, each order is
greedily initialized for a sampled state s and then optimized
with local search, which often fails to find the best order for s.
Second, even an optimal order for s may be arbitrarily bad for
other states (Seipp, Keller, and Helmert 2017b). Third, due
to the factorial number of orders, it is infeasible to judge the
quality of the found orders against the best possible orders.

To address these issues, we introduce an algorithm that
efficiently computes all orders for SCP. Its efficiency stems
from several key insights. (1) Common prefixes between
orders lead to duplicate computations and lookup tables that
can be avoided by representing saturated cost partitioning
as an additive disjunctive heuristic graph (ADHG) (Coles et
al. 2008). We introduce the first general reduction rules for
ADHGs to reduce their memory requirements. (2) To deal
with the factorial number of orders, we identify conditions un-
der which the relative order of heuristics becomes irrelevant,
allowing for the collapse of all such equivalent suborders
into one. (3) We demonstrate how this order independence
can be approximated during the construction of the ADHG
to avoid generating equivalent suborders. Together, these
insights allow us to efficiently compute hSCP

∗ , the perfect SCP
heuristic.

We evaluate our approach on IPC benchmarks and show
that the ADHG allows us to compute hSCP

∗ for many more
tasks than the explicit alternative which enumerates all or-
ders. We also show that the best sampling-based strategies
approximate hSCP

∗ very closely, even though they consider
only a tiny fraction of orders.



2 Background
Optimal classical planning tasks can be solved with a state
space search in a weighted transition system defined as T =
⟨S,L, T, cost, s0, S∗⟩ where S is a finite set of states, L is
a finite set of labels for a set of transitions T of the form
s

ℓ−→ s′ with s, s′ ∈ S, ℓ ∈ L, and a cost function cost : L →
R ∪ {−∞,∞}. The state s0 ∈ S defines the initial state
and S∗ ⊆ S is a set of goal states. Solving the planning task
implies finding a sequence of transitions, a plan, that leads
from the initial state to one of the goal states. The cost of a
plan is defined as the sum of its transition costs. In optimal
planning, the task is to either find a plan with minimum cost
or show that no plan exists. A label ℓ affects a transition
system T if there exists a transition s

ℓ−→ s′ where s ̸= s′.
A heuristic is a function h : S → R ∪ {−∞,∞} that

estimates goal distances. It is admissible if h(s) ≤ h∗(s)
for all s ∈ S, where h∗ is the perfect heuristic, that maps
each state to the cost of the cheapest path from s to any goal
state. We write h(cost, s) to emphasize that heuristic h is
computed under cost function cost. Two heuristics h1 and h2

are equivalent if h1(s) = h2(s) for all s ∈ S.
Abstraction heuristics use an abstraction function α :

S → Sα to induce the abstract transition system T α =

⟨Sα, L, Tα, cost, sα0 , S
α
∗ ⟩, with Tα = {α(s) ℓ−→ α(s′) |

s
ℓ−→ s′ ∈ T}, sα0 = α(s0) and Sα

∗ = {α(s)|s ∈ S∗}.
T α gives rise to the admissible abstraction heuristic hα

which returns the perfect goal distance in the abstraction:
hα(s) = h∗

T α(α(s)). To evaluate an abstraction heuristic
during a search, it suffices to store the abstraction function
and a lookup table that holds the goal distances of all abstract
states.

A cost function mapping C that maps each heuristic hi ∈ H
to a cost function costi with 1 ≤ i ≤ n is a cost partition,
if the cost partitioning condition

∑n
i=1 costi(ℓ) ≤ cost(ℓ)

holds for all ℓ ∈ L. The resulting cost partitioning heuris-
tic hC =

∑n
i=1 hi(costi, s) is admissible if all hi are ad-

missible (Katz and Domshlak 2010; Pommerening et al.
2015). Saturated cost partitioning (SCP) considers heuris-
tics in sequence and uses the fact that a given heuristic
can often be evaluated under a reduced (saturated) cost
function without affecting any of its estimates, allowing
SCP to preserve unneeded costs for subsequent heuristics
(Seipp, Keller, and Helmert 2020). Formally, for a given
order ω = ⟨h1, . . . , hn⟩, SCP computes the cost partition
CSCP
ω = {hi 7→ costi} with costi = saturate(hi, remaini−1),

remaini = remaini−1 − costi for all 1 ≤ i ≤ n and
remain0 = cost. Infinite values are handled by the rules
of left-addition, i.e., ∞−∞ = ∞. We write hSCP

ω = hCSCP
ω

for the resulting SCP heuristic. For abstraction heuristics hα,
we can compute the unique minimum saturated cost function
mscf = saturate(hα, cost) with minimal overhead (Seipp
and Helmert 2018):

mscf(ℓ) = sup

s
ℓ−→s′∈T

(h∗
T α(cost, s)⊖ h∗

T α(cost, s′))

Here, ⊖ denotes regular subtraction, except that ∞−∞ =
−∞.

3 SCP Heuristics as Computational Graphs
The accuracy of a saturated cost partitioning heuristic over
abstraction heuristics H strongly depends on the order ω in
which the SCP algorithm considers the heuristics h ∈ H
(Seipp, Keller, and Helmert 2017b). It is therefore beneficial
to maximize over multiple SCP heuristics hSCP

ω computed
for different orders ω (Seipp, Keller, and Helmert 2020). In
principle, we can obtain the perfect SCP heuristic, hSCP

∗ , by
maximizing over all orders ω of H. However, computing
hSCP
∗ naively in this way for n = |H| heuristics requires

enumerating n! orders and storing n lookup tables for each
order. This factorial explosion makes the naive computation
of hSCP

∗ infeasible even for small values of n.
As a consequence, previous work greedily approximates

good orders for single states s, by ordering those heuristics
h first with a high ratio of h(s) divided by the sum of satu-
rated costs that h wants to take away from other heuristics.
Greedy orders can be optimized further with local search
(Seipp, Keller, and Helmert 2017b). To “cover” multiple
states, Seipp, Keller, and Helmert (2020) proposed a diversifi-
cation procedure that iteratively generates new SCP heuristics
hSCP
ω for (optimized) greedy orders ω but only keeps hSCP

ω
if it increases the overall heuristic estimate for at least one
sample state.

Instead of approximating hSCP
∗ , we present the first prac-

tically feasible approach to compute hSCP
∗ exactly. While

our algorithm considers all orders, it only does so implic-
itly, which significantly reduces the number of computed and
stored lookup tables. The main reductions come from two
advancements. First, we share the computations and lookup
tables between orders that have the same prefix. And second,
we approximate equivalence between orders and enumerate
only those orders that can lead to different SCP heuristics.
We now first show the benefits of expressing a saturated cost
partitioning heuristic as a graph over its saturated component
heuristics. Later, we will explore equivalence between orders
in Section 4.

Computing and storing each order individually in an SCP
heuristic is wasteful when a prefix is repeated. Two orders
that share a prefix yield the same lookup tables for all heuris-
tics in the prefix. When computing all possible orders, this
drastically reduces computational effort and memory con-
sumption. To represent saturated cost partitioning heuristics
over multiple orders while sharing lookup tables between
orders, we use the following graph data structure from Coles
et al. (2008).

Definition 1 (Additive-Disjunctive Heuristic Graph). An
additive-disjunctive heuristic graph (ADHG) is a directed
acyclic graph with a single root node and three types of
nodes: sum, max and evaluator nodes. Sum and max nodes
are internal nodes and evaluate to the sum and the maximum
of the heuristic values of their children, respectively. Evalua-
tor nodes are leaf nodes and evaluate an assigned heuristic.
The evaluation of the root node is the ADHG heuristic value.

Since ADHGs were introduced for arbitrary collections
of heuristics, we must use the correct remaining costs when
saturating a heuristic to ensure that the heuristic encoded
by the ADHG is admissible. For heuristic hi, the correct
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(c) Reduced representation of Figure 1b.
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(b) Prefix-merged ADHG for H if all lookup tables are unique.

Figure 1: Three ADHGs representing the same hSCP
∗ heuristic for H = {h1, h2, h3} with different levels of compactness. Cost functions are

omitted for conciseness, so heuristic hi at different locations represents the same abstraction heuristics but evaluated under different cost
functions.

remaining cost function can be computed as the original
cost function minus the saturated costs of any heuristic that
appears in a sum node on the path from the root to hi. This
ensures that ADHGs compute an admissible heuristic by
being safely additive (see Definition 4.4 and Theorem 2 by
Coles et al. (2008)).

Example 1. Given the ADHG for heuristics {h1, h2, h3}
in Figure 1a, the heuristic value of the root node can
be calculated by evaluating all saturated cost partitions
for the leaf nodes, i.e., for the first sum node we obtain
sum1(s) = h1(mscf1, s) + h2(mscf2, s) + h3(mscf3, s) for
all s ∈ S, where mscf1 = saturate(h1, cost), mscf2 =
saturate(h2, cost − mscf1) and mscf3 = saturate(h3, cost −
mscf1 − mscf2). The overall ADHG heuristic value is then
hADHG(s) = max(sum1(s) + · · ·+ sum6(s)).

The ADHG structure was introduced as a general tool for
representing additivity relations between arbitrary heuristics.
However, it is particularly well suited for our use case because
the common prefix of multiple orders can be captured as
common ancestors in a graph. By putting evaluation nodes
for shared heuristics higher in the graph, the ADHG can
represent common prefixes of multiple orders compactly by
creating a hierarchy of evaluation nodes. Figures 1a and 1b
show the reduction in representation size when switching to
this prefix-merged representation. Conceptually, max nodes
represent branching points where a common order prefix
splits into different saturation orders. Sum nodes sequentially
add more heuristics to the saturation order along a specific
branch.

In a fully expanded prefix-merged ADHG (e.g., Figure 1b),
the max node in the first layer has n branches and n lookup
tables, each node in the second max node layer has n − 1
branches and n · (n− 1) lookup tables, until the nodes in the
final layer have no further branches and n! lookup tables. Us-
ing the permutation function P (x, y) = x!

(x−y)! , the number

of lookup tables in layer l is P (n, l). An ADHG therefore
reduces the number of lookup tables from the naive n · n!
to

∑n
l=1 P (n, l) =

∑n−1
k=0

n!
k! . Since

∑n−1
k=0

1
k! approximates

Euler’s number e, this yields approximately e · n! lookup
tables.

3.1 General ADHG Reduction Rules

Previous work used ADHGs to represent small, hand-crafted
heuristics (Coles et al. 2008). Our work is, to our knowledge,
the first to use ADHGs to represent large, algorithmically
generated heuristics with up to millions of nodes. Generating
large ADHGs algorithmically makes it important to keep
their size as small as possible to allow for efficient evalua-
tion. Therefore, we ensure that an ADHG never includes
duplicate lookup tables or structurally equivalent subgraphs.
We achieve this by indexing all leaf lookup tables based on
their minimum saturated cost function and corresponding
abstraction. Then, we index internal nodes based on their
type (sum/max) and the index of all their child nodes. While
this eliminates structural redundancy, it does not address the
remaining mathematical redundancy. To tackle this, we intro-
duce the first general reduction rules for ADHGs that can be
used to automatically remove redundant computations. They
are general in the sense that they apply to ADHGs over arbi-
trary types of heuristics, not just those for computing hSCP

∗ .
Every reduction rule can be derived from the properties of
the mathematical expression represented by the ADHG. The
first proposition follows from the associativity of the sum and
max operations.

Proposition 1. If an ADHG node c has a parent p that is
of the same type, then p and c can be combined without
changing the ADHG heuristic. This is achieved by adding all
children of c as children of p and removing the connection
between p and c.
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Figure 2: Example showing general reduction rules applied to the
ADHG from Figure 1c. Figure 2a shows part of Figure 1c with
the change that h2 and h3 are order-independent after saturating
h1. Figure 2b shows the ADHG from Figure 2a without duplicated
nodes. Applying Proposition 2 to Figure 2b yields the ADHG
for Figure 2c and applying Proposition 1 to Figure 2c results in
Figure 2d.

An example is shown in the change from Figure 2c to Fig-
ure 2d. Consequently, in an ADHG that is fully reduced with
respect to Proposition 1, all children of sum nodes are max
nodes and the other way around. Furthermore, maximum and
sum operations on a single operand are the identity function,
which is another point of possible reductions.

Proposition 2. If an ADHG node n has a single child node c
and parent nodes p1, . . . , pk, then c can be added as a child
to each p1, . . . , pk. If n has no parent nodes (i.e., it is the root
node), then c becomes the new root node. In both cases, n
can be removed from the graph by removing the connections
between p1, . . . , pk, and n, and the heuristic is unaffected.

Examples are shown in the change between Figures 1b
and 1c and between Figures 2b and Figure 2c. The final gen-
eral reduction rule in this section simplifies common factors
in max nodes and is essential for the proof of Theorem 3.

Proposition 3. Let G be an ADHG that is fully reduced with
respect to Proposition 1. If there exists a max or evaluator
node noden in G that appears in all sum node children of a
max node maxm. Then noden can be removed from all sum
node children of maxm and a new sum node with both maxm
and noden can be inserted between maxn and all its parents.

Proof. Addition is distributive over the maximum opera-
tion. Therefore any term max(a + b1, a + b2, . . . , a + bn),
where a, b1, . . . , bn ∈ R ∪ {−∞,∞}, is equal to a +
max(b1, . . . , bn).

An example for this reduction rule is shown in Figure 3.
Viewing ADHGs as symbolic expression graphs with the

heuristics as symbolic variables shows that a lot more reduc-
tion rules would be possible from exploiting more involved
symmetric, associative, and distributive structures. A general
solution would be to employ a term rewriting system or, more
specifically, a graph rewriting system (Ehrig et al. 2006) that
is capable of performing algebraic simplification on ADHGs.
Due to the complexity of these reductions, we leave better
optimizations and reductions of ADHGs as future work.
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Figure 3: Example of order-independent sets of heuristics leading to
less complex ADHGs by applying Theorem 3. The set of heuristics
is H = {h1, h2, h3, h4} and H1 = {h1, h2} is order-independent
from H2 = {h3, h4}. Note that, although the number of nodes
increases from 3a to 3b, the number of mathematical operations
required to evaluate the graph decreases.

4 Order Independence Between Heuristics
To further reduce the size of ADHGs, we now exploit the
specific properties of ADHGs for SCP. The previous reduc-
tion rules were post-hoc reduction rules that simplified the
ADHGs nodes after they were generated. Now we introduce
a preemptive reduction rule that allows us to skip redundant
computations before generating their nodes. It is based on the
insight that two different orders ω and ω′ for SCP can induce
the same SCP heuristic, i.e., hSCP

ω (s) = hSCP
ω′ (s) for all s ∈ S.

Detecting and even predicting this equivalence between SCP
heuristics is essential for efficiently computing hSCP

∗ , as it
allows us to drastically reduce the number of orders we need
to consider explicitly. Figure 2 shows a graphical example
of this: knowing that the order of h2 and h3 does not matter
after saturating h1 helps to reduce the size of the ADHG.

Checking whether two orders yield the same SCP heuristic
is challenging but can be approximated by comparing the
underlying cost partitions.

Proposition 4 (Equivalent Orders). Given two orders ω and
ω′ over the same set of heuristics H and a cost function
cost, then hSCP

ω = hSCP
ω′ if their cost partitions CSCP

ω and CSCP
ω′

assign the same cost function to the same heuristics, e.g.,
CSCP
ω (hi) = CSCP

ω′ (hi) for all 1 ≤ i ≤ n. We say ω and ω′ are
equivalent under cost if this holds.

The proof follows directly from the definition of saturated
cost partitioning. Proposition 4 is only a sufficient condition
for the equivalence of two SCP heuristics since different cost
functions can still result in equivalent SCP heuristics.1 To
relate equivalent orders to abstraction heuristics, we define
order-independent heuristics.

Definition 2 (Order Independence). Two heuristics h1 and

1For example, if the set of heuristics consists of two instances
of the same abstraction heuristic that consumes all costs when it is
saturated, both orders will result in the same SCP heuristic, but the
two underlying cost partitions are different.



h2 are order-independent under cost function cost, if ω =
⟨h1, h2⟩ and ω′ = ⟨h2, h1⟩ are equivalent under cost.

To extend pairwise order independence to sets of heuristics,
we introduce the notion of order-independent sets.

Definition 3 (Order-Independent Sets). Let HI =
{H1, . . . ,Hn} be a partition of H. HI is an order-
independent set if and only if all orders of H, where the
relative order of heuristics within each set Hi is the same,
are equivalent under cost. We call heuristic sets that fulfill
these conditions order-independent.

Example 2. Consider the sets H = {h1, h2, h3}, H1 =
{h1, h2} and H2 = {h3}. Then {H1,H2} is an
order-independent set under cost if CSCP

⟨h1,h2,h3⟩(hi) =

CSCP
⟨h1,h3,h2⟩(hi) = CSCP

⟨h3,h1,h2⟩(hi) and CSCP
⟨h2,h1,h3⟩(hi) =

CSCP
⟨h2,h3,h1⟩(hi) = CSCP

⟨h3,h2,h1⟩(hi) for all 1 ≤ i ≤ n.

Order-independent sets are a special case of order-
independent pairs because they require pairwise order in-
dependence between all elements in the different order-
independent sets.

Theorem 1. A partition {H1, . . . ,Hn} of the heuristics H
is an order-independent set under cost function cost if every
heuristic hi ∈ H, with hi ∈ Ha, is order independent of
every hj ∈ H \ Ha under any cost function that can be
obtained by saturating abstractions from H \ {hi, hj}.

Proof. Given a partition of H, every order that preserves the
relative positioning of heuristics inside each partition can be
reached by swapping two order-adjacent heuristics h1 ∈ Ha

and h2 ∈ Hb. Each such swap preserves the overall heuristic
value if h1 and h2 are order-independent under the remaining
costs after saturating all hi ∈ H\{h1, h2} that appear before
h1 and h2 in the order.

Theorem 1 shows that it is sufficient to check order
independence between pairs of heuristics to detect order-
independent sets if the order-independence holds for all cost
functions that can occur during the saturation process. To
compute order-independent sets of heuristics from pairwise
order-independence information, we build a graph that re-
flects the opposite information, i.e., order dependence.

Definition 4 (Order-Dependence Graph). The order-
dependence graph GD(H, cost) = ⟨V,E⟩ for saturated cost
partitioning over heuristics H and cost function cost has
a vertex h ∈ V for each heuristic h ∈ H and an edge
⟨h1, h2⟩ ∈ E if h1 ∈ H and h2 ∈ H are order-dependent
under any remaining cost function that can be reached by
saturating abstractions from H \ {h1, h2}.

Given an order-dependence graph GD, we can compute
its connected components H1, . . . ,Hn which form order-
independent heuristic sets.

Theorem 2. The connected components H1, . . . ,Hn of an
order-dependence graph GD(H, cost) are order-independent
heuristic sets under cost.

Proof. Consider two connected components, H1 and H2, of
an order-dependence graph GD(H, cost). The heuristic sets

are not order-independent if (1) H1 and H2 are not disjoint,
or (2) there exists a heuristic h ∈ H and a heuristic h′ ∈ H′

that are order-dependent under cost. However, by definition,
two connected components of a graph are disjoint (contra-
dicting Condition 1). Additionally, according to Definition 4,
if two heuristics h and h′ are order-dependent under cost,
there is an edge ⟨h, h′⟩ in GD(H, cost), meaning h and h′

cannot belong to different components (contradicting Condi-
tion 2). Thus, any two heuristics of two separate components
are order-independent, which by Theorem 1 shows that the
connected components of the order-dependence graph form
order-independent heuristic sets.

As computing connected components of a graph requires
only quadratic time in the graph size, this is a practical ap-
proach to determining order-independent heuristic sets.

5 An Order Independence Reduction Rule
Above, we theoretically defined order-independent sets and
showed how to construct them from order-independent pairs
of heuristics. Now, we derive a reduction rule specific to
hSCP
∗ for ADHGs exploiting order-independent sets. This

rule allows us to avoid constructing the full ADHG for a set
of order-independent heuristics by directly constructing an
equivalent, more concise ADHG.

To reduce the size of an ADHG for hSCP
∗ , we aim to ex-

clude all redundant orders. For equivalent orders, this can
be achieved by including only one order over the order-
independent sets. We choose an arbitrary order for the in-
dependent sets, H1, . . . ,Hn and use the order where all ele-
ments of Hi are placed before all elements of Hi+1. There
always exists one order in each class of equivalent orders
that fulfills this requirement, as the definition of an order-
independent set is that the order between independent sets is
swappable. Including only one order for each independent
set in an ADHG creates a new reduction opportunity. As
the order of putting Hi before Hi+1 is artificial and does
not affect the heuristic value, we can completely remove the
ordering between different order independent sets. This is
achieved by summing over each order-independent set. We
now show that this reformulation doesn’t change the result
of the ADHG and is equivalent to applying Proposition 3 on
the original ADHG.

Theorem 3. Given order-independent sets H1, . . . ,Hn, let
G be the prefix-merged ADHG that includes only the orders
where all elements of Hi are placed before all elements of
Hi+1. Then Proposition 3 can be applied n− 1 times until
G has a sum node over one subgraph for each Hi.

Proof. G contains equivalent subgraphs for all orders of
Hi+1 under every subgraph for Hi, as regardless of the or-
der chosen for Hi, the abstraction heuristics from Hi+1 will
receive the same costs as per Definition 3. This means that
the max node maxHi

that branches over all orders of Hi con-
tains the same subgraph maxHi+1

in each of its branches and
Proposition 3 can be applied. This can be repeated for all Hi

where i > 1. The resulting ADHG has a sum node over one
subgraph for each Hi.



Given a set of order-independent heuristics, we can there-
fore directly generate the reduced graph instead of first gen-
erating the semi-reduced graph and then iteratively applying
Proposition 3. The following is an example of the reduction
described in Theorem 3.

Example 3. Consider the set of heuristics H = {h1, h2,
h3, h4}, where H1 = {h1, h2} is order-independent from
H2 = {h3, h4} under cost. Figure 3 shows two ADHGs
representing hSCP

∗ for H. The first ADHG is a prefix-merged
representation that considers all heuristics from H1 before
those from H2. The second ADHG applies Proposition 3 as
follows: in Figure 3a, the term c := max(h3 + h4, h4 + h3)
is a common summand in both sum subgraphs. Therefore,
the formula max(h1 + h2 + c, h2 + h1 + c) can be simpli-
fied to max(h1 + h2, h2 + h1) + c = max(h1 + h2, h2 +
h1) + max(h3 + h4, h4 + h3). Remember that summation
is not commutative here, because the order of the heuristics
influences the resulting cost partitioning and therefore the
heuristic value.

By exploiting order-independence in this way, we reduce
the ADHG size from O(|H|!) to a possibly much smaller
O(|H1|!+ · · ·+ |Hn|!) = O(maxni |Hi|!). Of course, we can
also exploit order independence between sets of heuristics in
subgraphs of ADHGs where the positions of some heuristics
are already decided, as shown in Figure 2.

6 Computing Order Independence
Having discussed how to use order-independence sets for
reducing the ADHG size, we now define several sufficient
criteria guaranteeing that two abstraction heuristics are order-
independent. As mentioned in Section 4, we are interested in
cases where a change in saturation order does not affect the
cost partitions. To capture order independence, we therefore
need to define conditions under which an abstraction heuristic
yields the same cost partitioning for different cost functions.

Theorem 4. Two abstraction heuristics h1 and h2 are order-
independent under cost function cost, if their minimum satu-
rated cost functions are non-negative and form a cost parti-
tion.

Proof. Let h1 and h2 be two abstraction heuristics, and let
mscf1 = saturate(h1, cost) and mscf2 = saturate(h2, cost)
be their minimum saturated cost functions. For order-
independence it needs to hold that the two orders ω =
⟨h1, h2⟩ and ω′ = ⟨h2, h1⟩ are equivalent, i.e., the in-
duced cost partitions CSCP

ω ,CSCP
ω′ are equivalent. This is the

case if saturate(h1, cost) = saturate(h1, cost − mscf2) and
saturate(h2, cost) = saturate(h2, cost − mscf1). Assume
that mscf1 and mscf2 are non-negative, i.e., no label is as-
signed negative costs, and that they form a cost partition
under cost, i.e., mscf1 + mscf2 ≤ cost. Given the latter, satu-
rating h2 under the remaining cost rem = cost−mscf1 offers
each label at least the cost that h2 needs for its minimum
saturated cost function:

cost ≥ mscf1 + mscf2 ⇔ cost − mscf1 ≥ mscf2
⇔ rem ≥ mscf2 (1)

When assuming non-negativity of the minimum saturated cost
functions, then saturating h2 under rem offers each label at
most the cost that h2 is offered by the original cost function.

mscf1 ≥ 0 ⇔ cost − mscf1 ≤ cost ⇔ rem ≤ cost (2)

In combination, Equations 1 and 2 bound the costs after sat-
urating h1 from above and below: mscf2 ≤ rem ≤ cost.
Since changing the cost function of an abstraction to its
saturated cost function does not change the abstract goal dis-
tance of any state, it holds that h2(cost, s) = h2(mscf2, s) =
h2(rem, s) for all states s ∈ S, from which it follows that
saturate(h2, cost) = saturate(h2, rem). The argument for
h1 follows from symmetry.

The order independence conditions in Theorem 4 have two
disadvantages. First, they are based on the minimum satu-
rated cost function of a heuristic. Computing the minimum
saturated cost function necessitates calculating the lookup
tables, i.e., abstract goal distances, of an abstraction. There-
fore, it cannot alleviate the costly computation of the lookup
tables, making it impractical for determining order indepen-
dence. Second, they depend on the original cost function.
This makes it difficult to derive the order-independence of
two heuristics h1, h2 ∈ H because we need to compute the
remaining cost functions that can be obtained by saturating
the heuristics H \ {h1, h2} (Theorem 1).

In the following, we describe two sufficient conditions
derived from Theorem 4 that do not rely on knowing the
exact cost function. The first condition exploits that infinite
label costs can never cause order dependence.

Theorem 5 (SCP∗-∞). If the cost of an operator ℓ is infi-
nite in cost function cost, then ℓ is never the cause of order-
dependence under any cost function that can be reached by
subtracting saturated costs from cost.

Proof. If cost(ℓ) = ∞, saturating any heuristic will always
leave the remaining costs for ℓ infinite, since cost functions
use left addition. Therefore, all abstractions will always
receive the same cost for ℓ regardless of saturation order.

For the second condition, we exploit the observation that
two heuristics always form a cost partition if for every la-
bel at least one of the minimum saturated cost functions is
guaranteed to be zero under any cost function.

Definition 5 (Saturation-Affecting Labels). A label ℓ is
saturation-affecting for an abstraction heuristic h if there
exists a cost function cost under which the minimum satu-
rated cost saturate(h, cost)(ℓ) is neither zero nor negative
infinity.2 We write Lsat-aff

h for the set of saturation-affecting
labels for heuristic h.

It is easy to verify that every saturation-affecting label is
also affecting. To see that the opposite is not true, consider a
label ℓ that only labels transitions between goal states. Then ℓ
is affecting, but not saturation-affecting. As we are interested

2This formulation is similar to the affecting labels of Seipp,
Keller, and Helmert (2017a) when extended to general cost functions
(allowing negative costs), and explicitly states the connection to
minimum saturated cost functions.



in labels that are not saturation-affecting for any abstraction
heuristic, it is sufficient to show that the sets of saturation-
affecting labels do not overlap.

Lemma 1. If two heuristics h1 and h2 have disjoint sets of
saturation-affecting labels, they are order-independent under
any cost function.

Proof. If two heuristics h1 and h2 have disjoint sets of
saturation-affecting labels, none of the label costs that change
upon saturating h1 influence the heuristic values of h2, and
vice versa. Formally, for every label ℓ either mscf1(ℓ) or
mscf2(ℓ) is zero or infinity, so the cost partitioning condition
is fulfilled. The minimum saturated cost functions do not
need to be non-negative, since having more cost available
does not change the minimum saturated costs for a label that
is not saturation-affecting.

To approximate if two heuristics have disjoint sets of
saturation-affecting labels, we overapproximate the set of
saturation-affecting labels for a heuristic.

Theorem 6 (SCP∗-AFF). Let Lnon-goal
h be the set of labels

ℓ ∈ L for which there is at least one transition s
ℓ−→ s′ ∈ Tα

between two distinct states s and s′, of which at most one
state is a goal state. If the sets Lnon-goal

h1
and Lnon-goal

h2
for

two heuristics h1 and h2 are disjoint, then h1 and h2 are
order-independent under any cost function cost.

Proof. If label ℓ affects a heuristic hα, then by the definition
of minimum saturated cost functions, there must be two
abstract states s and s′, such that h∗

T α(s)⊖ h∗
T α(s′) ̸= 0. So

h∗
T α(s) ̸= h∗

T α(s′) or h∗
T α(s) = h∗

T α(s′) = ∞. (Abstract
goal distances are always non-negative, so they cannot be
−∞.) In both cases, both states cannot be goal states at the
same time, so Lnon-goal ⊆ Lsat-aff. Therefore, if Lnon-goal

h1
∩

Lnon-goal
h2

= ∅ then Lsat-aff
h1

∩ Lsat-aff
h2

= ∅. Using Lemma 1 it
follows that h1 and h2 are order-independent.

Combining the conditions of Theorems 5 and 6 yields an
efficient approximation of the order independence of two
heuristics.

Theorem 7 (SCP∗-AFF-∞). For heuristics h1 and h2, let
Lnon-goal
h1

and Lnon-goal
h2

be sets of labels as in Theorem 6. Then
h1 and h2 are order-independent, if

(Lnon-goal
h1

∩ Lnon-goal
h2

) \ {ℓ ∈ L | cost(ℓ) = ∞} = ∅.
All of the order independence results from Theorem 5 to

7 can, in contrast to Theorem 4, be used for pruning con-
nections in the order-dependence graph, as they generalize
to all cost functions that can be reached by subtracting satu-
rated costs from the original cost function. When creating an
ADHG with any of the introduced approximation methods,
we repeatedly test the order independence of the remaining,
not yet saturated heuristics at each node.

Example 4. Consider a set of heuristics, H = {h1, h2, h3},
where the used order-independence approximation detects no
order independence. Instead of iterating over all |H|! = 6 or-
ders, we create a single max node with one child sum node ci

per heuristic hi. Each node ci has as first child the lookup ta-
ble for hi under the original cost function. The other children
of ci will become the max nodes mi for the sets of remain-
ing heuristics H \ {hi}. For example, for c1 the remaining
heuristics are h2 and h3. In this situation, h2 and h3 may
have become order-independent for two reasons. First, be-
cause h1 was removed from the order dependence graph, h2

and h3 might have become disconnected. Second, saturat-
ing for h1 changed the remaining cost function at max node
m1. This means that testing the order-independence condi-
tion again might now detect h2 and h3 as order-independent,
even though they were not order-independent before.

Recomputing the order-dependence graph is cheap because
Theorem 6 is independent of any cost function. Therefore,
the order-dependence graph does not need to be re-computed
when the remaining costs or the set of heuristics change.
Since Theorem 5 is a simple check, the combination (Theo-
rem 7) is also cheaply computable.

Further Order Independence Conditions We described
two sufficient conditions for checking order-independence
of heuristics. Other conditions for order-independence can
be derived by approximating the conditions in Theorem 4 in
different ways. While such investigations are interesting, we
leave them for future work.

7 Experiments
The ADHG data structure and our reduction rules enable us
to compute hSCP

∗ without explicitly considering all possible
orders of the component heuristics. The main questions we
aim to answer with our experiments are:

• How helpful is the ADHG structure compared to a naive
computation of hSCP

∗ ?

• How helpful are the order-independence approximations?

• How good are existing approximations of hSCP
∗ ?

• How close is hSCP
∗ to optimal cost partitioning?

7.1 Experimental Setup
We implemented the presented approaches in the Scorpion
planner (Seipp, Keller, and Helmert 2020), an extension of
Fast Downward (Helmert 2006). For all experiments, we
use Cartesian goal abstractions (Seipp and Helmert 2018),
which are known to provide a good trade-off between the
number of abstractions and the informativeness of the re-
sulting hSCP heuristic. Our benchmark set includes all plan-
ning tasks without conditional effects and axioms from the
Optimal Tracks of the International Planning Competitions
(IPCs) 1998–2023. All runs have time and memory limits of
30 minutes and 8 GiB, respectively. We run experiments us-
ing Downward Lab (Seipp et al. 2017) and make all code and
experimental data available online (Höft, Speck, and Seipp
2025).

7.2 Computing the Perfect SCP Heuristic
In the first experiment, we compare different ways of com-
puting hSCP

∗ . The configurations vary in their treatment of



Other Heuristics Variants for Computing hSCP
∗

hOCP hSCP
div hSCP

rnd SCP∗-NAIVE SCP∗-TREE SCP∗-GRAPH SCP∗-∞ SCP∗-AFF SCP∗-AFF-∞

in
iti

al
iz

e finished 1685 1884 1884.0 1101 1313 1550 1551 1560 1568
out of time 192 0 0.0 47 309 254 283 271 261
out of memory 7 0 0.0 736 262 80 50 53 55

se
ar

ch solved 499 1080 993.4 728 872 983 982 982 983
out of time 1186 40 6.2 173 149 160 165 157 156
out of memory 0 764 884.4 200 292 407 404 421 429

Table 1: Summary of outcomes for optimal cost partitioning, two approximative SCP algorithms, and the hSCP
∗ algorithms. All configurations

use Cartesian goal abstractions for a benchmark suite of 1884 planning tasks. The initialization part consists of all operations needed to
compute h(s0). We average results for hSCP

rnd over five random seeds.

SCP∗-NAIVE SCP∗-TREE SCP∗-GRAPH SCP∗-∞ SCP∗-AFF
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(a) Representation size of the final heuristic
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(b) Time to initialize the heuristic and
compute h(s0).

10−2 10−1 100 101 102 103
10−2

10−1

100

101

102

103

uns.

uns.

S
C

P∗
-A

FF
-∞

(c) Search time for solving the planning tasks
(after initialization).

Figure 4: Comparison of hSCP
∗ variants. Each point represents a comparison of SCP∗-AFF-∞ on the y-axis with another variant indicated by

color on the x-axis, for a particular planning task. Points below the diagonal indicate that SCP∗-AFF-∞ is preferable for that task (4a: smaller
representation size, 4b: faster heuristic initialization, 4c: faster problem solving).

order independence among heuristics and node sharing in the
ADHG:

1) SCP∗-NAIVE enumerates all heuristic orders.
2) SCP∗-TREE represents hSCP

∗ as a tree, ignores order inde-
pendence, and applies only the general reduction rules
from Section 3.1.

3) SCP∗-GRAPH is like SCP∗-TREE, but shares equivalent
internal nodes, resulting in a graph.

4) SCP∗-∞ uses a graph and exploits order independence
between heuristics, applying only the infinite cost rule
from Theorem 5.

5) SCP∗-AFF uses a graph and exploits order independence
between heuristics, applying only the saturation-affecting
labels rule from Theorem 6.

6) SCP∗-AFF-∞ combines the latter two approaches. It uses
a graph and applies both order-independence rules of
SCP∗-∞ and SCP∗-AFF, i.e., the rule from Theorem 7.

The initialize finished row in Table 1 shows how often it
is possible to construct the data structures required to com-
pute the initial heuristic value hSCP

∗ (s0) using the naive and
ADHG-based approaches, as configurations become more so-

phisticated. The naive approach SCP∗-NAIVE which consid-
ers all orders explicitly is infeasible for larger tasks, because
it usually runs out of memory during initialization as soon as
more than ten abstractions are present (≥ 3 628 800 orders).

The table also shows that building hSCP
∗ as a graph instead

of a tree significantly raises the number of finished initial-
izations, and adding the independence conditions increases
this number even more. Although our more advanced con-
figurations run out of time more often than the naive variant,
they do not incur the same memory bottleneck for construct-
ing the data structure of the heuristic. Remarkably, we can
compute hSCP

∗ (s0) with SCP∗-AFF-∞ even for tasks with up
to 160 abstractions and thus ∼ 10284 orders. However, due
to the factorial nature of orders, computing hSCP

∗ within the
resource limits remains very challenging.

Figures 4a, 4b, and 4c visualize the representation size
of the heuristic (ADHG nodes), the time it takes to create
the heuristic representation, and the resulting A∗ search time
for the different approaches. The plots reveal a significant
advantage of the graph representation over the tree and naive
variants across the benchmark tasks. Using a graph instead
of a tree leads to the reduction of the number of nodes in the
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Figure 5: Necessary state expansions (i.e., expansions before the
last f -layer) of the perfect SCP heuristic, those of approximative
SCP heuristics and the optimal cost partitioning heuristic.

ADHG by up to four orders of magnitude (Figure 4a). This
trend is also visible in the time it takes to create the necessary
data structures in Figure 4b.

Considering search performance, the number of solved
tasks is the same for both SCP∗-GRAPH and SCP∗-AFF-∞,
and decreases by one if only one of the order-independent
rules is applied (SCP∗-∞ and SCP∗-AFF). However, the ad-
vantage of using order independence conditions is evident in
the ability to generate the ADHGs on larger abstraction sets.
This is shown in the higher number of finished initializations
in Table 1 and the large number of unsolved tasks on the
x-axis in Figure 4a. This shows that, while those rules help
to compute hSCP

∗ for more tasks, the underlying tasks are too
challenging to solve. Finally, Figure 4c compares the time
it takes to solve planning tasks, showing that the tree and
naive approaches are typically slower than SCP∗-AFF-∞ due
to their larger representation sizes. Comparing SCP∗-AFF-∞
and SCP∗-GRAPH, the order-independent rules have no sig-
nificant positive or negative effect on runtime, similar to the
representation sizes.

7.3 Heuristic Accuracy
Now that we can efficiently compute hSCP

∗ , we can, for the
first time, evaluate the approximation quality of approxima-
tive SCP heuristics from the literature. For this analysis, we
use our best approach SCP∗-AFF-∞ to compute hSCP

∗ , which
takes advantage of all presented optimizations.

In particular, we compare against the approximative SCP
heuristics hSCP

rnd and hSCP
div . The former considers a single

random ordering of the abstractions (reported results are
averages over five runs). The latter iteratively samples a
new state s until hitting a fixed time limit of T=100 seconds,
approximates a useful order ω for s with a greedy algorithm,
and retains hSCP

ω if it is diverse, that is, it yields a higher
estimate for any of a set of 1000 independently sampled states
than the SCP heuristics already retained previously (Seipp,

Keller, and Helmert 2020). We also empirically compare the
perfect SCP heuristic hSCP

∗ with the optimal cost partitioning
heuristic hOCP (Pommerening et al. 2015), which is known
to theoretically dominate hSCP

∗ (Pommerening et al. 2015;
Seipp, Keller, and Helmert 2017a).

The left part of Table 1 holds results for these heuristics and
Figure 5 shows the necessary node expansions, i.e., the ex-
pansions before the last f -layer, for the compared approaches.
Comparing hSCP

∗ with hSCP
rnd , we see that considering all orders

instead of a single random one yields significantly more infor-
mative heuristic estimates, reducing the necessary expansions
by a large margin. However, the picture is different for the
state-of-the-art approach of computing diverse orders, hSCP

div .
Although hSCP

∗ has fewer node expansions than hSCP
div for 334

tasks, the difference in heuristic accuracy between hSCP
∗ and

hSCP
div is small. This shows that, considering the IPC domains

and Cartesian goal abstractions, 1) only a few orders are nec-
essary to obtain a heuristic estimate close to hSCP

∗ , 2) hSCP
div is

an extremely efficient approach to obtaining relevant orders,
and 3) in practice there is little improvement in considering
more orders than hSCP

div when using a moderate number of ab-
straction heuristics. Comparing the optimal cost partitioning
heuristic hOCP and the perfect SCP heuristic hSCP

∗ , we see
that having better cost partitions can indeed yield stronger
heuristic estimates that are practically relevant due to a signif-
icant reduction in necessary expansions. However, for most
tasks where we can compute hOCP the difference is small.

8 Conclusions and Future Work
In this work, we studied the perfect saturated cost partition-
ing heuristic, which maximizes over individual SCP heuris-
tics computed for all orders of the component heuristics.
We showed that naively computing hSCP

∗ is infeasible due to
the inherent factorial nature of the problem. Based on this,
we established a connection to additive-disjunctive heuristic
graphs and showed that they are well suited to address the
computational challenge of computing hSCP

∗ . By computing
order-independent information to exclude provably equiva-
lent orders, we were able to significantly reduce the size of
the ADHGs. This representation allowed us to compute hSCP

∗
for the first time for many planning tasks with a meaning-
ful number of component heuristics. Building on this, we
conducted the first empirical comparison of the perfect SCP
heuristic, hSCP

∗ , with state-of-the-art sampling-based SCP
heuristics and the optimal cost partitioning heuristic. Our
experiments show that state-of-the-art SCP heuristics provide
heuristic information that is nearly perfect, relative to their
upper bound of hSCP

∗ , when using a moderate number of ab-
straction heuristics. This suggests that the greatest potential
for obtaining even stronger cost partitioning heuristics lies
in developing methods that go beyond SCP and reduce the
remaining gap to optimal cost partitioning.

To scale to larger sets of heuristics, we would like to
study and derive additional ADHG reduction rules based
on the relationship between ADHGs and symbolic expres-
sion graphs (Ehrig et al. 2006). Furthermore, finding new
order-independence conditions that reduce the size of the
ADHG representing hSCP

∗ is an interesting direction.
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