

Representing Perfect Saturated Cost Partitioning Heuristics in Classical Planning

Paul Höft¹, David Speck², Jendrik Seipp¹

Acknowledgments: Thomas Keller

 $^1\mathsf{Link\"{o}ping}$ University, $^2\mathsf{University}$ of Basel

November 15, 2025

Background – Cost Partitioning

Problem

Given set of abstraction heuristics $\mathcal{H} = \{h_1, \dots, h_n\}$ Find strong *admissible* combination of heuristics

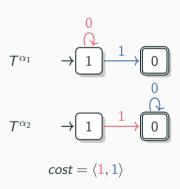
One of the answers is **Cost Partitioning**

Background – Cost Partitioning

Cost function: $cost : L \to \mathbb{R} \cup \{-\infty, \infty\}$

Cost partition for \mathcal{H} : $\mathcal{C} = \langle cost_1, \dots, cost_n \rangle$ with $\sum_{i=1}^n h_i(cost_i(\ell) \leq cost(\ell))$ for all $\ell \in L$

$$\textit{h}^{\mathcal{C}} = \sum_{i=1}^{n} \textit{h}_{\textit{i}}(\textit{cost}_{\textit{i}}, \textit{s})$$
 is admissible



Background – Saturated Cost Partitioning

Greedy cost partitioning strategy

Given order
$$\omega = \langle h_1, \ldots, h_n \rangle$$
, compute $\langle cost_1, \ldots, cost_n \rangle$
$$remain_0 = cost \\ cost_i = saturate(remain_{i-1}) \qquad \qquad \text{for all } 1 \leq i \leq n \\ remain_i = remain_{i-1} - cost_i \qquad \qquad \text{for all } 1 \leq i \leq n$$

Saturated Cost Partitioning

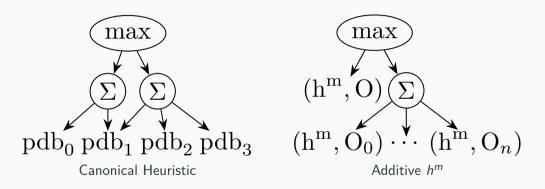
- Best order might differ for every state
- All orders are too many to compute (factorial)
- Best approach optimizes a few orders for sampled states

Saturated Cost Partitioning

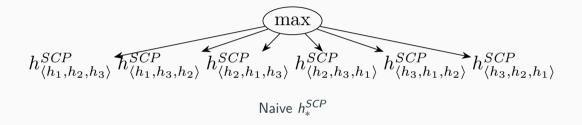
- Best order might differ for every state
- All orders are too many to compute (factorial)
- Best approach optimizes a few orders for sampled states

How can we compute h_*^{SCP} more efficient? How strong is it?

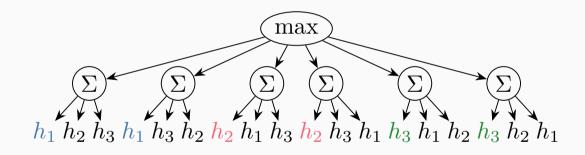
Additive-Disjunctive Heuristic Graphs (ADHG)¹

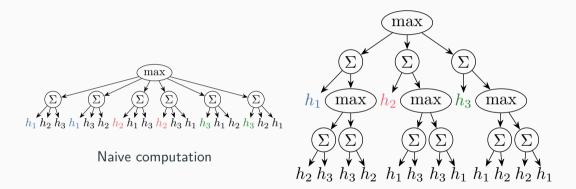


¹Coles et al., "Additive-Disjunctive Heuristics for Optimal Planning".

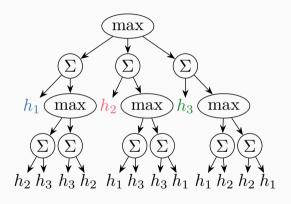


 $n \times n!$ Lookup tables o Out of Memory (8G) for $oldsymbol{10}$ Abstractions

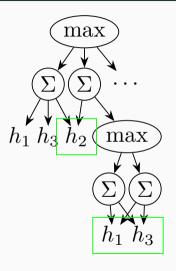




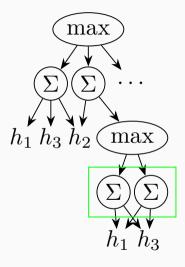
 $Optimized\ computation\ graph$



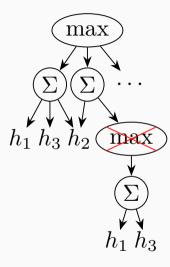
Lookup tables: $n \times n! \sum_{k=0}^{n-1} \frac{n!}{k!} \sim e \times n!$



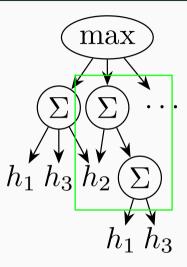
Store only unique lookup tables



Store only unique **nodes**

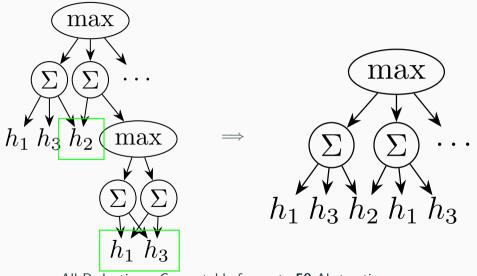


Nodes with a single child can be removed



Consecutive same type nodes can be merged





All Reductions: Computable for up to 50 Abstractions

Two orders can produce the same **heuristic**

SCP Heuristic Equivalence

$$h^{\mathsf{SCP}}_{\omega}(s) = h^{\mathsf{SCP}}_{\omega'}(s)$$
 for all $s \in S$

Hard to test

Two orders can produce the same **cost partition**

SCP Cost Partition Equivalence

$$\mathcal{C}^{\mathsf{SCP}}_{\omega}(h_i) = \mathcal{C}^{\mathsf{SCP}}_{\omega'}(h_i)$$
 for all $1 \leq i \leq n$

Easy to test **sufficient** for heuristics equivalence

For two heuristics h_1, h_2

$$\mathcal{C}^{\mathsf{SCP}}_{\langle h_1,h_2
angle}(h_i) = \mathcal{C}^{\mathsf{SCP}}_{\langle h_2,h_1
angle}(h_i) ext{ for all } 1 \leq i \leq n$$

 \Rightarrow

$$cost - mscf_2 \le cost$$

 $cost - mscf_2 \ge mscf_1$

For two heuristics h_1, h_2

$$\mathcal{C}^{\mathsf{SCP}}_{\langle h_1,h_2
angle}(h_i) = \mathcal{C}^{\mathsf{SCP}}_{\langle h_2,h_1
angle}(h_i) ext{ for all } 1 \leq i \leq n$$

 \Rightarrow

$$cost - mscf_2 \le cost$$

 $cost - mscf_2 \ge mscf_1$

non-negative minimum saturated costs

For two heuristics h_1, h_2

$$\mathcal{C}^{\mathsf{SCP}}_{\langle h_1,h_2
angle}(h_i) = \mathcal{C}^{\mathsf{SCP}}_{\langle h_2,h_1
angle}(h_i)$$
 for all $1 \leq i \leq n$

 \Rightarrow

$$cost - mscf_2 \le cost$$

 $cost - mscf_2 \ge mscf_1$

non-negative minimum saturated costs
minimum saturated costs form a cost partition

For two heuristics h_1, h_2

$$\mathcal{C}^{\mathsf{SCP}}_{\langle h_1,h_2
angle}(h_i) = \mathcal{C}^{\mathsf{SCP}}_{\langle h_2,h_1
angle}(h_i)$$
 for all $1 \leq i \leq n$

 \Rightarrow

$$cost - mscf_2 \le cost$$

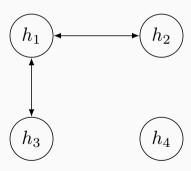
 $cost - mscf_2 \ge mscf_1$

non-negative minimum saturated costs
minimum saturated costs form a cost partition

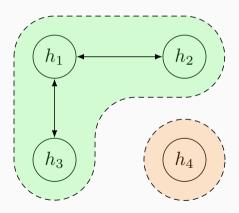
Conditions need saturated costs \rightarrow approximations necessary

Order-independent Sets are computed through Connected Components:

Order-independent Sets are computed through Connected Components:



Order-independent Sets are computed through Connected Components:



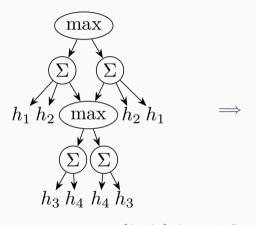
Order-Independent Sets

A partition of $\mathcal{H} = \{\mathcal{H}_1, \dots, \mathcal{H}_n\}$ forms order-independent sets if any order with the same relative ordering for elements inside each \mathcal{H}_n , results in the same saturated cost partitioning heuristic.

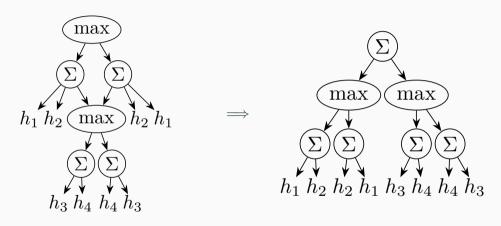
Example:
$$\mathcal{H}_1=\{h_1,h_2\},\mathcal{H}_2=\{h_3\}$$

$$h_{\langle h_1,h_2,h_3\rangle}^{SCP}=h_{\langle h_1,h_3,h_2\rangle}^{SCP}=h_{\langle h_3,h_1,h_2\rangle}^{SCP}$$

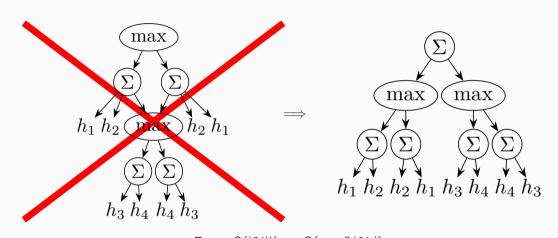
$$h_{\langle h_2,h_1,h_3\rangle}^{SCP}=h_{\langle h_2,h_3,h_1\rangle}^{SCP}=h_{\langle h_3,h_2,h_1\rangle}^{SCP}$$



 $\{\mathit{h}_{1},\mathit{h}_{2}\}$ do not influence $\{\mathit{h}_{3},\mathit{h}_{4}\}$



 $\{\mathit{h}_{1},\mathit{h}_{2}\}$ do not influence $\{\mathit{h}_{3},\mathit{h}_{4}\}$

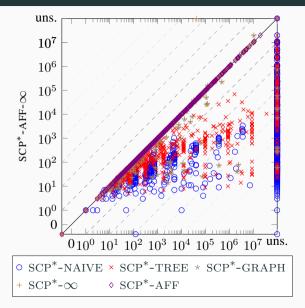


From $O(|\mathcal{H}|!)$ to $O(\max_i^n |\mathcal{H}_i|)$ Computable for up to **160** Abstractions

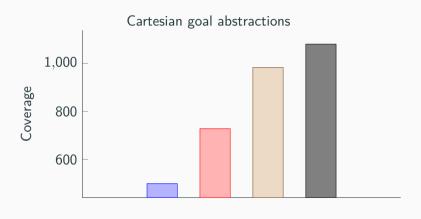
Results

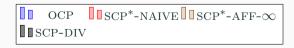
- More efficient representation of SCP heuristics
- First general ADHG reduction rules
- Formalized SCP order independence (approximation)
- \bullet First practical computation of h_{\ast}^{SCP} on smaller abstraction set sizes

Results – Graph nodes



Results – Coverage





Results – Difference h_*^{SCP} , h^{SCP} , h^{OCP}

