

Versatile Cost Partitioning with Exact Sensitivity Analysis

Paul Höft¹ David Speck^{1,2} Florian Pommerening² Jendrik Seipp¹ June 4, 2024

¹Machine Reasoning Lab, Linköping University

²Artificial Intelligence Group, University of Basel

Motivation

Lazy SPhO (Höft et al. ECAI 2023) Safely reduce LP solver calls for SPhO

Tool: Sensitivity Analysis

Exact Sensitivity Analysis

Do LP feasibility check

Pro: Best Sensitivity Analysis

Con: Need to store full LP

Is Exact Sensitivity Analysis perfect?

Is Exact Sensitivity Analysis perfect?

Why is Exact Sensitivity Analysis not perfect?

Non-uniqueness: LP solver only returns one solution

Alternative solution might have better reusability

Why is Exact Sensitivity Analysis not perfect?

Non-uniqueness: LP solver only returns one solution

Alternative solution might have better reusability

Degeneracy: Sensitivity Analysis defined for LP Basis

LP Basis ≠ Cost Partition/Operator Counting

Why is Exact Sensitivity Analysis not perfect?

Non-uniqueness: LP solver only returns one solution

Alternative solution might have better reusability

Degeneracy: Sensitivity Analysis defined for LP Basis

LP Basis \neq Cost Partition/Operator Counting

 \Rightarrow Both caused by redundancy

Redundancy in LPs

Countermeasures

- Reduce redundancy through grouping
- $\boldsymbol{\cdot}$ Tiebreaking: Prefer solutions with higher coefficients

Results

Exact SPhO Sensitivity Analysis

Conclusions

- · Non-uniqueness and Degeneracy impair Exact Sensitivity Analysis
- Grouping and Tiebreaking improve the effectiveness of Sensitivity Analysis based approaches

SPhO Linear Program

SPhO Linear Program

$$\begin{aligned} & \text{maximize} \sum_{h \in H} h_i(s) \cdot w_h \text{ s.t.} \\ & \sum_{h \in H} mscf_h(\ell) \cdot w_h \leq cost(\ell) \text{ for } \ell \in L \\ & w_h \geq 0 \text{ for } h \in H \end{aligned}$$