Versatile Cost Partitioning with Exact Sensitivity Analysis

Paul Höft¹, David Speck^{1,2}, Florian Pommerening², Jendrik Seipp¹

¹Machine Reasoning Lab, Linköping University ²Artifical Intelligence Group, University of Basel

Sensitivity Analysis for Linear Programs

Provides parameter ranges under which solution remains optimal. Planning: Reuse cost partitions for other states

Exact Sensitivity Analysis

- Previous Sensitivity Analysis strategies for SPhO are approximations
- $x_{\mathcal{B}}^* + B^{-1}\Delta b \ge 0$ gives exact answer for an LP basis
- Problem: Basis \neq Solution

Degeneracy and Non-Uniqueness

Exact sensitivity analysis is not perfect because:

- Degeneracy: multiple bases describe same solution
- Non-Uniqueness: multiple solutions are equally good

Grouping rows and columns as countermeasures

Degeneracy and non-uniqueness caused by redundancy \rightarrow group labels and abstractions

Tiebreaking \rightarrow Versatile Solutions

Prefer solutions that generalize to more states: Solutions with higher coefficients

 \rightarrow tiebreak for higher coefficients for zero-valued heuristics

Future Work

- Further redundancy elimination
- Theoretical insights from Exact Sensitivity Analysis
- Non-redundant abstraction generator

Computing the SPhO LP in every state is unnecessary.

Cost Partitioning

satisfy $cost(\ell)$ $\sum_{h \in H} cost_h(\ell) \leq cost(\ell)$ then $\sum_{h \in H} h(s)$ is admissible

Saturated Post-hoc Optimization LP

minimize $\sum cost(\ell) \cdot Y_{\ell}$ s.t. $\sum \mathsf{mscf}_h(\ell) \cdot Y_\ell \geq h(s)$ for all $h \in H$ $Y_{\ell} \geq 0$ for all $\ell \in L$

Degeneracy and Non-uniqueness

Tiebreaking Algorithm procedure IncreaseWeights(*H*, rem, s) for $h \in \mathcal{H}$ with h(s) = 0 do

 ΔW $\min_{\ell \in L} \left\{ \frac{\operatorname{rem}(\ell)}{\operatorname{mscf}_h(\ell)} \, \middle| \, \operatorname{mscf}_h(\ell) > 0 \right\}$ $W_h += \Delta W$ for $\ell \in L$ do $rem(\ell) = mscf_h(\ell) \cdot \Delta w$

