
Star-Topology Decoupled State-Space Search

in AI Planning and Model Checking

A dissertation submitted towards the degree
Doctor of Natural Sciences

of the Faculty of Mathematics and Computer Science
of Saarland University

by

Daniel Gnad

Saarbrücken, 2021

Day of Colloquium 22.11.2021
Dean of Faculty Prof. Dr. Thomas Schuster

Chair of the Committee Prof. Dr. Jens Dittrich
Reviewers Prof. Dr. Jörg Hoffmann

Prof. Dr. Malte Helmert
Prof. Bernd Finkbeiner, Ph.D.

Academic Assistant Dr. Sophia Saller

Abstract

State-space search is a widely employed concept in many areas of computer science.
The well-known state explosion problem, however, imposes a severe limitation to the
effective implementation of search in state spaces that are exponential in the size of a
compact system description, which captures the state-transition semantics.

Decoupled state-space search, decoupled search for short, is a novel approach to
tackle the state explosion. It decomposes the system such that the dependencies between
components take the form of a star topology with a center and several leaf components.
Decoupled search exploits that the leaves in that topology are conditionally independent.
Such independence naturally arises in many kinds of factored model representations,
where the overall state space results from the product of several system components.

In this work, we introduce decoupled search in the context of artificial intelligence
planning and formal verification using model checking. Building on common for-
malisms, we develop the concept of the decoupled state space and prove its correctness
with respect to capturing reachability of the underlying model exactly. This allows us
to connect decoupled search to any search algorithm, and, important for planning, adapt
any heuristic function to the decoupled state representation. Such heuristics then guide
the search towards states that satisfy a desired goal condition. In model checking, we ad-
dress the problems of verifying safety properties, which express system states that must
never occur, and liveness properties, that must hold in any infinite system execution.

Many approaches have been proposed in the past to tackle the state explosion prob-
lem. Most prominently partial-order reduction, symmetry breaking, Petri-net unfolding,
and symbolic state representations. Like decoupled search, all of these are capable of
exponentially reducing the search effort, either by pruning part of the state space (the
former two), or by representing large state sets compactly (the latter two).

For all these techniques, we prove that decoupled search can be exponentially more
efficient, confirming that it is indeed a novel concept that exploits model properties in a
unique way. Given such orthogonality, we combine decoupled search with several com-
plementary methods. Empirically, we show that decoupled search favourably compares
to state-of-the-art planners in common algorithmic planning problems using standard
benchmarks. In model checking, decoupled search outperforms well-established tools,
both in the context of the verification of safety and liveness properties.

i

ii

Zusammenfassung

Die Zustandsraumsuche ist ein weit verbreitetes Konzept in vielen Bereichen der In-
formatik, deren effektive Anwendung jedoch durch das Problem der Zustandsexplosion
deutlich erschwert wird. Die Zustandsexplosion ist dadurch charakterisiert dass kom-
pakte Systemmodelle exponentiell große Zustandsräume beschreiben.

Entkoppelte Zustandsraumsuche (entkoppelte Suche) beschreibt einen neuartigen
Ansatz der Zustandsexplosion entgegenzuwirken indem die Struktur des Modells, ins-
besondere die bedingte Unabhängigkeit von Systemkomponenten in einer Sterntopolo-
gie, ausgenutzt wird. Diese Unabhängigkeit ergibt sich bei vielen faktorisierten Mod-
ellen deren Zustandsraum sich aus dem Produkt mehrerer Komponenten zusammensetzt.

In dieser Arbeit wird die entkoppelte Suche in der Planung, als Teil der Künstlichen
Intelligenz, und der Verifikation mittels Modellprüfung eingeführt. In etablierten For-
malismen wird das Konzept des entkoppelten Zustandsraums entwickelt und dessen
Korrektheit bezüglich der exakten Erfassung der Erreichbarkeit von Modellzuständen
bewiesen. Dies ermöglicht die Kombination der entkoppelten Suche mit beliebigen
Suchalgorithmen. Wichtig für die Planung ist zudem die Nutzung von Heuristiken, die
die Suche zu Zuständen führen, die eine gewünschte Zielbedingung erfüllen, mit der
entkoppelten Zustandsdarstellung. Im Teil zur Modellprüfung wird die Verifikation von
Sicherheits- sowie Lebendigkeitseigenschaften betrachtet, die unerwünschte Zustände,
bzw. Eigenschaften, die bei unendlicher Systemausführung gelten müssen, beschreiben.

Es existieren diverse Ansätze um die Zustandsexplosion anzugehen. Am bekan-
ntesten sind die Reduktion partieller Ordnung, Symmetriereduktion, Entfaltung von
Petri-Netzen und symbolische Suche. Diese können, wie die entkoppelte Suche, den
Suchaufwand exponentiell reduzieren. Dies geschieht durch Beschneidung eines Teils
des Zustandsraums, oder durch die kompakte Darstellung großer Zustandsmengen.

Für diese Verfahren wird bewiesen, dass die entkoppelte Suche exponentiell effizien-
ter sein kann. Dies belegt dass es sich um ein neuartiges Konzept handelt, das sich
auf eigene Art der Modelleigenschaften bedient. Auf Basis dieser Beobachtung wer-
den, mit Ausnahme der Entfaltung, Kombinationen mit entkoppelter Suche entwick-
elt. Empirisch kann die entkoppelte Suche im Vergleich zu modernen Planern zu deut-
lichen Vorteilen führen. In der Modellprüfung werden, sowohl bei der Überprüfung von
Sicherheit-, als auch Lebendigkeitseigenschaften, etablierte Programme übertroffen.

iii

iv

Acknowledgements

First and foremost, I would like to thank Jörg Hoffmann for offering me the opportunity
to enter the world of academia. I have always enjoyed (and still do) working with him.
I am extremely grateful that he introduced me to the ICAPS community, which allowed
me to meet so many great people in the research field. Thank you for all your support
over the years, for pushing me when it was necessary, for creating such an amazing
work environment in your group, and many fun activities outside work!

I also want to thank all my colleagues from the FAI group for the great time we were
having: Álvaro, Dan, Daniel, Julia, Marcel, Marcel, Max, Rebecca, Thorsten. Special
thanks go to Álvaro, Max, and Rebecca, for proofreading this thesis. I know it was a lot
of work, and the schedule was tough. Thank you to Ankur, Endre, Felix, Joris, Marcel,
Max, and Stefan, for uncountable TT matches giving us some distraction from work.

I want to take the opportunity to say thank you to my co-authors and the all nice
people who hosted me for research visits in the last few years: Alberto, Alex, Alfonso,
Carlos, Carmel, Dan, Erez, Facundo, Ivan, Malte, Martín, Martin.

A big thank you goes to my friends Stefan, Anne, Katharina, Patrick, Álvaro, and
Siggi, as well as to my sports club TV Mettlach. Thank you for all the time we spent in
various cool activities and for keeping me grounded, you are wonderful people!

I am deeply grateful to my family, my parents Monique and Wolfgang, my sisters
Melanie and Hélène with Christian and Patrick, and Monika and Roland. Thank you so
much for all the support throughout my life and for simply being a great family!

Finally, to the most important person in my life: Sabine, thanks for bearing with me!

v

vi

Contents

I Introduction and Planning Background 1

1 Introduction 3
1.1 Illustrative Example . 4
1.2 Contributions . 7
1.3 Publications . 9
1.4 Outline . 14

2 Background 17
2.1 Classical Planning . 17
2.2 Heuristic Search . 19
2.3 Problem Structure – The Causal Graph 20
2.4 Exponential Separation . 21

II Star-Topology Decoupled State-Space Search 23

3 Decoupled State-Space Search 25
3.1 Problem Decomposition . 25
3.2 Decoupled State Space . 28

3.2.1 Compliant-Path Graph . 29
3.2.2 The Transition System . 33

3.3 Correctness . 35
3.4 Decoupled State-Space Size and Pruning 37

3.4.1 Finiteness and Dominance Pruning 38
3.4.2 Size Blow-Up and Hypercube Pruning 43

4 Heuristic Search 47
4.1 Heuristic Functions . 47
4.2 Heuristic Search Algorithms . 51

4.2.1 Anytime Decoupled A∗ . 52
4.3 g-Value Adaptation . 54

vii

viii CONTENTS

5 Problem Decomposition – Factoring Strategies 57
5.1 Factoring Characteristics . 57
5.2 Complexity . 60
5.3 Factoring Based on the Causal Graph 63
5.4 Factoring via Integer Linear Programming 67

5.4.1 Strict-Star Factorings . 68
5.4.2 General-Star Factorings . 70
5.4.3 Objective Function . 73

6 Related Work – Exponential Separations 75
6.1 Petri-Net Unfolding . 76

6.1.1 Background – Petri-Net Unfolding 77
6.1.2 Results Overview . 78
6.1.3 Separation Theorems . 80
6.1.4 Domination Theorems . 81

6.2 Partial-Order Reduction – Stubborn Sets 82
6.3 Symbolic State Representation . 83
6.4 Factored Planning . 84
6.5 Other Methods . 86

7 Experimental Evaluation 89
7.1 Implementation . 89
7.2 Experimental Setup . 92
7.3 Factoring Statistics . 96
7.4 State-Space Size . 100
7.5 Satisficing Planning . 108
7.6 Optimal Planning . 115
7.7 Proving Unsolvability . 122
7.8 Discussion . 126

8 Summary 127

III Combination with Other State-Space Reduction Methods 129

9 Introduction 131

10 Partial-Order Reduction 133
10.1 Background . 134
10.2 Decoupled Strong Stubborn Sets . 137

10.2.1 Basic Concepts . 137

CONTENTS ix

10.2.2 Non-Goal Decoupled States 141
10.2.3 Goal Decoupled States . 146

10.3 Special Cases Facilitating More Effective Handling 149
10.3.1 Forks . 150
10.3.2 Inverted Forks . 154
10.3.3 Fork/Inverted-Fork Leaves in General Star Topologies 156

10.4 Exponential Separation from Base Methods 157
10.5 Experimental Evaluation . 158

11 Symmetry Breaking 163
11.1 Background . 164
11.2 Symmetry Relations over Decoupled States 165
11.3 Finding Decoupled-State Symmetries 169
11.4 Symmetry Breaking in Decoupled Search 170

11.4.1 Mapping to Canonical Representatives 171
11.4.2 Solution Reconstruction . 171
11.4.3 Completeness and Optimality 172

11.5 Exponential Separation from Base Methods 172
11.6 Experimental Evaluation . 174

12 Symbolic Leaf Representation 181
12.1 Background . 182
12.2 Symbolic Leaf Representation . 183
12.3 Connecting Symbolic Leaves to Heuristics 184
12.4 Experimental Evaluation . 187

13 Dominance Pruning for Fork Topologies 193
13.1 Decoupled State Dominance . 194
13.2 Frontier-Based Dominance . 195
13.3 Effective-Price Dominance . 196
13.4 Simulation-Based Dominance . 198
13.5 Method Interrelations and Combination 200
13.6 Experimental Evaluation . 201

14 Summary 207

IV Model Checking 209

15 Introduction 211

x CONTENTS

16 Background 213
16.1 Non-Deterministic Automata . 213

16.1.1 Composition of Automata . 214
16.2 The Model Checking Problem . 216

17 Decoupled Composition of Automata 219
17.1 Decoupled Composition . 219
17.2 Correctness . 221

18 Decoupled Search for Safety Checking 223
18.1 Implementation in SPIN . 223
18.2 Experimental Evaluation . 225

19 Decoupled Search for Liveness Checking 229
19.1 NDFS for Decoupled Search . 230

19.1.1 Issues with a Naïve Adaptation of NDFS 230
19.1.2 Reference-State Splits . 231
19.1.3 Putting Things Together: Decoupled NDFS 233

19.2 Decoupled NDFS Correctness . 236
19.3 Experimental Evaluation . 239

20 Related Work – Exponential Separations 243
20.1 Exponential Separations . 244

20.1.1 Safety Checking . 244
20.1.2 Liveness Checking . 246

21 Summary 249

V Conclusion 251

22 Conclusion 253

Appendices 259

A Full Proofs of Part II 259
A.1 Correctness of the Decoupled State Space 259
A.2 Decoupled State-Space Size . 262
A.3 Relation to Petri-net Unfolding . 265

A.3.1 Technical Background – Details 265
A.3.2 Proofs . 267

A.4 Relation to Stubborn-Sets Pruning . 278

CONTENTS xi

A.4.1 Technical Background – Details 278
A.4.2 Proofs . 281

A.5 Relation to Symbolic State Representation 282

B Full Proofs of Part III 285
B.1 Decoupled Strong Stubborn Sets . 285

B.1.1 DSSS Special Case Topologies 285
B.1.2 Exponential Separations . 292

B.2 Dominance Pruning for Fork Topologies 293

Bibliography 301

xii CONTENTS

Part I

Introduction and Planning
Background

1

Chapter 1

Introduction

In the field of artificial intelligence (AI), automated planning is an area that aims at
developing methods that allow machines to act strategically. It has a long tradition in
AI, some of the first attempts to create intelligent machines dating back to the 1950’s.1

“Planning is the art and practice of thinking before acting.”
P@trik Haslum

While humans are arguably good at planning, i. e., predicting the consequences of
their actions and acting accordingly, the task of teaching it to a machine is extremely
challenging. Nevertheless, researchers have come a long way from the early attempts
to today’s sophisticated planning systems. Modern planners are able to outperform hu-
mans when solving huge models of planning tasks that are formulated in a restricted,
yet expressive, formalism. The purpose of a general formalism is to allow for the devel-
opment of domain-independent planners that can solve arbitrary planning tasks relying
only on the model of the specific task at hand.

On a high level, automated planning deals with the problem of finding a sequence
of actions that leads from the current state of the world to a state that satisfies certain
desired goal conditions, if such a sequence exists. More concretely, the state of the
world is typically described on an abstract level using state variables that capture the
relevant characteristics that one is interested in. Variables could for example represent
the location of objects in the world, their properties, or express facts that are true in
the world. Actions describe an agent’s possibilities to interact with the environment,
like moving in it or manipulating objects. By performing actions, the agent changes the
current world state, and transitions to a successor state. A sequence of actions that leads
from the current state to a state in which all goal conditions are achieved is called a plan.

Various formalisms exist that allow to model planning tasks. In this work, we restrict
ourselves to the most canonical such formalism, classical planning. Here, the state of the

1E.g., McCarthy, 1959; Newell and Simon, 1963; Ernst and Newell, 1969; Fikes and Nilsson, 1971.

3

4 CHAPTER 1. INTRODUCTION

world is always fully known to the agent, state variables have a finite discrete domain,
and actions have unique outcomes that occur deterministically. Despite its simplicity,
classical planning offers an expressive framework in which complex and interesting
problems can be modeled.

Nowadays, the most popular way to solve classical planning tasks is state-space
search, most often using a heuristic function for guidance towards the goal. The pre-
sented work, star-topology decoupled state-space search, indicated by its name, is a
state-space search method as well. Decoupled search falls into the categories of state-
space reformulation, such as factored planning, and partial-order reduction techniques,
like strong stubborn sets pruning and Petri-net unfolding, as well as symbolic state
representation, e. g., via binary decision diagrams. With factored planning, decoupled
search shares the concept of not searching over full variable assignments (states), but
partitioning the variables into separate factors, solving sub-tasks locally, and construct-
ing global solutions by coordinating cross-factor interactions. Similar to partial-order
reduction methods, decoupled search exploits the independence between actions that
affect disjoint sets of variables, avoiding the enumeration of all interleavings of such
actions. Decoupled search has in common with symbolic representations that search
nodes do not correspond to single states, but compactly represent entire sets of states.
Despite these similarities, we will show that decoupled search is a novel method that
can provide exponential savings over all methods just mentioned.

Star-topology decoupled state-space search is a very general concept that applies
to various kinds of factored state representations, i. e., representations where states are
described in terms of several components. In Parts I–III of this work, we focus on the
application of decoupled search to classical planning, formalizing states as assignments
to a set of variables. In Part IV, we apply decoupled search to model checking, where the
system components are non-deterministic automata. This generality, decoupled search
being applicable to many formulations of state-space search problems, is shared with
most of the aforementioned well-known reduction techniques, many of which are em-
ployed in the planning as well as the model-checking community, and other areas of
computer science.

1.1 Illustrative Example
Throughout this work, we will use a logistics planning task as running example. It shall
serve to illustrate the introduced concepts. Figure 1.1 shows a simple version of such a
logistics task, with a truck T that has to transport several packages p1, . . . , p4 from their
current to a goal location. The “world” here consists of four locations, l1, . . . l4, arranged
in a line such that the truck can drive between any two adjacent locations. The truck
can further load and unload a package if both are at the same location, respectively the
package is in the truck. A state in the task is described in terms of five state variables

1.1. ILLUSTRATIVE EXAMPLE 5

l1 l2 l3 l4

T

p1

p3p2 p4

Figure 1.1: An illustration of the initial state of our running example.

T, p1, . . . p4, which indicate the positions of the five objects. For the truck T , these can
be any one of l1, . . . , l4; the packages can additionally be placed in the truck.

Let’s assume that the state depicted in the figure is the current state, denoted I, and
we want all packages to be transported to l4. The way this planning task is usually solved
via state-space search is to generate all successor states of I by applying all possible se-
quences of the actions drive, load, and unload, until we reach a state where all packages
are in l4. The state space constructed this way contains a total of 2500 states—one
for each combination of truck and package locations. This indicates a major limitation
to making any kind of state-space search method efficient, the state explosion prob-
lem—a compact representation of a planning task, here in terms of five state variables,
describes a state space whose size is exponential in the number of variables.

Decoupled search is a novel concept and was specifically designed to tackle the
state explosion problem. The key observation is that we do not have to enumerate all
possible assignments to state variables explicitly if these assignments do not depend
on each other. In our example, this holds for the four packages. Given a sequence
of truck drives, the packages are conditionally independent, meaning that no matter
what sequence of load/unload actions we choose for one package, we are free to use
any other such sequence for the other packages. Hence, instead of enumerating all
combinations of package positions, we can maintain the reachable locations for each
package separately along with the current truck position.

Graphically, this kind of dependency can be illustrated using a structure known as
the causal graph. The causal graph of our example is shown in Figure 1.2. The connec-
tions in the graph indicate the dependencies between the state variables: the packages
depend on the truck (to be transported somewhere), the truck provides this service to the
packages. Importantly, there is no direct connection between the packages, illustrating
their conditional independence. The structure of the graph further shows where star-
topology decoupled search got its name from. With the truck in the center, the packages
form the leaves of a star topology.

In the state depicted in Figure 1.1, a package can be loaded into the truck indepen-
dent of the other packages. Thus, we can compactly represent the 16 states where the
truck is at l1 and any combination of packages is either at l1 or in the truck in a single
so-called decoupled state. The set of states represented in the decoupled state corre-
sponds to all states reachable from I via any sequence of only load/unload actions of

6 CHAPTER 1. INTRODUCTION

T

p1 p2

p3 p4

Figure 1.2: The causal graph of our running example.

the individual packages. More generally, all sequences of actions affecting only a leaf
of the star topology can be enumerated, leaving the center actions to be branched over in
the search. In our example, this means that decoupled search only branches over drive
actions, which form the transitions in the decoupled state space. A decoupled state is
then defined by the position of the truck and the possible locations of each package
given the sequence of drive actions that leads to the decoupled state.

I : T=l1, px=l1

T=l2, px=l1T=l1, p1=T, p2,3,4 = l1

T=l1, p2=T, p1,3,4 = l1 T=l1, p3=T, p1,2,4 = l1

T=l1, p4=T, p1,2,3 = l1

drive
load

load load

load

Figure 1.3: Part of the state space of our running example.

Consider Figures 1.3 and 1.4 for illustrations of part of the normal state space and
the decoupled state space, respectively. In the normal state space, we see that the search
constructs all five possible successors of I, either driving the truck or loading any one
package. In the next level, i. e., at a distance of two actions from I, there would be 11
new states, out of which 6 encode states with the truck at l1 and all combinations of any
two packages loaded into the truck. We would see a similar branching at the subsequent
level, where all combinations of any three packages are in the truck, and so on.

Explicitly enumerating all states where the truck is in l1 that only differ in which
packages are loaded, respectively still at l1, results in 16 states. All these states are
compactly represented in the initial decoupled state, which we denote by IF . This is
indicated by the notation px = {l1, T}, stating that every package can be at l1 or in the
truck. We are free to choose any of the two positions for every package, independent of
the others. In total, the decoupled state space only contains 20 decoupled states, greatly
compressing the state space (with 2500 states), with no information loss.

While our running example is admittedly quite simplistic, we will prove that decou-
pled search can be exponentially more efficient than many existing methods. Comple-

1.2. CONTRIBUTIONS 7

IF : T = l1, px = {l1, T}

T = l2, px = {l1, l2, T}

T = l1, px = {l1, l2, T} T = l3, px = {l1, l2, l3, T}

drive

drive drive

Figure 1.4: Part of the decoupled state space of our running example.

menting this theoretical analysis, our implementations of decoupled search in planning
and model checking shows significant improvements over state-of-the-art systems on
standard benchmarks.

1.2 Contributions
This thesis makes three core contributions:

1) We develop the basic concept of star-topology decoupled state-space search in the
context of classical planning. This comprises the formal introduction of decoupled
search in terms of the decoupled state space, proof of the correctness of the ap-
proach, and the development of the connection to heuristic search methods. We show
that star-topology decoupled search is orthogonal to standard search algorithms, like
breadth-first, A∗, or greedy best-first search, and that in principle all classical plan-
ning heuristics can be used in decoupled search via a simple task compilation.

Furthermore, we develop techniques to identify duplicate and (more importantly)
dominated decoupled states, i. e., states that can be safely pruned during the search,
without sacrificing completeness or optimality of the underlying search algorithm.
Using dominance pruning, we prove that (1) the decoupled state space is finite, and
(2) that the size of the decoupled state space is upper-bounded by the size of the
standard state space when performing hypercube pruning, which involves solving a
co-NP-complete subproblem for every decoupled state.

We devise exponential separations of decoupled search to related methods to exem-
plify that no known method dominates decoupled search in terms of its reduction
power. Such an exponential separation can be captured via a planning task family
that is parametric in a natural number n that is scaled linearly. If the size of the
state-space representation of method A is polynomial in n, whereas that of method
B is exponential in n, we say that A is exponentially separated from B. We will
give examples separating decoupled search from partial-order reduction, Petri-net
unfolding, symmetry breaking, symbolic representations, and factored planning.

8 CHAPTER 1. INTRODUCTION

Moreover, we address the problem of how planning tasks can be decomposed to
lead to a significant state-space reduction. This is an important question, since there
are many—in fact exponentially many—ways to decompose a planning task. We
propose several algorithms that partition the state variables into non-empty subsets,
such that the dependencies between these components take the form of a star topol-
ogy, and analyze the resulting reduction.

We provide a thorough experimental evaluation showing that decoupled search is
able to outperform state-of-the-art planning systems on standard benchmarks that
have a pronounced star topology. We distinguish three different types of experiments
for our evaluation: (1) finding optimal solutions (in terms of sum of action costs), (2)
finding any solution (satisficing planning), and (3) proving that no solution exists.

2) Looking into related state-space reduction methods, we observe that decoupled search
is orthogonal to several existing techniques, namely partial-order reduction, symme-
try breaking, symbolic representations, and dominance pruning, and can hence be
combined with these methods. We develop such combinations for all these meth-
ods, prove their correctness, and show, both theoretically and empirically, that the
combination can outperform its components. In particular, we (a) introduce strong
stubborn sets pruning for decoupled search, avoiding unnecessary branching over
center actions that leads to commutative parts in the decoupled state space. We (b)
adapt symmetry-breaking techniques from planning to work in the decoupled-state
setting, and (c) make use of the compact symbolic representation of leaf state spaces
when the leaf components grow too large to be handled explicitly. Moreover, (d) we
extend decoupled state dominance criteria by adapting methods known from optimal
planning that can identify when a state s is “better” than another one s′, implying that
every plan for s′ is also a plan for s. We can then discard s′ if s has been seen before.

3) We apply decoupled search in the context of formal verification, in particular model
checking. The aim of model checking is to check if a given system model satis-
fies certain desired properties. More specifically, we address the problem of model
checking safety and liveness properties using state-space search. The former is con-
ceptually close to planning in that both address the problem of checking if a state
that satisfies certain properties, i. e., that satisfies the goal in planning, respectively
that violates a desired property when verifying safety properties, is reachable from a
given initial state. Both can be solved by search, constructing the state space of the
specified model and checking if such a state is reachable.

Liveness checking is quite different, but can also be solved using state-space search.
Here, instead of checking if a state is reachable, we look for an infinite sequence of
states, a so-called lasso, that consists of a finite prefix and a cyclic part that contains
an accepting state, i. e., a state that violates certain properties. Typically, liveness
properties specify that “something good will eventually happen”. The presence of a

1.3. PUBLICATIONS 9

lasso then serves as a witness that there exists an infinite system execution in which
nothing good ever happens. A possible approach to the formal verification of liveness
properties is on-the-fly checking using nested depth-first search, which we will adapt
to star-topology decoupled search.

Our contribution consists of (a) formalizing decoupled search in the setting of syn-
chronized non-deterministic automata, (b) devising algorithms for safety and live-
ness checking, and proving their correctness. We (c) show exponential separations
to related techniques, and (d) implemented prototypes of decoupled search for safety
and liveness checking that we evaluate against established model checkers.

1.3 Publications
Most of the results of this thesis have been presented in the publications listed below.
We have grouped the publications by relevance to the individual parts of this work.

The first three publications cover the main concepts of star-topology decoupled
search in AI planning, formally introduce decoupled search, prove its correctness, dis-
cuss the relation to existing work, and prove the effectiveness of decoupled search in
thorough experimental analyses. In the first work we introduce a restricted setting,
namely fork instead of star topologies, where the leaf components can have dependen-
cies on the center, but not vice versa. This is alleviated in the second publication. The
third publication extends this further with a much more comprehensive evaluation, in
particular adding theoretical results pertaining to decomposition methods, decoupled
state dominance pruning, state-space size guarantees, and exponential separations from
existing methods.

• Gnad, D. and Hoffmann, J. (2015a). Beating LM-cut with hmax (sometimes):
Fork-decoupled state space search. In Brafman, R., Domshlak, C., Haslum, P.,
and Zilberstein, S., editors, Proceedings of the 25th International Conference on
Automated Planning and Scheduling (ICAPS’15), pages 88–96. AAAI Press.

• Gnad, D., Hoffmann, J., and Domshlak, C. (2015). From fork decoupling to star-
topology decoupling. In Lelis, L. and Stern, R., editors, Proceedings of the 8th
Annual Symposium on Combinatorial Search (SOCS’15), pages 53–61. AAAI
Press.

• Gnad, D. and Hoffmann, J. (2018). Star-topology decoupled state space search.
Artificial Intelligence, 257:24 – 60.

The following seven publications establish further connections to related work, namely
to dominance pruning, partial-order reduction, symbolic state representation, symmetry

10 CHAPTER 1. INTRODUCTION

breaking, and Petri-net unfolding. These publications also provide combinations of de-
coupled search with all of these methods, except Petri-net unfolding. The last work
introduces an advanced dominance relation over decoupled states.

• Torralba, Á., Gnad, D., Dubbert, P., and Hoffmann, J. (2016). On state-dominance
criteria in fork-decoupled search. In Kambhampati, S., editor, Proceedings of the
25th International Joint Conference on Artificial Intelligence (IJCAI’16), pages
3265–3271. AAAI Press/IJCAI.

• Gnad, D., Wehrle, M., and Hoffmann, J. (2016d). Decoupled strong stubborn sets.
In Kambhampati, S., editor, Proceedings of the 25th International Joint Confer-
ence on Artificial Intelligence (IJCAI’16), pages 3110–3116. AAAI Press/IJCAI.

• Gnad, D., Torralba, Á., and Hoffmann, J. (2017b). Symbolic leaf representation
in decoupled search. In Fukunaga, A. and Kishimoto, A., editors, Proceedings of
the 10th Annual Symposium on Combinatorial Search (SOCS’17). AAAI Press.

• Gnad, D., Torralba, Á., Shleyfman, A., and Hoffmann, J. (2017c). Symmetry
breaking in star-topology decoupled search. In Proceedings of the 27th Inter-
national Conference on Automated Planning and Scheduling (ICAPS’17), pages
125–134. AAAI Press.

• Gnad, D., Hoffmann, J., and Wehrle, M. (2019a). Strong stubborn set pruning
for star-topology decoupled state space search. Journal of Artificial Intelligence
Research, 65:343–392.

• Gnad, D. and Hoffmann, J. (2019). On the relation between star-topology decou-
pling and petri net unfolding. In Proceedings of the 29th International Confer-
ence on Automated Planning and Scheduling (ICAPS’19), pages 172–180. AAAI
Press.

• Gnad, D. (2021b). Revisiting dominance pruning in decoupled search. In Leyton-
Brown, K. and Mausam, editors, Proceedings of the 35th AAAI Conference on
Artificial Intelligence (AAAI’21), pages 11809–11817. AAAI Press.

The next two publications analyze the problem of how to decompose a given plan-
ning task into center and leaf components, the factoring process. The first work intro-
duces ways to compute an upper bound on the number of leaf factors by a reduction to
the maximum independent set problem. It further describes a greedy factoring method
that works very well in practice, but does not provide any guarantees. In the second
work, we phrase the factoring process as an integer linear program (ILP). We prove that
one of our ILP encodings guarantees to find a factoring with the maximum number of
mobile leaf factors, if such a factoring exists. A factoring is mobile if for every leaf
component L, there exists an action that only affects L.

1.3. PUBLICATIONS 11

• Gnad, D., Poser, V., and Hoffmann, J. (2017a). Beyond forks: Finding and ranking
star factorings for decoupled search. In Sierra, C., editor, Proceedings of the 26th
International Joint Conference on Artificial Intelligence (IJCAI’17), pages 4310–
4316. AAAI Press/IJCAI.

• Schmitt, F., Gnad, D., and Hoffmann, J. (2019). Advanced factoring strategies
for decoupled search using linear programming. In Proceedings of the 29th Inter-
national Conference on Automated Planning and Scheduling (ICAPS’19). AAAI
Press.

The following two publications form the basis of our work in formal verification. We
introduce star-topology decoupled state-space search in the context of model checking
of safety properties in the SPIN model checker [Holzmann, 2004]. With the observation
that safety checking is conceptually similar to classical planning, we develop a decou-
pled search extension to SPIN that shows strong experimental result on a set of standard
Promela benchmarks [PromelaManual, 2020]. We extend the scope of decoupled search
to model checking of liveness properties by adapting the well-known nested depth-first
search algorithm that detects infinite accepting runs.

• Gnad, D., Dubbert, P., Lluch-Lafuente, A., and Hoffmann, J. (2018a). Star-
topology decoupling in SPIN. In del Mar Gallardo, M. and Merino, P., editors,
Proceedings of the 25th International Symposium on Model Checking of Software
(SPIN’18), Lecture Notes in Computer Science. Springer.

Winner of the SPIN Best Paper Award.

• Gnad, D., Eisenhut, J., Lluch-Lafuente, A., and Hoffmann, J. (2021c). Model
checking ω-regular properties with decoupled search. In Silva, A. and Leino,
K. R. M., editors, Computer Aided Verification - 33rd International Conference,
CAV 2021, Virtual Event, July 20-23, 2021, Proceedings, Part II, volume 12760
of Lecture Notes in Computer Science, pages 411–434. Springer.

The following works were published as part of the author’s doctoral studies, but are
not covered by this thesis.

The first five publications are in the context of red-black planning [Domshlak et al.,
2015a], a relaxation technique that is based on delete-relaxation [Hoffmann and Nebel,
2001]. The first and third publication introduce new heuristic functions for satisfic-
ing planning. The second and fourth publication develop the concept of red-black
search, where the state representation is changed to allow for a certain degree of delete-
relaxation within the search, in contrast to the traditional approach of relaxing only in
a heuristic that guides the search. In the second paper we introduce an algorithm that
computes red-black plans that are fed into a tool for plan repair. The contribution of
the fourth paper is to remove this last step and iteratively refine the relaxation until the

12 CHAPTER 1. INTRODUCTION

relaxed plan is a correct plan. Although this is reminiscent of counter-example guided
abstraction refinement techniques [Clarke et al., 2003; Seipp and Helmert, 2013], the
red-black relaxation is not an abstraction in the usual sense. The last paper aims at opti-
mizing the encoding of the planning task to fit to the tractable fragment required by the
red-black heuristic used in the Mercury and MERWIN planners [Katz and Hoffmann,
2014; Katz et al., 2018].

• Gnad, D. and Hoffmann, J. (2015b). Red-black planning: A new tractability anal-
ysis and heuristic function. In Lelis, L. and Stern, R., editors, Proceedings of the
8th Annual Symposium on Combinatorial Search (SOCS’15). AAAI Press.

• Gnad, D., Steinmetz, M., Jany, M., Hoffmann, J., Serina, I., and Gerevini, A.
(2016b). Partial delete relaxation, unchained: On intractable red-black planning
and its applications. In Baier, J. and Botea, A., editors, Proceedings of the 9th
Annual Symposium on Combinatorial Search (SOCS’16). AAAI Press.

• Speicher, P., Steinmetz, M., Gnad, D., Hoffmann, J., and Gerevini, A. (2017).
Beyond red-black planning: Limited-memory state variables. In Proceedings
of the 27th International Conference on Automated Planning and Scheduling
(ICAPS’17), pages 269–273. AAAI Press.

• Fickert, M., Gnad, D., and Hoffmann, J. (2018a). Unchaining the power of partial
delete relaxation, part II: finding plans with red-black state space search. In Lang,
J., editor, Proceedings of the 27th International Joint Conference on Artificial
Intelligence (IJCAI’18), pages 4750–4756.

• Fišer, D., Gnad, D., Katz, M., and Hoffmann, J. (2021). Custom-design of FDR
encodings: The case of red-black planning. In Zhou, Z.-H., editor, Proceedings
of the 30th International Joint Conference on Artificial Intelligence (IJCAI’21),
pages 4054–4061.

The following publication is in the context of grounding planning tasks from a com-
pact formulation on lifted PDDL level to a grounded finite-domain representation [Mc-
Dermott et al., 1998; Helmert, 2009; Haslum et al., 2019]. The grounding phase can
sometimes be the bottleneck of the overall planning process, namely if there exists a
blow-up in size of the grounded compared to the lifted representation. In this work, we
tackle this blow-up by developing methods that do not fully ground a planning task, but
that aim at minimizing the size of the grounded representation without sacrificing the
completeness of the overall planning algorithm. We do so by devising heuristic-style
guidance mechanisms that steer the grounding process towards parts of the task that are
deemed relevant to find a plan. We propose prioritization criteria that are based on (1)
syntactic characteristics of the lifted task, computed on the fly during grounding, and (2)

1.3. PUBLICATIONS 13

a learning approach that is trained on a set of small instances of a domain and applied
to large problem instances in which grounding becomes an issue.

• Gnad, D., Torralba, Á., Domínguez, M., Areces, C., and Bustos, F. (2019c). Learn-
ing how to ground a plan – partial grounding in classical planning. In Hentenryck,
P. V. and Zhou, Z.-H., editors, Proceedings of the 33rd AAAI Conference on Arti-
ficial Intelligence (AAAI’19), pages 7602–7609. AAAI Press.

During his doctoral studies, the author participated with five planners in the In-
ternational Planning Competitions 2016 and 2018, as well as in the Sparkle Planning
Challenge 2019.

• Gnad, D., Torralba, Á., Hoffmann, J., and Wehrle, M. (2016c). Decoupled search
for proving unsolvability. In UIPC 2016 planner abstracts, pages 16–18.

The planner is based on decoupled search with a simple factoring strategy, and
makes use of the combinations with strong stubborn sets and dominance pruning
discussed in Part III.

The planner achieved the 5th place out of 11 participants.

• Gnad, D., Steinmetz, M., and Hoffmann, J. (2016a). Django: Unchaining the
power of red-black planning. In UIPC 2016 planner abstracts, pages 19–23.

Our planner is based on red-black search, incrementally unrelaxing the red-black
task transformation until it is proven unsolvable.

The planner achieved the 8th place out of 11 participants.

• Gnad, D., Shleyfman, A., and Hoffmann, J. (2018b). DecStar - star-topology
decoupled search at its best. In IPC 2018 planner abstracts.

The planner competed in all tracks with different search configurations. It uses
decoupled search whenever a task decomposition can be identified, and exploits
all combinations of techniques from Part III, except symbolic leaf representations.

The planner achieved the 6th place in the optimal track (out of 10), the 4th place
in the satisficing track (out of 17), the 6th place in the agile track (out of 18), and
the 7th place in the cost-bounded track (out of 10).

• Fickert, M., Gnad, D., Speicher, P., and Hoffmann, J. (2018b). Saarplan: Com-
bining Saarland’s greatest planning techniques. In IPC 2018 planner abstracts.

The planner competed in all but the optimal track of the competition, with differ-
ent search configurations. It uses a variety of techniques developed in the Foun-
dations of Artificial Intelligence group at Saarland University. Among others, it

14 CHAPTER 1. INTRODUCTION

has components that are based on decoupled search, and a component based on a
red-black heuristic.

The planner was awarded as Runner-Up in the agile and cost-bounded tracks,
as well as recognized for having the highest coverage in the satisficing and agile
tracks. Furthermore, it finished 3rd in the satisficing track (out of 17).

• Gnad, D., Torralba, Á., Domínguez, M., Areces, C., and Bustos, F. (2019b). IPA
LAMA: Planner abstract. In Sparkle Planning Challenge 2019.

Our planner, based on partial grounding, finished 8th among 10 participants.

1.4 Outline
The remainder of this work is organized as follows: Chapter 2 gives a formal back-
ground of classical planning, state spaces of planning tasks, and search methods, includ-
ing heuristic search, that are used to solve classical planning tasks. We also formally
define exponential separations in there.

Part II introduces star-topology decoupled search in the context of classical planning
in Chapter 3, proving its correctness and investigating dominance pruning over decou-
pled states and its implications on the size of the decoupled state space. We develop the
connection to heuristic search methods in Chapter 4. Chapter 5 looks more closely into
how the problem decomposition for decoupled search can be done for arbitrary planning
tasks, answering the question of how to automatically partition the state variables of a
task into center and leaf components. In Chapter 6, we provide exponential separations,
i. e., families of scalable planning task, leading to a polynomial increase in the search
effort of one, vs. an exponential increase for the other method. Finally, Chapter 7 shows
an empirical evaluation of decoupled search in classical planning. We summarize our
findings from Part II in Chapter 8.

In Part III, we take a closer look at orthogonal search reduction methods, in par-
ticular partial-order reduction (Chapter 10), symmetry breaking (Chapter 11), symbolic
state representations (Chapter 12), and dominance pruning (Chapter 13). We formally
introduce all methods and develop combinations with decoupled search. We prove the
correctness of the combined algorithms, and show that these can have advantages over
the base techniques both theoretically and empirically. We summarize our findings from
Part III in Chapter 14.

Part IV investigates the application of decoupled search to model checking of safety
and liveness properties. First, we give the required model-checking background in
Chapter 16, we then formalize decoupled search in the framework of synchronized non-
deterministic automata in Chapter 17. For both safety (Chapter 18) and liveness (Chap-
ter 19) checking, we show how to adapt existing algorithms to the context of decoupled
search, and prove the correctness of our adaptations. We illustrate the effectiveness

1.4. OUTLINE 15

of decoupled search in a prototype implementation. Part IV ends with a discussion of
related work in Chapter 20. We summarize our findings from Part IV in Chapter 21.

We conclude the thesis in Part V and give an outlook to possible research directions
for future work.

16 CHAPTER 1. INTRODUCTION

Chapter 2

Background

We start by giving the required background about classical planning in terms of the
finite-state representation (FDR), a standard framework to formalize planning tasks. We
formally define the state space, a labeled transition system, induced by a planning task.
In Chapter 2.2, we give a brief overview on how planning tasks are typically solved with
state-space search methods. Last, we formally define the concept of exponential sepa-
rations. Some of the definitions and descriptions in this chapter follow the Background
section of Gnad and Hoffmann [2018].

2.1 Classical Planning
There exist many variants of AI planning, which differ in terms of the expressiveness
of the planning models. This includes, for example, variants with continuous state vari-
ables, uncertainty about the initial state and/or action outcomes, or temporal aspects.
For a comprehensive overview, please see Ghallab et al. [2004]. In this work, we con-
sider classical planning, which assumes discrete state variables with finite domains,
complete knowledge about the initial state, and deterministic actions, where effects oc-
cur instantaneously and atomically. In the literature, this classical planning formalism
is referred to as finite-domain representation (FDR), or SAS+ [Bäckström and Nebel,
1995; Edelkamp and Helmert, 1999; Helmert, 2006b, 2009].

Definition 1 (Planning Task). A planning task is a tuple Π = 〈V ,A, cost, I,G〉, where

• V is a finite set of variables, each v ∈ V is associated with a finite domain D(v).
A complete assignment to V is called a state, partial assignments to V are called
partial states;

• A is a finite set of actions. Each action a ∈ A is a pair 〈pre(a), eff(a)〉, where
pre(a) is the precondition of a, and eff(a) is its effect, both partial variable as-
signments;

17

18 CHAPTER 2. BACKGROUND

• cost : A → R0+ is the cost function of Π, mapping each action a ∈ A to its
non-negative cost cost(a);

• I is the initial state;

• G is the goal, a partial state.

The assignment to a single variable v ∈ V is called a fact, denoted by a vari-
able/value pair 〈v, d〉 (we will also use the notation v = d) with d ∈ D(v). For ease of
notation, we will often interpret (partial) states as sets of facts. For a partial variable as-
signment p we denote the subset of variables defined in p by vars(p) ⊆ V . For a (partial)
state s of Π, we denote the assignment to a variable v ∈ vars(s) by s[v] and similarly
for a set of variables V by s[V] := {s[v] | v ∈ vars(s) ∩ V }. We say that a (partial) as-
signment p satisfies another (partial) assignment q, denoted p |= q, if vars(q) ⊆ vars(p)
and for all v ∈ vars(q) : p[v] = q[v], or alternatively in set-notation q ⊆ p.

An action a ∈ A is applicable in a state s, if s |= pre(a). Applying a in s results
in the successor state s[[a]] := s[V \ vars(eff(a))] ∪ eff(a), i. e., we overwrite s with
the effects of a where defined. We will also apply actions to partial states p; then,
an action a is applicable in p if p |= pre(a)[vars(p)], the resulting state is defined as
p[[a]] := p[vars(p) \ vars(eff(a))] ∪ eff(a)[vars(p)]. We say that an action a affects a
variable v if it has an effect on v, i. e., v ∈ vars(eff(a)).

The semantics of a planning task are defined via its state space, a deterministic
labeled transition system. The state space is defined directly on the states and actions
of a planning task. We next define labeled transition systems, then show how the state
space of a task is constructed.

Definition 2 (Labeled Transition System). A labeled transition system (LTS) is a tuple
Θ = 〈S, L, c, T, I, SG〉 consisting of a finite set of states S, a finite set of transition
labels L, a function c : L 7→ R0+ associating each label with its non-negative cost, a set
of transitions T ⊆ S × L× S, an initial state I ∈ S, and a set of goal states SG ⊆ S.

We will often write s l−→ s′ for 〈s, l, s′〉 ∈ T , or s → s′ if the label does not matter.
A path in an LTS is a sequence of labels π = 〈l1, . . . , ln〉 such that there exist states

s0, . . . , sn with si
li+1−−→ si+1 ∈ T for all 0 ≤ i < n. Such a path π is a solution for a state

s if s0 = s and sn ∈ SG. A solution for I is a solution for the LTS. The cost of a path
π, denoted c(π), is the sum of the costs of its labels, c(π) :=

∑
li∈π c(li). A solution π

(for a state s) is optimal if its cost c(π) is minimal among all solutions (for s).
We say that a state s′ is reachable from a state s if there exists a path that starts in s

and ends in s′. A state s is reachable in an LTS if it is reachable from I .
We assume that LTSs are deterministic, i. e., for every s ∈ S and l ∈ L there exists

at most one s′ ∈ S such that 〈s, l, s′〉 ∈ T .

2.2. HEURISTIC SEARCH 19

Definition 3 (State Space). The state space of a planning task Π = 〈V ,A, cost, I,G〉 is
the labeled transition system ΘΠ = 〈S, L, c, T, I, SG〉 where

• S is the set of all states of Π,

• the labels L = A are the actions of Π,

• the cost function c = cost is the cost function of Π,

• 〈s, a, s′〉 ∈ T , iff s, s′ ∈ S, a ∈ A, s |= pre(a), and s[[a]] = s′,

• I = I is the initial state of Π, and

• SG is set of goal states of Π, where sG ∈ SG iff sG |= G.

An (optimal) solution π for a state s in ΘΠ is an (optimal) plan for s, i. e., a sequence
of actions that leads from s to a state that satisfies the goal G. An (optimal) plan for I is
an (optimal) solution for Π.

The state space of a task is generally exponentially larger than the compact descrip-
tion of the task, which is known as the state explosion problem. Thus, techniques need
to be developed to systematically explore the state space. In the next section, we will
introduce heuristics functions, a popular means to draw the search exploration towards
promising states, i. e., states close to the goal.

Given a planning task Π, deciding whether a plan exists is PSPACE-complete [By-
lander, 1994]. At an algorithmic level, planning distinguishes mainly three different
problems: optimal planning, where the objective is to find an optimal plan; satisfic-
ing planning, where it suffices to find any plan; and proving unsolvability, where the
objective is to prove that no goal state is reachable.

2.2 Heuristic Search
In this work, we focus on what is currently the most popular approach to solve classical
planning problems, namely (heuristic) state-space search [Bonet and Geffner, 2001].
Search algorithms systematically explore the state space ΘΠ of a planning task Π by
following the transitions in the state space. We will only consider forward search meth-
ods, which, starting in the initial state I, generate the successors of a state by applying
the applicable actions. The states generated in the search can be ranked by a heuristic,
which estimates the distance from a state to a goal state and thereby prioritizes states
that are closer to the goal.

Definition 4 (Heuristic). A heuristic h : S 7→ R0+ ∪ {∞} is a function that maps each
state s of a planning task Π to an estimate of the cost of a plan for s, or∞ indicating
that no plan exists. The perfect heuristic h∗ maps each state s to the cost of an optimal

20 CHAPTER 2. BACKGROUND

plan for s, or∞ if no such plan exists. A heuristic h is admissible if h(s) ≤ h∗(s) for
all states s.

Heuristics form an important component in planning systems based on search, since
they guide the search towards states that are most promising [McDermott, 1999; Bonet
and Geffner, 2001; Hoffmann and Nebel, 2001; Gerevini et al., 2003; Helmert, 2006b;
Helmert and Domshlak, 2009; Richter and Westphal, 2010; Domshlak et al., 2015a].

We will adapt several popular planning heuristics for decoupled search and provide
a compilation that enables the use of any heuristic. With these heuristics available, we
will deploy decoupled search for best-first search algorithms, namely A∗ [Hart et al.,
1968; Pearl, 1984], which can be used for optimal planning when using an admissible
heuristic, and greedy best-first search (GBFS) [Doran and Michie, 1966], which is typi-
cally used for satisficing planning. The concept of decoupled search is orthogonal to the
use of search algorithms, and can, in principle, be combined with any search algorithm.

2.3 Problem Structure – The Causal Graph

Many works in planning have investigated the structure of planning tasks to facilitate the
search (e. g. [Domshlak and Dinitz, 2001; Helmert, 2004; Haslum et al., 2007; Katz and
Domshlak, 2008; Giménez and Jonsson, 2012; Katz and Keyder, 2012; Pommerening
et al., 2013; Aghighi et al., 2015; Domshlak et al., 2015a]). An important notion in
this analysis is the causal graph CGΠ of a planning task Π [Knoblock, 1994; Jonsson
and Bäckström, 1995; Brafman and Domshlak, 2003; Helmert, 2006b; Giménez and
Jonsson, 2008].

Definition 5 (Causal Graph). The causal graph CGΠ of a planning task Π is a digraph
with vertices V and edges E, where 〈v, v′〉 ∈ E iff v 6= v′ and there exists an action a
such that 〈v, v′〉 ∈ (vars(pre(a)) ∪ vars(eff(a)))× vars(eff(a)).

The causal graph captures direct state variable dependencies induced by the ac-
tions. It captures two forms of dependencies, (i) precondition-effect dependencies, if
v ∈ vars(pre(a)) and v′ ∈ vars(eff(a)), as well as (ii) effect-effect dependencies, if both
v, v′ ∈ vars(eff(a)). Intuitively, given a causal graph arc v → v′, changing the value of
v′ may involve changing that of v as well, because either (i) v may need to provide a
precondition, or (ii) v may be affected as a side effect of changing the value of v′.

Causal graphs will play a key role throughout this work, because they allow to reason
about (sets of) variables that are independent of other variables of a planning task.

2.4. EXPONENTIAL SEPARATION 21

2.4 Exponential Separation
Throughout this work, we will compare the reduction power of decoupled search to that
of several existing techniques, as well as different variants of decoupled search to each
other. We do so via so-called exponential separations, families of planning tasks that
can be scaled in a parameter n. This allows us to reason about the behaviour of different
search methods when increasing the size of the planning tasks that are tackled.

Definition 6 (Exponential Separation). Let {Πn | n ∈ N+} be a family of planning
tasks of size (number of facts and actions) polynomially related to n. Then search
method X is exponentially separated from search method Y if (i) the representation size
of the reachable state space under X is bounded by a polynomial in n, while (ii) the
representation size of the reachable state space under Y is exponential in n.

By “representation size”, we typically refer to the number of states. While these are
always compact for explicit-state search, decoupled states themselves can have a size
that is exponential in the number of variables. In our exponential separations, the task
families and decompositions will always ensure that decoupled states are compact, so
there is no hidden blow-up that is not represented by the number of states reached.

22 CHAPTER 2. BACKGROUND

Part II

Star-Topology Decoupled State-Space
Search

23

Chapter 3

Decoupled State-Space Search

In this chapter, we will introduce decoupled search for classical planning. We will
formalize the decomposition of a given planning task to obtain the required structure in
Chapter 3.1, then formally define the decoupled state space and prove its correctness in
Chapters 3.2 and 3.3. We then look into decoupled state dominance pruning and size
guarantees for the decoupled state space in Chapter 3.4.

This chapter is for the largest part based on Gnad and Hoffmann [2018]. In Chap-
ter 3.4, we extend the dominance pruning from Gnad and Hoffmann [2018] by a more
sophisticated variant introduced in Gnad [2021b]. The idea behind the proof of Theo-
rem 3 is due to Álvaro Torralba.

3.1 Problem Decomposition
The main difference between decoupled search and explicit-state search methods is that
decoupled search does not operate on full states, but on sets of partial states. This is done
by splitting the state variables V of a planning task Π into disjoint non-empty subsets,
the factors. Such a partition of the state variables is called a factoring F . The search
explores sequences of actions that affect the so-called center factor, while enumerating
sets of partial states that can be reached with actions that only affect one of the other
factors, the leaves.

Definition 7 (Star Factoring). Let Π = 〈V ,A, cost, I,G〉 be a planning task. A factoring
F for Π is a partition of its variables V into disjoint non-empty subsets.

A factoring F is a star factoring, if |F| > 1 and there exists a center factor C ∈ F
such that, with L := F \ {C} being the leaf factors of F , for all actions a ∈ A it holds
that either there exists an L ∈ L such that vars(pre(a)) ⊆ C ∪ L and vars(eff(a)) ⊆ L,
or vars(eff(a)) ∩ C 6= ∅.

In words, in a star factoring F , there are no restrictions on actions affecting the cen-
ter C, actions that do not affect C are limited to effects on a single leaf L and precon-

25

26 CHAPTER 3. DECOUPLED STATE-SPACE SEARCH

ditions on L and C. From here on, we will assume that all factorings are star factorings
and omit the “star” prefix. We will investigate different special types of factorings, and
how factorings can be identified in Chapter 5.

Complete assignments to C are called center states, complete assignments to an
L ∈ L are called leaf states. We denote the set of leaf states of a particular leaf L ∈ L
by SL and the set of all leaf states by SL :=

⋃
L∈L S

L. As a notation convention, we
will denote center states with a superscript C, e. g., sC , and leaf states with a superscript
L, e. g., sL. A center state sC is a center goal state iff sC |= G[C], i. e., it satisfies all
goals that are defined over center variables. Similarly, leaf state sL of leaf L is a leaf
goal state iff sL |= G[L], i. e., it satisfies all goals that are defined over L.

For a factoring F , we define the center actions AC as the actions that affect C,
formally AC := {a ∈ A | vars(eff(a))∩C 6= ∅}, and the leaf actions AL as the actions
affecting a leaf L, formally AL := {a ∈ A | vars(eff(a)) ∩ L 6= ∅}. We denote the set
of all leaf actions by AL :=

⋃
L∈LAL. We remark that AC and AL are not necessarily

disjoint, i. e., there can be actions that affect both center and, potentially several, leaves.
An important type of actions are those leaf actions that are not at the same time center
actions. We call these leaf-only actions and define the set of all leaf-only actions by
AL6C := AL \ AC , and those of a particular leaf L by AL6C := AL \ AC .

We call the preconditions pre(a)[C], respectively effects eff(a)[C], of an action a ∈
A on the center factor C center preconditions, respectively center effects. Similarly, we
call the preconditions/effects on a leaf factor L ∈ L its leaf preconditions/effects. A
sequence of center actions applicable to I when ignoring all leaf preconditions is called
a center path, notation convention πC . A sequence of leaf actions of a leaf L applicable
to I when ignoring the preconditions on V \L is called a leaf path, notation convention
πL. For an arbitrary path π of actions in A, by πC(π) we denote its projection onto the
center actions AC .

We will illustrate these concepts on a variation of the example from the introduction
with two trucks and three packages, which is shown in Figure 3.1:

l1 l2 l3 l4

T1 T2

p1

p3p2

Figure 3.1: An illustration of the initial state of our running example. In the goal, all
packages need to be in l4.

3.1. PROBLEM DECOMPOSITION 27

The example can be formalized as an FDR task as follows:

• V = {T1, T2, p1, p2, p3},
• A ={drive(Ti, a, b) | i ∈ {1, 2}, {a, b} ∈ {{l1, l2}, {l2, l3}, {l3, l4}}}∪

{load(Ti, pj, lk) | i ∈ {1, 2}, j ∈ {1, 2, 3}, k ∈ {1, 2, 3, 4}}∪
{unload(Ti, pj, lk) | i ∈ {1, 2}, j ∈ {1, 2, 3}, k ∈ {1, 2, 3, 4}},

where:
pre(drive(Ti, a, b)) = {Ti = a}, eff(drive(Ti, a, b)) = {Ti = b},
pre(load(Ti, pj, lk)) = {Ti = lk, pj = lk}, eff(load(Ti, pj, lk)) = {pj = Ti},
pre(unload(Ti, pj, lk)) = {Ti = lk, pj = T}, eff(unload(Ti, pj, lk))={pj=lk}.

• I = {T1 = l1, T2 = l4, p1 = l1, p2 = l1, p3 = l1},
• G = {p1 = l4, p2 = l4, p3 = l4}.
A possible factoring of this task puts the trucks together and each of the packages

into an individual factor, so F1 = {{T1, T2}, {p1}, {p2}, {p3}}. Taking the trucks as the
center factor, C = {T1, T2}, and each package as a leaf Li = {pi}, this is indeed a star
factoring, where the load/unload actions are leaf-only actions with preconditions on the
truck and the respective package, and effects only on the package. The truck drives are
the center actions with preconditions and effects only on a truck.

Alternatively, the variables can be partitioned such that all packages form the center
factor C = {p1, p2, p3} and each of the trucks becomes a leaf, L = {{T1}, {T2}}. Here,
the drive actions are leaf-only actions and the load/unload actions are center actions
with leaf preconditions. We will refer to this factoring by F2.

A center state is an assignment to the truck variables, e. g., sC = {T1 = l1, T2 = l4},
a leaf state is an assignment to one of the package variables, e. g., sL1 = {p1 = l2} (both
examples are for F1).

The causal graph of the task is illustrated in Figure 3.2:

T1 T2

p1 p2 p3

Figure 3.2: The causal graph of our running example.

The key observation for decoupled search is that the leaf factors, the packages in our
example with F1, are conditionally independent. Given a sequence of drive actions πC

that move the trucks, for example:

πC = drive(T1, l1, l2), drive(T1, l2, l3), drive(T1, l3, l4),

28 CHAPTER 3. DECOUPLED STATE-SPACE SEARCH

we can choose an arbitrary sequence of complying1 leaf paths, i. e., a sequence of
leaf-only actions that can be scheduled along πC such that all preconditions on the center
are fulfilled. Some compliant leaf paths are for example:

πL1
1 = load(T1, p1, l1), unload(T1, p1, l2)

πL1
2 = load(T1, p1, l1), unload(T1, p1, l3)

πL3
1 = load(T1, p3, l1), unload(T1, p3, l2)

πL3
2 = 〈〉

The leaf path πL1
1 can for example be scheduled along πC as follows:

load(T1, p1, l1), drive(T1, l1, l2), unload(T1, p1, l2), drive(T1, l2, l3), drive(T1, l3, l4)

We can also decide not to move a package at all as in πL3
2 .

The important point is that independent of which of the paths πL1
1 , πL1

2 we choose
for leaf L1, we are free to choose any compliant path for, e. g., leaf L3. This is because
leaf-only actions of a leaf L do not affect variables in another leaf L′ ∈ L \ {L}.
This property is exploited by decoupled search by searching only over center paths πC ,
maintaining for each leaf the set of leaf states reachable via leaf paths compliant with
πC . This avoids the enumeration of all global states that result from combinations of
these leaf states across leaves, leading to exponential savings. More specifically, the
reduction achieved by maintaining leaf paths separately is exponential in the number of
leaves. It is, for each leaf factor, limited by the number of leaf-only actions. Thus, these
actions play an important role for the reduction power of decoupled search. The more
leaf-only actions are induced by a factoring, the higher the reduction because the search
branches over fewer actions, and potentially more leaf paths are compliant.

We will formalize the concepts of compliant paths and the decoupled state space in
the next sections.

3.2 Decoupled State Space

Decoupled search exploits the independence of the leaf factors by only searching over
sequences of center actions, i. e., center paths πC , and enumerating for each such center
path the leaf paths πL compliant with πC for each leaf separately. We will introduce
the concept of compliant paths next, and, building thereupon, define the compliant-path
graph and the decoupled state space.

1We will formally define the notion of compliant paths in the next section.

3.2. DECOUPLED STATE SPACE 29

3.2.1 Compliant-Path Graph
A leaf path πL of leaf L complies with a center path πC , πL is πC-compliant, if: (1)
the subsequences of AL ∩ AC actions in πL and πC coincide; and (2) the leaf-only
actions AL6C in πL can be scheduled alongside πC so that (a) for the actions in πL all
preconditions on C are satisfied, and (b) for the actions in πC all preconditions on L are
satisfied. In the above example, (1) is moot because AL ∩AC is empty for both F1 and
F2. Condition (2a) matters forF1 only because the package moves (load/unload) rely on
center preconditions. Condition (2b) is moot for F1 because center actions do not have
leaf preconditions, it is effective for F2, though, since the center actions load/unload
have preconditions on the truck positions. The leaf paths complying with a given center
path πC can be easily maintained in the form of a layered compliant-path graph (with
layers corresponding to the time steps along πC).

Each center path πC in the search ends in a decoupled state sF . We denote the
center path on which a decoupled state is reached by πC(sF). The decoupled state sF

contains a center state center(sF). For the empty center path πC(sF) = 〈〉, we have
center(sF) = I[C], in the example using F1 this is {T1 = l1, T2 = l4}. The decoupled
state furthermore contains a pricing function, a mapping prices(sF) : SL 7→ R0+∪{∞}
from leaf states to non-negative numbers, or∞ to indicate unreachable leaf states.

In the initial decoupled state sF of the example with F1, the price of {p1 = l1}
is 0 because the empty leaf path πL = 〈〉 complies with πC(sF) = 〈〉. The price of
{p1 = T1} is 1 because the leaf path πL = 〈load(T1, p1, l1)〉 complies with πC(sF): the
only center precondition of πL, T1 = l1, is satisfied in the center state center(sF) =
{T1 = l1, T2 = l4}. For the leaf state {p1 = l2}, however, there is no πC(sF)-compliant
leaf path because we would need the center precondition T1 = l2, which is not true
anywhere along πC(sF). In particular, the path 〈load(T1, p1, l1), unload(T1, p1, l2)〉 is
not πC(sF)-compliant for that reason. Similarly for the leaf states {pi = l2}, {pi = l3},
and {pi = l4}. These leaf states are not reachable given πC(sF), so their price in sF is
∞. The path 〈unload(T1, p1, l1)〉 is πC-compliant, but is not actually a leaf path because
it is not applicable to I: its precondition p1 = T1 on the leaf itself is not satisfied
initially.

We next define the compliant-path graph, which captures all compliant paths along
a center path and serves as a basis to obtain the pricing function.

Definition 8 (Compliant-Path Graph). Let Π be a planning task, F a star factoring with
center C and leaves L, and πC = 〈aC1 , . . . , aCn 〉 a center path traversing center states
〈sC0 , . . . , sCn 〉. The πC-compliant-path graph for a leaf L ∈ L, denoted CPGΠ(πC , L), is
the arc-labeled weighted directed graph whose vertices are {sLt | sL ∈ SL, 0 ≤ t ≤ n},
and whose arcs are:

(i) sLt
aL−→ qLt with weight cost(aL) whenever sL, qL ∈ SL and aL ∈ AL6C are such that

sCt |= pre(aL)[C], sL |= pre(aL)[L], and sL[[aL]] = qL.

30 CHAPTER 3. DECOUPLED STATE-SPACE SEARCH

(ii) sLt
0−→ qLt+1 with weight 0 whenever sL, qL ∈ SL are such that sL |= pre(aCt+1)[L]

and sL[[aCt+1]] = qL.

Item (i) concerns transitions within each time step t, i. e., the graph captures howL—
only L, not the center or anything else—can be moved given the center preconditions
provided by sCt . Recall here that the center actions AC are not disjoint from the leaf
actions AL. Within time steps, we only consider the leaf-only actions, AL6C .

Item (ii) concerns transitions across time steps, from t to t + 1, compliant with the
center action aCt . Leaf states sLt at step t survive (have a transition to t+ 1) only if they
comply with the leaf precondition required by aCt , and they get transformed to leaf states
qLt+1 at step t+ 1 through the effect of aCt on L. Note that, if aCt has no precondition on
L (e. g., like in the example with F1), then all leaf states sLt survive. If aCt has no effect
on L, then the surviving leaf states remain the same at t+1, i. e., the item (ii) transitions
have the form sLt

0−→ sLt+1.
The arc weights capture the cost incurred for L, i. e., the cost of the πC-compliant

leaf paths of L. Within time steps, for the actions moving only L, these are just the
action costs. Across time steps, where the center moves (which may or may not move L
as a side effect), the arc weight is 0 because these costs are accounted for on the center
path itself.

In short, CPGΠ(πC , L) captures all ways in which leaf paths for L can be scheduled
alongside πC . The πC-compliant paths correspond exactly to the paths from I[L]0, i. e.,
from the vertex representing L’s initial state in CPGΠ(πC , L), to the vertices of the last
layer n, where n is the length of πC . Consequently, we define the pricing function for
πC and L through the cheapest such paths in CPGΠ(πC , L).

Keep in mind that a pricing function, and thereby the compliant-path graph, does not
represent a commitment, but a set of options, one of which will be committed to later
on. In the example with F1, if we later on choose to load p1 into T1, the cost for doing
so will be 1. The commitments will only be made once we reach the goal. Namely, a
decoupled goal state is one whose center state is a center goal state, and where every
leaf has a finite-price leaf goal state. Given a center path πC leading to a decoupled
goal state, we can extract a (global) plan π for the input task by augmenting πC with
πC-compliant leaf goal paths, i. e., compliant leaf paths that end in a leaf goal state.
In fact, pricing functions allow to extract a plan π optimal subject to using exactly the
center action subsequence πC . This is so because every plan decomposes into a center
path augmented with compliant leaf paths, and the pricing functions keep track of the
cheapest compliant leaf paths.

A variant of decoupled search is obtained by replacing the pricing functions with
reachability functions, that distinguish only if a leaf state is reachable (prices(sF)[sL] <
∞), or not (prices(sF)[sL] = ∞). This allows to preserve completeness, but does not
allow to preserve optimality. It is of advantage in practice because reachability functions
can be computed more efficiently, and as they make less distinctions so reduce the size

3.2. DECOUPLED STATE SPACE 31

of the decoupled state space. Reachability functions are equivalent to pricing functions
in the modified task where all leaf action costs are set to 0, so we will specify the more
general pricing functions only.

Example 1. Consider again the example with F1. Denote the empty center path by
πC0 , and the corresponding decoupled state by sF0 . The outgoing transitions of a decou-
pled state are given by those center actions whose center precondition is satisfied, and
whose precondition on each leaf has a finite price. In sF0 , these are drive(T1, l1, l2) and
drive(T2, l4, l3).

Denote the center path extended with drive(T1, l1, l2) by πC1 , and the outcome decou-
pled state by sF1 . Then center(sF1) = {T1 = l2, T2 = l4}. The prices prices(sF1) are 0 for
{pi = l1} and 1 for {pi = T1}, as these were the prices in sF0 , and no cheaper compliant
paths become available in sF1 . The only change in prices(sF1) is that the leaf states {pi =
l2} get price 2, accounting for the leaf paths 〈load(T1, pi, l1), unload(T1, pi, l2)〉, which
are πC1 -compliant because they can be scheduled along πC1 in the form 〈load(T1, pi, l1),
drive(T1, l1, l2), unload(T1, pi, l2)〉. The compliant-path graph for sF1 is shown in Fig-
ure 3.3.

Now say we obtain πC2 and sF2 from πC1 and sF1 by moving T1 to l3. Then center(sF2) =
{T1 = l3, T2 = l4}, and we have the new finite prices prices(sF2)[{pi = l3}] = 2 thanks
to the πC2 -compliant path πL2 := 〈load(T1, pi, l1), unload(T1, pi, l3)〉. Say further that we
obtain πC3 and sF3 from πC2 and sF2 by driving T2 to l3. Then prices(sF3)[{pi = T2}] = 3
thanks to the πC3 -compliant paths πL3 where load(T2, pi, l3) is appended to πL2 . If next
we choose the successor of sF3 via drive(T2, l3, l4), obtaining sF4 with center(sF2) =
{T1 = l3, T2 = l4} and πC4 by appending drive(T2, l3, l4) to πC3 , we have reached a
decoupled goal state, where prices(sF4)[{pi = l4}] = 4. We obtain a global plan by
scheduling πL4 := 〈load(T1, pi, l1), unload(T1, pi, l3), load(T2, pi, l3), unload(T2, pi, l4)〉
for each leaf alongside πC4 , yielding the 16-step global plan that loads all packages onto
T1, drives T1 to l3 and unloads all packages; then drives T2 to l3, loads the packages
into T2, drives it back to l4 and unloads all packages.

Say finally that we continue on from this decoupled goal state, obtaining πC5 and
sF5 from πC4 and sF4 by moving T1 to l4. Then center(sF5) = {T1 = l4, T2 = l4}. The
compliant leaf paths πL4 supporting {pi = l4} in sF4 , to yield the price of 4, are super-
seded by the new πC5 -compliant (but not πC4 -compliant) paths πL5 := 〈load(T1, pi, l1),
unload(T1, pi, l4)〉. This decreases the prices to prices(sF5)[{pi = l4}] = 2. Observe that
we now get a 11-step global plan, i. e., a plan better than that of the decoupled goal state
sF4 we passed through on the way to sF5 . Intuitively, decoupled goal states have leaf-
goal prices, the cost of “buying” compliant leaf goal paths. The center paths account
only for the center, not for the leaves, so the larger path costs of decoupled-goal-state
descendants may be counteracted by cheaper leaf-goal prices, as in this example. We
will show in Chapter 4 how optimal search algorithms can deal with this via a simple
transformation.

32 CHAPTER 3. DECOUPLED STATE-SPACE SEARCH

(pi = T1)0 (pi = l1)0 (pi = l2)0 (pi = l3)0 (pi = T2)0

(pi = T)1 (pi = l1)1 (pi = l2)1 (pi = l3)1 (pi = T2)1

(un)load(pi, l1); w = 1

0 0 0 0 0

(un)load(pi, l2); w = 1

Figure 3.3: The compliant-path graphs for πC = 〈drive(T1, l1, l2)〉 in the example when
using the factoring F1.

(T1 = l1)0 (T1 = l2)0 (T1 = l3)0 (T1 = l4)0

(T1 = l1)1 (T1 = l2)1 (T1 = l3)1 (T1 = l4)1

drive; w = 1 drive; w = 1 drive; w = 1

0

drive; w = 1 drive; w = 1 drive; w = 1

Figure 3.4: The compliant-path graph of L1 = {T1} for πC = 〈load(T1, p1, l1)〉 in the
example when using the factoring F2.

Example 2. Consider now our example with the alternative factoring F2. The initial
decoupled state sF0 has πC(sF0) = 〈〉, center(sF0) = {p1 = l1, p2 = l1, p3 = l1}, and
the following prices: prices(sF0)[{T1 = li}] = i− 1 and prices(sF0)[{T2 = li}] = 4− i.
All leaf states for both trucks are reachable, since the drive actions do not have a center
precondition. The prices correspond to the distance of the respective truck to its initial
position.

Say we obtain sF1 by loading p1 into T1 in sF0 . Then for sF1 , we obtain πC(sF1) =
〈load(T1, p1, l1)〉, center(sF1) = {p1 = T1, p2 = l1, p3 = l1}, and the prices do not
change. For T2, this is because load(T1, p1, l1) does not have a leaf precondition on T2,
so the leaf paths compliant with πC(sF0) remain compliant and no cheaper paths become
available. For T1, observe that the load action restricts the set of cheapest compliant
paths to only πL = 〈〉 (although, e. g., the path 〈drive(T1, l1, l2), drive(T1, l2, l1)〉 is
πC(sF1)-compliant, it would lead to a price of 2 for {T1 = l1}, so it does not affect the
prices). Thus, in sF1 the leaf states of L1 = {T1} need to be reached again from (T1 =
l1)1, leading to the same prices as before, because they extend the empty compliant leaf
path πL. The compliant-path graph for sF1 and {T1} is shown in Figure 3.4.

3.2. DECOUPLED STATE SPACE 33

3.2.2 The Transition System
We are now ready to define the decoupled state space:

Definition 9 (Decoupled State Space). Let Π be a planning task, and F a factoring for
Π with center C and leaves L. A decoupled state sF is a triple 〈πC(sF), center(sF),
prices(sF)〉 where πC(sF) is a center path, center(sF) is a center state, and prices(sF)
is a pricing function, prices(sF) : SL 7→ R0+ ∪ {∞}, mapping each leaf state to a non-
negative price. The decoupled state space is a labeled transition system ΘFΠ = 〈SF ,AC ,
cost|AC , T F , IF ,SFG 〉 as follows:

(i) SF is the set of all decoupled states.

(ii) The transition labels are the center actions AC .

(iii) The cost function is that of Π, restricted to AC .

(iv) T F contains a transition sF aC−→ tF ∈ T F whenever aC ∈ AC and sF , tF are such
that:

1. πC(sF) ◦ 〈aC〉 = πC(tF);

2. center(sF) |= pre(aC)[C];

3. center(sF)[[aC]] = center(tF);

4. for every L ∈ L where vars(pre(aC)) ∩ L 6= ∅, there exists sL ∈ SL s.t.
sL |= pre(aC)[L] and prices(sF)[sL] <∞; and

5. for every leaf L ∈ L and leaf state sL ∈ SL, prices(tF)[sL] is the cost of a
cheapest path from I[L]0 to sLn in CPGΠ(πC(tF), L), where n := |πC(tF)|.

(v) IF is the decoupled initial state, where center(IF) := I[C], πC(IF) := 〈〉, and,
for every leaf L ∈ L and leaf state sL ∈ SL, prices(IF)[sL] is the cost of a
cheapest path from I[L]0 to sL0 in CPGΠ(〈〉, L).

(vi) SFG are the decoupled goal states sFG, where center(sFG) |= G[C] is a center goal
state and, for every L ∈ L, there exists a reached leaf goal state sL ∈ SL, i. e.,
sL |= G[L] and prices(sFG)[sL] <∞.

For a transition sF aC−→ tF ∈ T F , we denote the decoupled successor state tF of sF

via aC by sF [[aC]]. A decoupled state sF satisfies a (partial) assignment p to V , denoted
sF |= p, iff center(sF) |= p[C] and for all L ∈ L there exists a leaf state sL such
that sL |= p[L] and prices(sF)[sL] < ∞. A center action aC ∈ AC is applicable in a
decoupled state sF iff sF |= pre(aC).

Note that ΘFΠ is infinite, for two reasons: (1) decoupled states contain center paths,
of which there are infinitely many unless the center cannot move in circles; (2) there are

34 CHAPTER 3. DECOUPLED STATE-SPACE SEARCH

infinitely many pricing functions. We show in Chapter 3.4 that finiteness can be attained
by a simple dominance pruning method.

We refer to paths πF in ΘFΠ as decoupled paths. Such a path is a decoupled plan if
it ends in a decoupled goal state. The notions of path cost and solutions, for decoupled
states as well as for ΘFΠ , are inherited from labeled transition systems. However, we
also require a specialized notion of cost and optimality, augmented cost/optimality, dif-
ferent from the standard additive-cost notion. This is because, when applied to ΘFΠ , the
standard notion accounts only for the center-action costs. Augmented cost/optimality
accounts also for the leaf-goal prices, and, as we shall see, corresponds exactly to opti-
mality in the input planning task.

Definition 10 (Augmented Cost & Optimality). Let Π be a planning task, and F a
factoring for Π. For a decoupled goal state sFG, its leaf-goal price, denoted gprice(sFG),
is the sum over its minimal leaf goal state prices:

gprice(sFG) :=
∑
L∈L

min{prices(sFG)[sL] | sL ∈ SL, sL |= G[L]}

For a decoupled path πF ending in sFG, its augmented cost is:

augCost(πF) := cost(πF) + gprice(sFG).

A solution for a decoupled state sF is augmented-optimal if its augmented cost is
minimal among all solutions for sF .

In the definition of leaf-goal prices, recall that each leaf factor may contain sev-
eral state variables, and hence may have more than one leaf goal state. So we need to
minimize over these.

Intuitively, the augmented cost of a decoupled path is its own cost, plus that of
the compliant leaf goal paths it needs to be augmented with to reach the global goal.
When referring to optimality in decoupled search, from now on we will always mean
augmented optimality. To avoid clumsy wording, we will sometimes drop the word
“augmented” and simply talk about optimality.

From any decoupled plan πF for a state sF we can obtain a global plan for any goal
member state s of sF by extending πC(sF) ◦ πF with the cheapest compliant leaf paths
ending in s[L] for all leaves. Herein, we are only interested in the cheapest global plan:

Definition 11 (Global Plan). Let Π be a planning task, and F a factoring for Π. Let πF

be a decoupled plan for a decoupled state sF . The global plan πG(πF , sF) for πF and
sF is a sequence of actions such that πC(πG(πF , sF)) = πC(sF) ◦ πF is the underlying
center path, which is augmented with the cheapest compliant leaf paths for all L ∈ L,
such that cost(πG(πF , sF)) = cost(πC(sF)) + augCost(πF). For decoupled goal states
sFG, we define the global plan as πG(sFG) := πG(〈〉, sFG).

3.3. CORRECTNESS 35

The global plan can be computed efficiently by inserting, between every pair of
consecutive center actions, the leaf actions that belong to the cheapest compliant leaf
path on the respective layer of the compliant-path graph.

We will now illustrate the pruning power of decoupled search on a variant of our
example in which we scale the number of packages.

Example 3. Consider a scaling variant of our example, where one truck T and n pack-
ages pi move along a line l1, . . . , lm of length m, the truck and all packages starting
in l1, the goal being to transport all packages to lm. The standard state space has
m(m + 1)n reachable states. By contrast, using the factoring with C = {T} and
L = {{p1}, . . . , {pn}}, the decoupled state space has only m(m+1)

2
reachable decou-

pled states. This does not even depend on the number of packages.2

Intuitively, the reason is that pricing function changes happen synchronously across
all leaves, as a function of truck moves, to the effect that we need to keep track only
of the subsequence of locations visited by the truck. In detail: the initial decoupled
state allows each package to be loaded, so each has the price 0 for {pi = l1} and 1 for
{pi = T}. After moving to l2, each package gets the additional price 2 for {pi = l2}.
Now there are two choices, moving back to l1 which yields the same center state as
before but with the additional {pi = l2} prices, or moving ahead to l3 which yields the
new prices 2 for {pi = l3}. In this manner, for each location li, the new decoupled
states are the single one where the truck reaches li for the first time, plus the i− 1 ones
reached by going back to li−1, . . . , l1. This yields the overall count

∑m
i=1 i = m(m+1)

2
.

Each decoupled state has size 1 + n(m+ 1) (truck position; n packages, each with
m+ 1 leaf states), so the overall state-space representation size is O(nm3).

Remarkably, while the scaling example is trivial, as we will detail in Chapter 6, it
exponentially separates decoupled search from most previous search reduction methods.

3.3 Correctness
We now prove soundness, completeness, and optimality of ΘFΠ relative to the input
planning task Π. We do so via a characterization of decoupled states in terms of their
hypercubes:

Definition 12 (Hypercube). Let Π be a planning task and F a factoring for Π with
center C and leaves L. Then a state s of Π is a member state of a decoupled state sF ,
if s[C] = center(sF) and, for all leaves L ∈ L, prices(sF)[s[L]] <∞. The price of s in
sF is price(sF , s) :=

∑
L∈L prices(sF)[s[L]]. The hypercube of sF , denoted [sF], is the

set of all member states of sF .
2We assume here a form of duplicate state pruning, which is only formally introduced in Section 3.4,

where a new decoupled state is pruned if there exists an already visited state with the same center state
and pricing function. Thus, the center path reaching the states is ignored for pruning.

36 CHAPTER 3. DECOUPLED STATE-SPACE SEARCH

In other words, [sF] is the product of the reached leaf states across leaf factors. This
is naturally viewed as a hypercube whose dimensions are the leaf factors L.

Observe that sF is a decoupled goal state if and only if its hypercube [sF] contains a
goal state of ΘΠ. Furthermore, it is not difficult to prove that [sF] captures exactly those
states of ΘΠ reachable using the center path πC(sF):

Lemma 1. Let Π be a planning task, and F a factoring for Π. Let sF be a reachable
decoupled state in ΘFΠ . Then:

(i) [sF] is exactly the set of states s for which there exists a path π, from I to s in ΘΠ,
where πC(π) = πC(sF).

(ii) For every s ∈ [sF], the cost of a cheapest such path π is cost(πC(sF))+price(sF , s).

Our proof, given in Appendix A.1, is via notions of embedded states, and embedded
transitions, linking member states, and member-state transitions, to decoupled states.
Embedded states ŝ are in one-to-one correspondence with member states s, but replace
the value assignment to each L with the respective vertex in the compliant-path graph
for L. Embedded transitions ŝ a−→ t̂ capture member state transitions s a−→ t in the
compliant-path graphs, and hence in the decoupled state space. One can think about
this as capturing the decoupled state space in terms of atomic transition-addition steps
(which relates to unfolding-prefix extensions, discussed in Chapter 6.1).

Lemma 1 follows directly from the correspondence between member state transi-
tions, embedded state transitions, and the decoupled state space. The same correspon-
dence also shows that:

Lemma 2. Let Π be a planning task, and F a factoring for Π. Let s be a reachable
state in Π, and let π be a path reaching s. Then there exists a reachable decoupled state
sF in ΘFΠ so that s ∈ [sF], and πC(π) = πC(sF).

The hypercubes in ΘFΠ capture reachability exactly, in the sense stated by Lemmas 1
and 2. Note that the hypercubes of distinct decoupled states may overlap.

Correctness relative to the input planning task Π now follows directly:

Theorem 1 (Soundness, Optimality Subject to Center Path). Let Π be a planning task,
F a factoring, and πF a solution for ΘFΠ ending in sF . Then there is a plan π for
Π where cost(π) = augCost(πF), where πC(π) = πC(sF), and where π is cheapest
among all plans for Π sharing that same center-action subsequence.

Proof. As sF is a decoupled goal state, there exists a member goal state in [sF]. Let
s be a cheapest such state, i. e., where s = argmint∈[sF]price(sF , t). Using Lemma 1,
we can obtain a plan π ending in s, where cost(π) = cost(πC(sF)) + price(sF , s). By
construction, this cost is equal to augCost(πF).

3.4. DECOUPLED STATE-SPACE SIZE AND PRUNING 37

Let now π′ be any plan using πC(sF), ending in goal state s′. By Lemma 1 (i),
s′ ∈ [sF]. So, by construction, price(sF , s′) ≥ price(sF , s). By Lemma 1 (ii) applied to
s′, cost(π′) ≥ cost(πC(sF)) + price(sF , s′). Hence cost(π′) ≥ cost(π), concluding the
argument.

Theorem 2 (Completeness, Global Optimality). Let Π be a planning task, and F a
factoring for Π. If Π is solvable, then so is ΘFΠ . If πF is an augmented-optimal solution
to ΘFΠ , then augCost(πF) equals the cost of an optimal plan for Π.

Proof. Assume that Π is solvable. Let π be an optimal plan for Π, ending in goal state
s. With Lemma 2, there exists a reachable decoupled state sF s.t. s ∈ [sF]. Let πF be
the decoupled path reaching sF from IF . As s is a goal state, sF is a decoupled goal
state, so πF is a solution for ΘFΠ .

With Lemma 1 (ii), we have that cost(π) ≥ cost(πC(sF)) + price(sF , s). By defini-
tion, cost(πC(sF)) + price(sF , s) ≥ augCost(πF). Thus cost(π) ≥ augCost(πF), i. e.,
ΘFΠ has a solution whose augmented cost is at most that of π. The second part of the
claim now follows directly with Theorem 1.

Together, Theorems 1 and 2 show that (augmented-optimal) search in ΘFΠ is a form
of (optimal) planning for Π. Furthermore, given a solution πF for ΘFΠ , the corresponding
plan π for Π as per Theorem 1 can be constructed by selecting, for every leaf factor, a
cheapest leaf goal state sL, and a cheapest path to sL in the respective compliant-path
graph. This construction is low-order polynomial-time in the size of Π and the size of
the compliant path graphs along πF .

We have already seen, in our scaling example (Example 3), that the decoupled state
space can be exponentially smaller than the standard state space. We next examine
possible blow-ups and how to tackle them; then we show how to design (augmented-
optimal) search algorithms for ΘFΠ . We then show that our method is exponentially
separated from all previous search reduction techniques.

3.4 Decoupled State-Space Size and Pruning
As pointed out before, the decoupled state space is, in general, infinite due to (1) differ-
ent center paths, and due to (2) different pricing functions. Of these, (1) would be easy
to tackle by considering decoupled states to be equivalent if they disagree only on the
center path. However, as we now show, due to (2) there can be infinitely many reachable
non-equivalent decoupled states. Furthermore, even in finite cases, the number of reach-
able non-equivalent decoupled states can blow up exponentially relative to the standard
state space.

Fortunately, both can be tackled using pruning techniques. Finiteness can be achieved
through a simple dominance pruning technique that we introduce in Chapter 3.4.1.

38 CHAPTER 3. DECOUPLED STATE-SPACE SEARCH

Blow-ups can be avoided through a more powerful hypercube pruning technique that
we introduce in Chapter 3.4.2. The latter guarantees that there can never be more reach-
able decoupled states than reachable standard states. The downside of hypercube prun-
ing is that it incurs solving a co-NP-complete subproblem for every reached decoupled
state. Empirically, as we will show in Chapter 7.4 on standard planning benchmarks,
hypercube pruning incurs a large computational overhead; reduces search space size
only marginally relative to dominance pruning; and even without hypercube pruning,
the number of generated decoupled states is typically significantly smaller than that of
standard states. We introduce hypercube pruning mostly for its theoretical merit.

3.4.1 Finiteness and Dominance Pruning

Non-reachable states are not of interest in practice, so we focus on reachable states
only. We denote by ΘRFΠ the sub-space of ΘFΠ containing only those decoupled states
reachable from IF .

For reachability functions, as their number is finite, so is the number of non-equivalent
decoupled states in ΘRFΠ (and even in ΘFΠ). With pricing functions, however, the center
may commit the leaves to provide preconditions, causing the leaf state prices to increase.
Repeated commitments can cause the prices to diverge:

Example 4. Consider a variant of our example with one package p, two trucks T1, T2,
initial positions as before, and a factoring withC = {p} andL = {{T1}, {T2}}. Say we

continue the decoupled path IF load(T2,p,l1)−−−−−−−→ sF1 with the center action unload(T2, p, l1).
Then the outcome decoupled state sF2 has the same center state as IF , {p = l1}, but
the pricing function is different. The prices for T2 in IF are 0 for {T2 = l4}, 1 for
{T2 = l3}, 2 for {T2 = l2}, and 3 for {T2 = l1}. In sF2 , they are 3 for {T2 = l1}, 4
for {T2 = l2}, 5 for {T2 = l3}, and 6 for {T2 = l4}. If we continue loading/unloading
the package in alternating locations on the map, then the prices for truck positions will
keep increasing ad infinitum.

Intuitively, the decoupled states along load/unload sequences as outlined get worse,
as the prices get higher. This leads to the following simple definition of dominance:

Definition 13 (Dominance). Let Π be a planning task, F a factoring for Π. Let sF , tF

be decoupled states. We say that tF dominates sF , denoted sF � tF , iff center(tF) =
center(sF) and, for every leaf state sL ∈ SL, prices(tF)[sL] ≤ prices(sF)[sL].

Note that equivalence is a special case of dominance, in that equivalent sF and
tF dominate each other. Informally, if tF dominates sF , then anything one can do in
sF , one can do at least as well in tF . Formally, dominance is a simulation relation
(e. g. [Henzinger et al., 1995]):

3.4. DECOUPLED STATE-SPACE SIZE AND PRUNING 39

Proposition 1 (Correctness of Dominance Pruning). Let Π be a planning task, F a fac-
toring, and sF , tF decoupled states, where tF dominates sF . Then, for every transition

sF
aC−→ sFi in ΘFΠ , tF aC−→ tFi also is a transition in ΘFΠ , and tFi dominates sFi .

Proof. The center precondition of aC is trivially true in tF , and its leaf preconditions

have finite prices in tF because that is so already in sF . Hence tF aC−→ tFi is a transition
in ΘFΠ . To see that tFi dominates sFi , note that the compliant-path graph is extended
with the same last time-step on both sides, so the cheaper prices in tF can only lead to
cheaper prices in tFi .

Note that dominance only considers the leaf state prices, but not the cost of the center
path on which a decoupled state is reached. We next define augmented-cost dominance,
that takes all costs into account:

Definition 14 (Augmented-Cost Dominance). Let Π be a planning task, F a factoring
for Π, and sF , tF be decoupled states. We say that tF augmented-cost dominates sF ,
denoted sF �aug tF , iff ∀s ∈ [sF] : cost(πC(tF)) + price(tF , s) ≤ cost(πC(sF)) +
price(sF , s).

Like basic dominance, augmented-cost dominance generalizes equivalence and is a
simulation relation:

Proposition 2 (Correctness of Augmented-Cost Dominance Pruning). Let Π be a plan-
ning task, F a factoring, and sF , tF decoupled states, where tF augmented-cost domi-

nates sF . Then, for every transition sF aC−→ sFi in ΘFΠ , tF aC−→ tFi also is a transition in
ΘFΠ , and sFi �aug t

F
i .

Proof. Note that sF �aug t
F implies that [sF] ⊆ [tF] and hence necessarily center(sF) =

center(tF) and for all sL ∈ SL where prices(sF)[sL] <∞ it holds that prices(tF)[sL] <
∞. Otherwise, there would exist a member state s of sF that is not reached in tF ,
so price(tF , s) = ∞, in contradiction to sF �aug t

F . Therefore, for every transition

sF
aC−→ sFi there also is a transition tF aC−→ tFi .
It remains to show that tFi augmented-cost dominates sFi . The cost of the decoupled

paths reaching sFi and tFi is incremented by the same amount, namely cost(aC). The leaf
state prices in tFi can only be cheaper than the ones in sFi for the same reason stated in
the proof of Proposition 1. Thus, it holds that ∀s ∈ [sFi] : cost(πC(tFi)) + price(tFi , s) ≤
cost(πC(sFi)) + price(sFi , s).

Simulation relations have previously been used for dominance pruning in standard
state-space search (e. g. Hall et al., 2013; Torralba and Hoffmann, 2015). In particular,
they can be used for optimality-preserving pruning when used only against previously
visited states with equal or smaller path costs, i. e., reached with action sequences of
equal or smaller cost. For the purpose of our discussion in this work, we distinguish the
following three forms of pruning:

40 CHAPTER 3. DECOUPLED STATE-SPACE SEARCH

1. Ancestor: Compare any new state sF to its ancestor states tF .

2. Cheaper-Visited: Compare any new state sF to all previously visited states tF

whose path cost is at most that of sF .

3. All-Visited: Compare any new state sF to all previously visited states tF .

In all cases, if sF is (augmented-cost) dominated by one of the states tF it is com-
pared to, then sF is pruned. As (augmented-cost) dominance generalizes equivalence,
such pruning generalizes duplicate pruning over equivalent states.

Ancestor states are a special case of cheaper-visited states, and cheaper-visited states
are a special case of visited states. Thus, the pruning methods become stronger in the or-
der listed. Cheaper-visited pruning preserves optimality [Torralba and Hoffmann, 2015]
for both types of dominance; all-visited pruning does only do so for augmented-cost
dominance. In the latter, basic dominance is not sufficient because it ignores the cost of
the path reaching a decoupled state, so the search might first visit a dominating but more
costly state, pruning the optimal solutions. With augmented-cost dominance, the path
cost is incorporated, so even checking against all visited states preserves optimality.

It turns out that, to avoid infinite reachable decoupled state spaces ΘRFΠ , the weakest
form of pruning considered herein—ancestor dominance pruning—already suffices.

For cases like in Example 4, i. e., where center actions do not affect leaves, this is
trivial: as the prices increase monotonically, with ancestor dominance pruning every
search path must stop as soon as the same center state is visited a second time. For

example, the search path IF load(T2,p,l1)−−−−−−→ sF1
unload(T2,p,l1)−−−−−−−−→ sF2 is pruned, because sF2 is

dominated by IF .
For more general factorings, with bidirectional dependencies between leaves and

center, where the prices neither increase nor decrease monotonically, the proof is more
involved:

Theorem 3 (Finiteness under Dominance Pruning). Let Π be a planning task, and F a
factoring for Π. Under ancestor dominance pruning, ΘRFΠ is finite.

Proof (sketch). Consider the non-pruned paths πF in ΘRFΠ . We prove that, under ances-
tor dominance pruning, every πF is finite. As the branching factor is finite, this proves
the claim.

Observe that the non-pruned paths necessarily are descending: intuitively, some
prices along πF must descend each time we encounter the same center state as otherwise
the new state would be dominated by some previous state. Formally, consider the pricing
functions along πF as vectors v over R0+ ∪ {∞}. Define a relation � over such vectors
by v � v′ iff there exists a vector position k so that v[k] > v′[k]. Say that a vector
sequence ~v = v0, v1, v2, . . . is descending if, whenever i < j, vi � vj .

3.4. DECOUPLED STATE-SPACE SIZE AND PRUNING 41

c :

0 1 2 n. . .
aCl,1 1

aCr,1 2

aCl,2 1

aCr,2 2

li : 0

1

aLi,c 1aCr,i aLi 0

Figure 3.5: Illustration of the planning task used in the proof of Proposition 3.

Assume to the contrary that there is an infinite descending path πF . Then from an
infinite sub-path with identical center states we can extract an infinite descending vector
sequence ~p over R0+ ∪ {∞}. More precisely, ~p is over R ∪ {∞} where R contains all
possible finite action-cost sums in Π.

It is easy to see (Proposition 14 in Appendix A.2) that R has no infinite descending
sequence of 1-vectors (within each finite cost value, only a finite number of non-0 cost
actions can be used). But what about N -vectors? Observe that, for N > 1, the relation
� is not a partial order. It is neither transitive, e. g., (5, 5) � (4, 10) and (4, 10) � (5, 9),
but (5, 5) 6� (5, 9); nor asymmetric, e. g., (4, 5) � (5, 4) and (5, 4) � (4, 5). Further-
more, v � v′ as soon as v′ is strictly smaller anywhere; all other positions can increase
by arbitrary amounts, e. g., v � v′ for v = (5, 5) and v′ = (4, 1000). Nonetheless
(Lemma 20 in Appendix A.2), if there is no infinite descending sequence of 1-vectors
over some set R ⊆ R, then there is no infinite descending sequence of N -vectors over
R ∪ {∞}. Hence ~p must be finite, in contradiction, showing the claim.

Regarding the difference between basic� and augmented-cost dominance�aug, we
next show that checking against all visited states with �aug is strictly more powerful
than checking only against cheaper-visited states with �, and that it can actually lead to
exponentially smaller reachable state spaces:

Proposition 3 (Pruning Power of Augmented-Cost Dominance). All-visited augmented-
cost dominance pruning generalizes cheaper-visited dominance pruning and is expo-
nentially separated from it.

Proof. For the first part, observe that if there are two decoupled states sF , tF such that
cost(πC(sF)) ≥ cost(πC(tF)) and sF � tF (which corresponds to cheaper visited
pruning with �), then it trivially follows that sF �aug t

F .
For the second part, we give an example where pruning with �aug against all visited

states is exponentially separated from pruning with � against cheaper-visited states.
The task is illustrated in Figure 3.5 and employs the factoringF with centerC = {c}

and n leaves Li = {li}, for 1 ≤ i ≤ n. There are two types of center actions, aCl,i and
aCr,i, both of which increment c by one. Additionally, the aCr,i actions have a leaf effect
{li = 1}. There are also two types of leaf-only actions, aLi , a

L
i,c, where aLi decrements li

42 CHAPTER 3. DECOUPLED STATE-SPACE SEARCH

without center precondition and aLi,c increments it with precondition {c = i}. The action
costs are highlighted in red in the illustration.

Say the decoupled state space is explored using a uniform-cost search. In IF , the
center state is {c = 0}, and the prices are prices(IF)[{li = 0}] = 0 and prices(IF)[{li =
1}] =∞. In the aCl,1-successor sFl,1 := IF [[aCl,1]], only the price of {l1 = 1} is updated to
1, all other prices remain the same. For the aCr,1-successor sFr,1 := IF [[aCr,1]] in contrast,
the price of {l1 = 1} becomes 0, because aCr,1 is a center action, so does not affect leaf
state prices, and the only L1-path compliant with πC(sFr,1) is 〈〉 with cost 0.

With �-pruning against cheaper-visited states, because the path reaching sFr,1 has
higher cost, we can only check if sFr,1 � sFl,1, which does not hold. Thus, both states are
kept and the search proceeds in the same manner, reaching 2n decoupled states.

With augmented-cost dominance �aug against all visited states, however, we have
sFl,1 �aug sFr,1, so sFl,1 can be pruned. We obtain a similar pruning at all later choice
points, so only n decoupled states are reached.

An important question is how to compute the dominance check efficiently, i. e., with-
out explicitly enumerating the costs of all member states. For �, this can be done by
simply comparing the prices of all reached leaf states directly, so the check is linear in
the number of such states. We next show that�aug can similarly be checked component-
wise by only considering the leaf state with the highest price difference per leaf:

Proposition 4 (Augmented-Cost Dominance Check). Let Π be a planning task, and
F a factoring for Π. Let sF and tF be two decoupled states. Then sF �aug tF

iff cost(πC(sF)) − cost(πC(tF)) ≥ ∑L∈LmaxsL∈SL
R

(prices(tF)[sL] − prices(sF)[sL]),
where SLR = {sL ∈ SL | prices(sF)[sL] <∞}.

Proof. Let s ∈ [sF] be a member state of sF where prices(tF)[s[L]] − prices(sF)[s[L]]
is maximal for all L ∈ L. Then, if price(tF , s) − price(sF , s) ≤ cost(πC(sF)) −
cost(πC(tF), this also holds for all other s′ ∈ [sF]. Thus, for all s′ ∈ [sF] we get that
cost(πC(tF)) + price(tF , s′) ≤ cost(πC(sF)) + price(sF , s′).

If tF has a higher path cost than sF , but has leaf states with lower prices, then the
disadvantage in path cost can be traded against the advantage in leaf state prices. More
concretely, it suffices to sum-up only the maximal price-difference of any leaf state over
the leaves. Thereby, we essentially compare only the member state s ∈ [sF] for which
the price-advantage is maximal. This can be done component-wise, so is efficient to
compute.

Augmented-cost dominance also tackles more subtle cases, where prices differ in
several leaf factors. We can then distribute the difference in path costs across the leaf
factors, i. e., we cannot use the full difference for each factor. However, we can even
trade lower prices in one leaf by higher prices in another, setting these different prices
off against the difference in path costs. We can combine the price advantage in one leaf

3.4. DECOUPLED STATE-SPACE SIZE AND PRUNING 43

for sF with its path-cost advantage to make up for a higher price disadvantage in other
leaves, where tF might have lower prices. Assuming that tF is visited before sF , sF can
be pruned although the prices of its leaf states are neither lower-equal, nor higher-equal
than the prices of tF , strictly generalizing dominance via �.

3.4.2 Size Blow-Up and Hypercube Pruning
Even in finite cases, the number of non-equivalent decoupled states can blow-up relative
to the size of the standard state space. This is because the maintenance of pricing func-
tions can result in a form of “memory of the center path taken”, similar to the example
in the proof of Proposition 3, but for reachability, not different price values. Different
paths may have provided center preconditions enabling different leaf moves, thus re-
sulting in different sets of reached leaf states. This happens, indeed, even in very simple
examples akin to the logistics examples we have been using all along:

Example 5. Consider the following BlowUp example, with one truck T , one package
p, and n locations l1, . . . , ln, where the truck can drive between any pair of locations;
both T and p are initially at l1, the goal is for p to be at ln. In short, this is like the
scaling example except with only a single package, and with locations arranged as a
fully-connected road map instead of a line. We consider the factoring with C = {T}
and L = {{p}}.

Obviously, the standard state space in this example is small (n(n + 1) reachable
states). But the reachable decoupled state space has size exponential in n. Through
the pricing functions, the decoupled states “remember” the locations visited by T in the
past. For example, the decoupled state reached through 〈drive(T, l1, l2), drive(T, l2, l3)〉
has finite prices for {p = l1}, {p = T}, {p = l2}, and {p = l3}; while the decoupled
state reached through 〈drive(T, l1, l4), drive(T, l4, l5)〉 has finite prices for {p = l1},
{p = T}, {p = l4}, and {p = l5}. Hence the decoupled state space enumerates pricing
functions corresponding to every subset of visited locations from {l2, . . . , ln}.

Note the simplicity of this example. Blow-ups may occur even when maintaining
reachability functions only (as the pricing functions here disagree even on reachability).
This also implies that dominance pruning does not prevent the blow-up.

It turns out that blow-ups can be avoided based on the previously introduced hy-
percube characterization. The core observation in this context is that solvability of a
decoupled state is equivalent to solvability of at least one member state:

Lemma 3. Let Π be a planning task, F a factoring for Π, and sF a decoupled state.
Then sF is solvable if and only if at least one s ∈ [sF] is solvable.

This follows from the same correspondence between member state transitions, em-
bedded state transitions, and the decoupled state space, as used to prove correctness in
Chapter 3.3. The proof is stated in Appendix A.2.

44 CHAPTER 3. DECOUPLED STATE-SPACE SEARCH

The idea now is to prune a decoupled state sF when its hypercube does not contribute
any new member states, i. e., if sF is covered by previously visited decoupled states:

Definition 15 (Hypercube Covering). Let Π be a planning task, F a factoring for Π,
and sF , tF1 , . . . , t

F
n decoupled states. We say that tF1 , . . . , t

F
n cover sF if

⋃n
i=1[tFi] ⊇ [sF].

From Lemma 3, we immediately get:

Theorem 4 (Correctness of Hypercube Pruning). Let Π be a planning task, and F a
factoring for Π. Let sF , tF1 , . . . , t

F
n be decoupled states, where tF1 , . . . , t

F
n cover sF . If

sF is solvable, then so is at least one tFi .

Proof. Say that sF is solvable. By Lemma 3 applied to sF , some s ∈ [sF] is solvable.
By prerequisite, s ∈ ⋃n

i=1[tFi]. So there is at least one tFi such that s ∈ [tFi]. By
Lemma 3 applied to tFi , tFi is solvable as desired.

Therefore, hypercube pruning is correct: if sF is covered by previously visited de-
coupled states tF1 , . . . , t

F
n , then pruning sF does not forego completeness. This applies

to the same three forms of pruning as above, i. e., ancestor pruning, cheaper-visited
pruning, and all-visited pruning. In each case, the respective collection of tF becomes
the set tF1 , . . . , t

F
n in the hypercube-covering check.

On the other hand, hypercube pruning does, as stated, not preserve optimality. The
hypercube disregards leaf state prices, and so does the notion of hypercube covering.

Given this, cheaper-visited pruning does not make much sense. Ancestor pruning is
not enough to prevent exponential blow-ups. However, all-visited pruning provides the
desired guarantee:

Theorem 5 (Size Guarantee under Hypercube Pruning). Let Π be a planning task, and
F a factoring for Π. Under all-visited hypercube pruning, the number of decoupled
states in ΘRFΠ is bounded by the number of reachable states in ΘΠ.

Proof. Consider the non-pruned visited decoupled states sF under all-visited hypercube
pruning. With tF1 , . . . , t

F
n being the decoupled states visited prior to sF sharing the

same center state, denote by [sF] := [sF] \ ⋃n
i=1[tFi] the hypercube remaining of sF

when eliminating tF1 , . . . , t
F
n . Clearly, [sF] 6= ∅ as otherwise sF would be pruned.

Furthermore, for any other non-pruned visited decoupled state rF , [sF] ∩ [rF] = ∅: if
rF was visited before sF , this is because [rF] was eliminated from [sF]; if rF was visited
after sF , this is because [sF] was eliminated from [rF]. So the non-pruned decoupled
states are associated with non-empty and disjoint sets [sF] of states in ΘΠ. The claim
now follows together with Lemma 1, which implies that, if sF is reachable in ΘFΠ , then
every s ∈ [sF] is reachable in ΘΠ.

The bad news is that testing Definition 15 is, in general, hard, even for the hyper-
cubes that may actually occur during decoupled search:

3.4. DECOUPLED STATE-SPACE SIZE AND PRUNING 45

Proposition 5. Given a planning task Π and a factoring F for Π, it is co-NP-complete
to decide whether reachable decoupled states tF1 , . . . , t

F
n cover a reachable decoupled

state sF .

Proof (sketch). Membership follows directly from the results by Hoffmann and Kupfer-
schmid [2005] for general hypercube covering problems. Hardness follows by reduction
from the complement of SAT, extending Hoffmann and Kupferschmid’s argument by a
simple construction of Π and F .

Given any CNF formula φ with clauses C1, . . . , Cm, the construction includes, for
each clause Cj , a center action aCj which is applicable to the initial state, and which
allows to generate a hypercube tFj corresponding to the truth-value assignments disal-
lowed by Cj . Another center action aC0 allows to generate the hypercube sF correspond-
ing to the space of all truth-value assignments. Consider the time point in search where
search has explored each of the alternatives aC1 , . . . , a

C
m (applied each of these actions

to the initial state separately), and now explores the alternative aC0 . Then all-visited
hypercube pruning checks whether tF1 , . . . , t

F
m cover sF . The latter is the case iff φ is

unsatisfiable.

We remark that in F in the proof construction the dependencies between the factors
are of the simple form C → L, for L ∈ L, so co-NP-completeness holds for this
restricted case already. The full proof is stated in Appendix A.2.

Exploring optimality-preserving forms of hypercube pruning remains a topic for
future work. One simple option to adapt Definition 15 would be to restrict the “cube
edge” in each dimension L to only those leaf states whose price is at most the price
in sF . That is, for the purpose of the hypercube cover test we could set [tFi] := {s |
s[C] = center(sFi),∀L ∈ L : prices(tFi)[s[L]] ≤ prices(sF)[s[L]] < ∞}. Then the
states covered by [tFi] are reached at equal or cheaper cost than in sF . Cheaper-visited
pruning with optimal search algorithms like A∗ should then preserve optimality.

46 CHAPTER 3. DECOUPLED STATE-SPACE SEARCH

Chapter 4

Heuristic Search

Heuristic search, where the search is guided by a heuristic, a function that maps states to
estimates of remaining cost to reach a goal state, has been highly successful in AI plan-
ning for the last two decades (e. g. McDermott, 1999; Bonet and Geffner, 2001; Hoff-
mann and Nebel, 2001; Gerevini et al., 2003; Helmert, 2006b; Helmert and Domshlak,
2009; Richter and Westphal, 2010; Domshlak et al., 2015a).

In this chapter, we show that decoupled search combines gracefully with standard
heuristic search methods. Chapter 4.1 discusses heuristic functions, in Chapter 4.2 we
look into search algorithms, Chapter 4.3 introduces a cost transformation, which can
significantly improve the tie-breaking behaviour of an A∗ search.

This chapter is mostly based on Gnad and Hoffmann [2018]. Center heuristics and
anytime decoupled search have been introduced in Gnad and Hoffmann [2015a]. The
g-value adaptation has first been described in Gnad [2021b].

4.1 Heuristic Functions

Our definition of heuristic functions for decoupled search follows the standard concepts.
We distinguish between two types of heuristics, star heuristics, which are based on the
notion of augmented optimality, taking all costs into account, and center heuristics that
consider only the remaining cost of the center actions:

Definition 16 (Decoupled Heuristic Function). Let Π be a planning task, and F a fac-
toring for Π. A decoupled heuristic function, heuristic for short, is a function h : SF 7→
R0+ ∪ {∞}.

The augmented-perfect heuristic h∗F assigns each sF ∈ SF the cost of an augmented-
optimal solution for sF . We say that a heuristic hF is augmented-admissible if hF ≤ h∗F .

The center-perfect heuristic h∗C assigns each sF ∈ SF the cost of an optimal solution
for sF . We say that a heuristic hC is center-admissible if hC ≤ h∗C .

47

48 CHAPTER 4. HEURISTIC SEARCH

We call heuristics that approximate h∗F star heuristics, notation convention hF , and
heuristics that approximate h∗C center heuristics, notation convention hC .

The possibility to return∞, not a numeric estimate, is intended to allow the heuristic
to identify unsolvable states, a capability many classical-planning heuristic functions
have (e. g. Haslum and Geffner, 2000; Helmert et al., 2014; Hoffmann et al., 2014).

Per the definition of augmented optimality (Definition 10), the augmented-perfect
heuristic h∗F accounts not only for standard path cost from a decoupled state sF , but also
for the cost of compliant leaf goal paths that a solution for sF needs to be augmented
with. A subtlety here is that, given the least-commitment strategy for leaf factors, se-
lecting the entire leaf path only at the end, part of the associated price lies “in the past”,
before sF . Specifically, let πF be a solution for sF , ending in sFG. h∗F accounts for (1)
the cost of πF , i. e., of the center action sequence πC underlying πF ; plus (2) the cost
of πC(sFG)-compliant leaf goal paths πL. In (2), πC(sFG) = πC(sF) ◦ πC , so part of the
paths πL will be scheduled alongside the path πC(sF) leading to sF . In particular, while
heuristic functions usually return 0 on goal states, that is not so for h∗F : we still have to
pay the leaf-goal prices, moving the leaves into place.

In contrast, the center-perfect heuristic h∗C accounts only for the costs of the center
actions underlying a solution πF for a decoupled state sF , ignoring its leaf-state prices.
Thereby, center and star heuristics may disagree. Using our example, say that there are
two alternative kinds of plans, (a) ones that pass the packages through several trucks,
loading/unloading every time, vs. (b) ones that make more truck moves but have to
load/unload each package only once and thus are better globally. Then h∗C will draw
search towards plans (a), whereas h∗F will draw search towards plans (b).

Pricing functions capture everything relevant about the past, so that it suffices to
consider the possible futures starting from the current pricing function. We formulate
this in terms of a compilation into classical planning, allowing to estimate h∗F and h∗C
through standard classical-planning heuristics. The idea is to force the plan to “buy”
exactly one leaf state from each leaf factor:

Definition 17 (h∗F and h∗C as Classical Planning). Let Π = 〈V ,A, cost, I,G〉 be a plan-
ning task, F a factoring for Π with center C and leaves L, and sF a decoupled state.
The buy-leaves compilation is the planning task ΠL$ = 〈VL$,AL$, costL$, s

F
L$,GL$〉,

obtained from Π and sF as follows:

1. The variables VL$ add a new Boolean variable bought[L] for every leaf L, VL$:=
V∪{bought[L]|L∈L}. For all variables v 6∈C, we add the new value none intoD(v).

2. The initial state is sFL$:= center(sF)∪{v=none | v 6∈ C}∪{bought[L]=⊥ | L∈L}.

3. The goal is GL$:= G ∪ {bought[L] = > | L ∈ L}.

4. The actions AL$ are the previous ones A, adding precondition bought[L] = > to
a whenever (vars(pre(a)) ∪ vars(eff(a))) ∩ L 6= ∅. We furthermore add, for every

4.1. HEURISTIC FUNCTIONS 49

leaf L, and for every leaf state sL ∈ SL where prices(sF)[sL] < ∞, a new action
a[sL] with precondition pre(a[sL]) := {bought[L] = ⊥} and effect eff(a[sL]) :=
sL ∪ {bought[L] = >}.

5. (a) For the augmented-perfect heuristic h∗F , the cost function costL$ extends the pre-
vious one cost by setting costL$(a[sL]) := prices(sF)[sL] for each new action
a[sL].

(b) For the center-perfect heuristic h∗C , the cost function costL$ extends the previous
one cost by setting costL$(a[sL]) := 0 for each new action a[sL]. Furthermore,
we adapt cost by setting costL$(a) := 0 for all leaf-only actions a ∈ AL6C .

Center heuristics will be employed mostly for non-optimal planning where only
reachability is maintained for the leaf states. We will, however, also introduce an opti-
mal planning algorithm that is based on center heuristics, see Chapter 4.2.1.

We will use the buy-leaves compilation to design heuristic functions for decoupled
search. We explain this below; let us first explain the compilation. The leaf factors are
assigned the value none initially to indicate that they “do not have a state yet”. Before we
can do anything relying on a leaf factor L, we have to buy (exactly) one of its states, at
the price specified in the decoupled state sF at hand (or 0 if we want a center heuristic).
For star heuristics, the price we pay in doing so accounts for L’s compliant path before
sF ; the classical plan obtained afterwards accounts for L’s compliant path behind sF .

Note that the goal in ΠL$ forces the plan to buy a leaf state from every L, even if L
has no goal and would otherwise not be touched by any actions in the plan for ΠL$. This
is necessary because L may have had to move before sF : we need to account for any
costs incurred in L in order to enable (to comply with) the center path πC(sF) leading to
sF in the first place. For a center heuristic, we still need to “buy” the leaf states (select
one per leaf for cost 0), because the center might need to provide different preconditions
for required leaf actions depending on which leaf states are reached.

Example 6. Consider our example with one package p and two trucks T1, T2 moving
along the line l1, l2, l3, l4. Initially, T1 = l1, T2 = l4, and p = l1. The goal is p = l4.
Consider the factoring with C = {T1, T2} and L = {{p}}, and consider the decoupled
state sF reached by applying drive(T1, l1, l2). We have h∗F(sF) = 4 due to the opti-
mal solution induced by the center path 〈drive(T1, l2, l3), drive(T1, l3, l4)〉, augmented
with the leaf goal path 〈load(T1, p, l1), unload(T1, p, l4)〉. Observe that load(T1, p, l1) is
scheduled before sF , while unload(T1, p, l4) is scheduled behind sF . The center-perfect
heuristic for sF is h∗C(sF) = 2, accounting only for the two center actions.

The finite prices in sF are 0 for {p = l1}, 1 for {p = T1}, and 2 for {p = l2}. In the
buy-leaves compilation ΠL$, we can pay one of these prices to obtain a leaf state other
than none. The cheapest plan for ΠL$ results from buying {p = T1}, yielding the plan
〈a[{p = T1}], drive(T1, l2, l3), drive(T1, l3, l4), unload(T1, p, l4)〉 which corresponds to

50 CHAPTER 4. HEURISTIC SEARCH

the part behind sF in the optimal solution above. (If we buy p = l1 instead then addi-
tional truck moves are needed; if we buy p = l2 instead then an additional load action
is needed.)

Consider now a variant, which is the same except that truck moves require p to
be in the truck, i. e., pre(drive(Ti, lj, lk)) = {Ti = lj, p = Ti}. Say, however, that
the goal is T1 = l4. Consider again the decoupled state sF reached by applying
drive(T1, l1, l2). The finite prices in sF now are 1 for {p = T1} and 2 for {p = l2};
{p = l1} is no longer reachable as the truck drive committed p to {p = T1}. Observe
that h∗F(sF) = 3 because the optimal solution is 〈drive(T1, l2, l3), drive(T1, l3, l4)〉 aug-
mented with the compliant leaf goal path 〈load(T1, p, l1)〉. Now, if ΠL$ did not have
the goal bought[{p}] = >, then 〈drive(T1, l2, l3), drive(T1, l3, l4)〉 would be a plan for
ΠL$, of cost 2 < h∗F(sF). The goal bought[{p}] = > forces the plan to pay for any
services p may have needed to provide before sF . The center-perfect heuristic for sF is
still h∗C(sF) = 2.

Given a classical-planning heuristic function h, we obtain the buy-leaves star heuris-
tic function hFL$ for a decoupled state sF by setting the value of hFL$ on sF to the value
of h on sFL$ in ΠL$ when using the cost function from Definition 17 part 5(a). We obtain
the buy-leaves center heuristic function hCL$ for a decoupled state sF by setting the value
of hCL$ on sF to the value of h on sFL$ in ΠL$ when using the cost function from Defini-
tion 17 part 5(b). In other words, both heuristics result from h’s estimate of initial-state
remaining cost in the buy-leaves compilation for sF . This construction guarantees two
very desirable properties: if h is admissible, then hFL$ (hCL$) is augmented-admissible
(center-admissible); and if h is perfect, then hFL$ (hCL$) is augmented-perfect (center-
perfect). The former is of course crucial for optimal planning. The latter curbs infor-
mation loss: if the heuristic information given by h is perfect, then no loss is incurred.
Both properties follow directly from the fact that ΠL$ indeed captures h∗F and h∗C :

Lemma 4. Let Π be a planning task, F a factoring for Π, and sF a decoupled state.
Let ΠL$ = (VL$,AL$, costL$, s

F
L$,GL$) be the buy-leaves compilation. Then h∗(sFL$) =

h∗F(sF) for the cost function in Definition 17 part 5(a) and h∗(sFL$) = h∗C(sF) for the
cost function in Definition 17 part 5(b).

Proof. “≤”: Say πF is any solution for sF , ending in decoupled state sFG. Let πC be
the sequence of center actions underlying πF . We can construct a plan π for ΠL$ by
augmenting πC with a cheapest πC-compliant sequence of leaf actions for each leaf
factor L, starting from a finite-price leaf state sL ∈ SL in sF ; and buying that leaf state
via the action a[sL]. By construction, the cost of π in ΠL$ is cost(πC) + gprice(sFG) =
augCost(πF). Hence h∗(sFL$) ≤ h∗F(sF). For h∗C , we can construct a plan π in the same
way, where, because all leaf actions have cost 0, the cost of π is cost(πC), and thus
h∗(sFL$) ≤ h∗C(sF).

4.2. HEURISTIC SEARCH ALGORITHMS 51

“≥”: Say π is any plan for ΠL$. Let πC be the subsequence of center actions. As
the construction of ΠL$ forces the plan to buy, for each leaf factor, exactly one leaf
state sL ∈ SL, πC must be augmentable with πC-compliant leaf paths achieving the
leaf goals starting from these sL. So πC induces a solution for sF , ending in some
sFG. If the leaf paths used by π are the cheapest ones, then cost(π) = cost(πC) +
gprice(sFG) = augCost(πF), respectively cost(π) = cost(πC) if leaf-action costs are 0.
Thus h∗(sFL$) ≥ h∗C(sF) for the cost function in Definition 17 part 5(b), as desired. For
arbitrary leaf paths, we have that cost(π) ≥ augCost(πF), and hence that h∗(sFL$) ≥
h∗F(sF) for the cost function in Definition 17 part 5(a), again as desired.

Theorem 6. Let Π a planning task, and F a factoring for Π. Let h be a heuristic
function. If h is admissible, then hFL$ (hCL$) is augmented-admissible (center-admissible).
If h = h∗, then hFL$ = h∗F and hCL$ = h∗C .

Proof. Direct from Lemma 4.

It should be noted that, while our construction can in principle be used with any
heuristic function h, doing so efficiently may be challenging. In particular, the subset of
artificial actions a[sL] present, as well as their cost, depend on the decoupled state sF .
This is problematic for heuristic functions relying crucially on precomputations prior to
search, like abstraction heuristics. We have so far realized the buy-leaves compilation
for a number of canonical heuristic functions not relying on precomputation (namely
for hmax, hLM-cut, and hFF; see more details in Chapter 7).

4.2 Heuristic Search Algorithms

Disregarding solution quality, one can run any search algorithm on the decoupled state
space ΘFΠ , treating it like an arbitrary transition system. When taking solution quality
into account, in particular for optimality, matters are a little more subtle as we need to
tackle augmented-optimality in ΘFΠ , in difference to the standard additive-cost notion
for which heuristic search algorithms are defined. In particular, as we illustrated in
Example 1, a solution for ΘFΠ may have a worse solution as a prefix. The issue is easy
to resolve though, by making the leaf-goal prices explicit, encoding them as additional
transitions to a new goal state:

Definition 18 (Explicit Leaf-Goal Price). Let Π be a planning task, F a factoring for
Π, and ΘFΠ = 〈SF ,AC , cost|AC , T F , IF ,SFG 〉 the decoupled state space. The explicit
leaf-goal price state space ΘLGF

Π is like ΘFΠ , but with a new state sF∗ set to be the only
goal state; and adding, for every sFG ∈ SFG , a new transition sFG → sF∗ with a new label
whose cost is gprice(sFG).

52 CHAPTER 4. HEURISTIC SEARCH

In other words, ΘLGF
Π requires to pay the leaf-goal prices at the end of any solution,

in the form of a transition having that cost. Obviously, the solutions for ΘLGF
Π are in one-

to-one correspondence with those for ΘFΠ , where additive cost in the former corresponds
to augmented cost in the latter.

Consider now any optimal search algorithm X for additive cost in labeled transition
systems, and consider a star heuristic function h defined on SF . Define a heuristic func-
tion hLGF for ΘLGF

Π simply by extending h with hLGF(sF∗) := 0. Define the algorithm
Decoupled-X (D-X) as running X with hLGF on ΘLGF

Π , returning πF when X returns
πF ◦ 〈sFG → sF∗ 〉. With the above, we have:

Proposition 6. If X is complete, then D-X is complete. If X is optimal for admissible
heuristic functions, then D-X is augmented-optimal for augmented-admissible heuristic
functions.

With Theorem 6 and Proposition 6 together, we can (in principle) take any com-
plete/optimal heuristic search algorithm X , and any classical-planning heuristic func-
tion h, and turn them into a complete/augmented-optimal search algorithm for ΘFΠ ,
searching with hLGF

L$ on ΘLGF
Π . By Theorems 1 and 2, this yields a complete/optimal

planning algorithm.
We remark that center-admissible heuristics with an optimal search algorithm do

not result in an augmented-optimal search algorithm for ΘFΠ . This is because of the
aforementioned “disagreement” of center and star heuristics. The center heuristic might
draw the search to path with low center costs, which need to be augmented with high leaf
costs. We will introduce a specialized version of the A∗ algorithm in the next section
that uses center heuristics for optimal planning.

4.2.1 Anytime Decoupled A∗

The above construction is simple and canonical and is hence applicable to any search
algorithm and heuristic. In this section, we introduce a heuristic search algorithm spe-
cialized to decoupled search which uses a center heuristic for guidance, enabling the al-
gorithm to explore decoupled states by estimated remaining center cost. As mentioned
before, this does not guarantee augmented optimality, and hence global optimality with
respect to the given planning task. Our algorithm is based on the A∗ algorithm [Hart
et al., 1968], which is widely employed in combination with an admissible heuristic as
a basis for optimal planning approaches.

The modifications needed when adapting A∗ are detailed in Figure 4.1. We baptize
our new algorithm Anytime D-A∗. The search nodes are denoted by N [sF], where sF

is the corresponding state and N is the node itself. By g(N) we denote A∗’s g-value,
i. e., the cost cost(πF) of the decoupled path πF reaching N . To guarantee optimality,
(1. and 4.) we simply do not stop the search once a goal state is selected for expansion,

4.2. HEURISTIC SEARCH ALGORITHMS 53

1 Anytime D-A∗(Π, F , hC , hF):
2 U ←∞ /* best known upper bound */
3 sFU ← IF /* corresponding state */
4 Run A∗ with center heuristic hC on ΘFΠ , with these modifications:
5 1. Continue search until the open list is empty;
6 2. Whenever a goal vertex node N [sFG] is expanded:
7 if cost(πC(sFG)) + gprice(sFG) < U then
8 U ← cost(πC(sFG)) + gprice(sFG)
9 sFU ← sFG

10 if gprice(sFG) = min-gprice then
11 return πG(sFU) /* early termination */
12 3. Whenever a node N [sF] is generated, and U 6=∞:
13 if cost(πC(sF)) + hF(sF) ≥ U then
14 discard N /* upper-bound pruning with star heuristic */
15 4. When open list is empty:
16 if sFU 6= IF then return πG(sFU)
17 else return “unsolvable”

Figure 4.1: The Anytime D-A∗algorithm. Search nodes are notated N [sF] where sF is
the state and N the node itself. min-gprice is the sum, over the leaf factors L ∈ L, of
optimal plan cost for the projection of Π onto L.

but, when the open list is exhausted, return the best solution found. Additionally, (2.)
the search employs an early termination mechanism that triggers if the found solution is
guaranteed to be optimal. Early termination is based on a global lower bound on the leaf
goal price for all leaves, computed by optimally solving, for every leaf L, the projection
of Π onto L. The sum of these estimates, the minimum leaf-goal price, is denoted
min-gprice. Without early termination, the new algorithm would be dominated by D-
A∗ because Anytime D-A∗ would then have to expand at least all nodes N [sF] where
g(N) + hF(sF) is less than augmented-optimal solution cost. With early termination,
that is not so because in the best case we have to exhaust only those N [sF] where
g(N) + hF(sF) is less than optimal center solution cost. Lastly, (3.) the search prunes
states against the best known global solution so far, using a star heuristic. We employ a
star heuristic here to get an admissible estimate of the total (augmented) cost that still
needs to be spent.

We next prove that Anytime D-A∗ is indeed complete and optimal:

Theorem 7 (Optimality of Anytime D-A∗). Anytime D-A∗ is complete, and is augmented-
optimal for center-admissible hC and augmented-admissible hF .

Proof. Completeness of Anytime D-A∗ is obvious with Theorem 2. Towards prov-

54 CHAPTER 4. HEURISTIC SEARCH

ing optimality, observe: (1) Without early termination and upper-bound pruning, Any-
time D-A∗ generates (in particular) every augmented-optimal decoupled plan πF . (2)
With center-admissible hC , if Anytime D-A∗ generates πF1 before it generates πF2 , then
cost(πF1) ≤ cost(πF2). (3) Upper-bound pruning trivially preserves (2), and it pre-
serves (1) with augmented-admissible hF because the pruned nodes N cannot lead to
augmented-optimal solutions. (4) If early termination fires for N [sFG], then gprice(sFG)
is minimal in SFG .

Optimality of Anytime D-A∗ without early termination holds by (1) and (3) with
Theorem 2. Say that early termination fires for N [sFG], let πF1 be the decoupled plan
leading to N , and let πF2 be any decoupled plan that would be generated later if we
continued the search. By (4) πF2 pays at least as high a goal price as πF1 , and by (2)
cost(πF1) ≤ cost(πF2), so πF2 cannot have better augmented cost than πF1 . With (1),
Anytime D-A∗ already found a augmented-optimal plan to a goal state, which must be
stored in sFU .

As we will see in Chapter 7, there are cases where Anytime D-A∗ indeed empirically
outperforms D-A∗. This occurs, however, only in certain restricted topologies where
only the leaves depend on the center, but not vice versa. This is because ignoring the leaf
costs can tremendously underestimate the total costs in other topologies, and thereby
mislead the search.

4.3 g-Value Adaptation
Closing this chapter, we introduce a cost transformation that is designed to improve
the tie-breaking behaviour of A∗ for optimal planning, and the search guidance in the
presence of a weak heuristic.

In a typical A∗ implementation, where search nodes are expanded in increasing order
of their f = g + h value, the algorithm breaks ties, i. e., selects among all nodes with
the same f -value, the ones with minimal h. These nodes are expected to be closer to
the goal than states with higher h, but lower g. An issue with this regarding D-A∗ is that
due to the pricing function, the split between cost already spent and estimated cost to
the goal is not so clear, any more. This is because the prices capture the cost spent to
the current state, but this cost is not part of the state’s g-value, but is taken into account
by the heuristic. In combination with a weak heuristic, i. e., a heuristic that heavily
underestimates h∗, A∗ is not aware of a certain part of the cost, which can cause poor
search guidance.

To tackle this issue, we next introduce a cost transformation which moves as much
of the leaf-state prices into the g-value of a decoupled state as possible. Assume that in
a decoupled state sF there exists a leaf L such that all leaf states sL have a minimum
non-zero price pLmin, so ∀sL ∈ SL : prices(sF)[sL] ≥ pLmin. Then we can reduce the

4.3. G-VALUE ADAPTATION 55

sF : g(sF) = 5
sL1 → 3

sL2 → 1

sL
′

1 → 2

sL
′

2 → 3
→

sFgA : g(sFgA) = 8

sL1 → 2

sL2 → 0

sL
′

1 → 0

sL
′

2 → 1

Figure 4.2: Illustrating example showing the decoupled state sF and its g-adapted
representative sFgA.

prices of all these leaf states by pLmin and increase g(sF) by pLmin without affecting the
total cost cost(πC(sF)) + price(sF , s) of the member states s of sF . Intuitively, the
transformation moves the price that has to be spent to reach the cheapest member state
of sF into its g-value, reducing the price of all leaf states accordingly, so that in every
leaf L there exists at least one leaf state with price 0. See Figure 4.2 for an example of
a decoupled state sF and its cost-transformed representative sFgA.

Formally, we capture the g-value adaption as a transformation of the transition costs
of the decoupled state space and the pricing functions of its states:

Definition 19 (g-value Adaptation). Let Π be a planning task, F a factoring for Π, and
ΘRFΠ = 〈SF ,AC , cost|AC , T F , IF ,SFG 〉 the reachable decoupled state space. The g-
value adapted decoupled state space ΘRFgAΠ = 〈SFgA,AC , costgA, T FgA, IF ,SFGgA〉 is like
ΘRFΠ , but adapted as follows:

For a decoupled state sF in ΘRFΠ , let pLmin(sF) be the minimum price of an L-state
reached in sF , i. e., pLmin(sF) := minsL∈SLprices(sF)[sL].

1. gA(sF) ∈ SFgA if sF ∈ SF , where center(gA(sF)) := center(sF), πC(gA(sF)) :=
πC(sF), and for all leaf states sL ∈ SL : prices(gA(sF))[sL] := prices(sF)[sL]−
pLmin(sF).

2. gA(sF) ∈ SFGgA if sF ∈ SFG .

3. gA(sF)
aC−→ gA(tF) ∈ T FgA with cost cost(aC) +

∑
L∈L p

L
min(tF) if sF aC−→ tF ∈

T F with cost cost(aC).

The g-value adaptation can be maintained easily by constructing the reachable de-
coupled state space from IF and, for every successor state, removing the minimum leaf
state price from the price of all reached leaf states and adding the sum over all leaves of
these prices to the cost of the decoupled transition.

It is easy to see that the g-value adaptation does not affect optimality, but only shifts
costs from the pricing function into the transition costs:

Proposition 7 (g-Adaptation preserves Optimality). Let Π be a planning task, and F a
factoring for Π. Let sF be a state reached in ΘRFΠ via πF , and gA(sF) its g-adapted
representative in ΘRFgAΠ . Then cost(πF) + h∗F(sF) = costgA(πF) + h∗F(gA(sF)).

56 CHAPTER 4. HEURISTIC SEARCH

Proof. Note first that πF indeed ends in gA(sF) in ΘRFgAΠ , because the cost adaptation
does not effect decoupled paths, but only the transition costs. By construction, we have
costgA(πF) = cost(πF) +

∑
L∈L p

L
min(sF).

For the heuristic h∗F(sF), let sL be the leaf state that it “bought” for leaf L by h∗F in
the buy-leaves compilation for sF , and let πL = 〈a[sL], aL1 , . . . , a

L
n〉 be the sequence

of L-actions underlying the optimal solution of cost h∗ of ΠL$. Then πL is also a
valid leaf path in the buy-leaves compilation for gA(sF), only that the cost of a[sL]
is now prices(sF)[sL]− pLmin(sF). Since the price of all L-states in gA(sF) results from
deducting pLmin(sF) from their price in sF , the cost of every leaf path in the compilation
is reduced by the same amount, so πL has still the minimum cost among all leaf goal
paths. Thus, h∗F(gA(sF)) = h∗F(sF)−∑L∈L p

L
min(sF), concluding the proof.

By moving cost from the pricing function into the g-value we achieve that the heuris-
tic of a decoupled state (which takes into account the pricing function) can only get
lower, aiding A∗ to focus on more promising states. A second important effect is that
the part of the prices moved into the g-value will always be considered entirely by the
search, whereas heuristics are lossy (in the extreme case may ignore costs completely)
and will typically not be able to capture all the cost represented in the leaf-state prices.

Chapter 5

Problem Decomposition – Factoring
Strategies

In this chapter, we propose methods to identify star factorings, factoring strategies,
in a given planning task. First, we characterize several special cases, namely fork,
inverted-fork, and strict-star factorings, and present important properties of factorings.
We then analyse the complexity of computing a factoring. While fork and inverted-
fork factorings can be easily obtained via the strongly connected components of the
causal graph, it is in general NP-hard to compute strict-star factorings that maximize
the number of leaf components [Gnad and Hoffmann, 2018]. We introduce methods that
are able to identify such factorings [Gnad et al., 2017a]. As an alternative, we formulate
the factoring process as integer linear programming (ILP) and use an off-the-shelf ILP
solver to find general star factorings [Schmitt et al., 2019].

5.1 Factoring Characteristics
Throughout this chapter we assume that the causal graph CGΠ of a planning task Π is
always weakly connected. This is without loss of generality, because otherwise the task
can equivalently be split into sub-tasks that can be solved independently.

Building on the causal graph, we capture the dependencies between factors as the
quotient graph of the causal graph given the factoring. This allows us to identify impor-
tant special cases regarding the interaction between factors. These often enable a more
efficient handling, or specialized algorithmic optimizations. We introduce the interac-
tion graph as a way to analyse cross-factor dependencies:

Definition 20 (Interaction Graph). Let Π be a planning task, and F a factoring for Π.
The interaction graph IGFΠ of Π and F is a digraph with vertices F and edges E, where
〈F, F ′〉 ∈ E iff F 6= F ′ and there exist variables v ∈ F and v′ ∈ F ′ such that 〈v, v′〉 is
an edge in the causal graph CGΠ of Π.

57

58 CHAPTER 5. PROBLEM DECOMPOSITION – FACTORING STRATEGIES

With the interaction graph, we can define special types of factorings, namely fork,
inverted-fork, and strict-star factorings.

Definition 21 (Special-case Factorings). Let Π be a planning task and F = {C} ∪ L a
factoring for Π with center factor C and leaves L. Then F is:

• a fork factoring, iff all edges in IGFΠ are of the form C → L, for L ∈ L,

• an inverted-fork factoring, iff all edges in IGFΠ are of the form L→ C, for L ∈ L,

• a strict-star factoring, iff there does not exist an edge F → F ′ in IGFΠ such that
F ∈ L and F ′ ∈ L.

Intuitively, in fork factorings only the leaves depend on the center, but not vice versa;
in inverted-fork factorings it is exactly the other way around. This leads to very specific
behaviour of the pricing functions, which are monotonous in these cases. With fork
factorings, leaf-state prices can only decrease along any decoupled path, because leaf
paths that where compliant at some point will remain compliant forever (center actions
do not impose any restriction because they have no leaf preconditions). In inverted-fork
factorings, initially all leaf paths are compliant with the empty center path. Along a
sequence of center actions, the set of compliant paths can only decrease, so leaf-state
prices increase monotonously along any search path. Strict-star factorings do not lead
to such monotonous behaviour. The difference to general-star factorings is that direct
dependencies between leaves are forbidden, so a center action can at most affect one
leaf. The presence of strict-star factorings indicates that the given planning task is less
tightly coupled, so indicates higher potential for reduction.

In a general-star factoring F , we call a leaf L ∈ L where the only connection in IGFΠ
of L is of the form C → L fork leaf, and similarly if the connection is only L → C
inverted-fork leaf.

Besides the cross-factor dependencies, there are two key properties that affect the
state-space size reduction achieved by decoupled search, the number of leaf factors and
the number of leaf-only actions. The reduction can be estimated by the number of ex-
plicit states that can be contained in a decoupled state sF , formally |[sF]| = ∏L∈L |SLR|,
where SLR is the number of leaf states of L that are reached in sF . Thus, the number
of leaf factors plays a crucial role in the potential for reduction, because the number
of explicit states that is contained in a decoupled state is exponential in the number of
leaves. We will therefore always aim at maximizing the number of leaf factors.

The second important factor is the number of simultaneously reached leaf states. A
simple upper bound is given by the number of states of a leafL, namely

∏
v∈L |D(v)|. So

it appears beneficial to maximize the size of the leaves to maximize the reduction. From
a practical perspective, though, there is an important trade-off between the potential
reduction and the efficiency of decoupled-state generation, which involves updating the

5.1. FACTORING CHARACTERISTICS 59

pricing function. Since even when a good reduction is achieved, we expect that the
search is required to explore many decoupled states, the size of the leaf state spaces
needs to be kept reasonably small.1 Moreover, the bound provides little knowledge
about the number of leaf states that are reached at the same time in a decoupled state.
We try to capture this with the notion of mobility, instead, which is based on the number
of leaf-only actions of a leaf.

Definition 22 (Mobility). Let Π be a planning task and F a factoring for Π. A leaf
factor L ∈ L is mobile if there exists a leaf-only action affecting L, i. e., |AL6C | > 0.
A factoring is mobile if there exists at least one center action and all its leaves are
mobile. The mobility of a leaf factor L is defined as the number of its leaf-only actions,
i. e., |AL6C |. The mobility of a factoring F is the sum of the mobility of its leaves, i. e.,∑

L∈L |AL6C |.

We require that at least one center action exists to avoid pathologic cases where all
actions are leaf-only and there is no actual search.

Intuitively, the mobility captures the amount of “work” a leaf can do on its own,
i. e., how much can be delegated from the main search to the leaves. Note that fork
and inverted-fork leaves are always mobile, unless there are static variables in Π, i. e.,
variables that are not affected by any action. This is because there are no center actions
that affect such leaves. Thus, for every (inverted-)fork leaf L, we have AL = AL6C . A
leaf factor that is not mobile does not contribute to the state-space reduction.

Proposition 8 (Non-mobile Leaves). Let Π be a planning task and F a factoring for Π
with leaves L. If a leaf L ∈ L is not mobile, then in all decoupled states sF reachable
from the initial decoupled state IF there exists exactly one L-state sL that is reached in
sF , i. e., where prices(sF)[sL] <∞.

Proof. The claim is true in the initial state, since there exists no leaf-only action for
L, so prices(IF)[I[L]] = 0 and prices(IF)[sL] = ∞ for all sL 6= I[L]. Let sF be a
successor of IF via center action aC . Then the leaf state sL := I[L][[aC]] has a price of
0 in sF . Again, because there are no leaf-only actions of L, no other leaf state of L is
reached in sF . This argument applies inductively to all decoupled states reachable from
IF .

From Proposition 8, we get that in the extreme case where no leaf is mobile, every
decoupled state represents exactly one explicit state and the search needs to branch over
all actions since there are no leaf-only actions. As a consequence, decoupled search
degrades to explicit-state search and there is no reduction.

In the methods presented in the next sections, we aim at obtaining mobile factorings
with a maximum number of leaves. While this optimization condition may not sound

1Empirically, leaf factors with up to 10.000 reachable states can be handled quite well.

60 CHAPTER 5. PROBLEM DECOMPOSITION – FACTORING STRATEGIES

too complicated, it turns out that even maximizing the number of leaves in a strict-star
factoring is NP-hard.

5.2 Complexity
We next take a look at the conditions under which factorings exist. First, we show that
there is an easy-to-check property that implies that no mobile factoring exists. We then
provide a construction to determine if there exists a mobile factoring with at least two
leaves. Finally, we analyse the complexity of computing a factoring with the maximum
number of leaves.

Regarding the existence of a mobile factoring, observe that for a leaf to be mobile
we need an action that only affects variables of that leaf. The other way around, if there
exists a variable v that is affected by all actions, then no mobile factoring exists.

To ensure that there also exists a center action, we need to forbid static variables,
i. e., variables that are not affected by any action. More formally, a variable v ∈ V is
static if there does not exist an action a ∈ A such that v ∈ vars(eff(a)).

Theorem 8 (Existence of Mobile Factoring). Let Π be a planning task without static
variables. There exists a mobile factoring F = {C} ∪ L for Π where |L| ≥ 1 iff there
exist a variable v ∈ V and an action a ∈ A such that v 6∈ vars(eff(a)).

Proof. Assume F = {C} ∪ L is a mobile factoring with center C and at least one
leaf L ∈ L. Since F is mobile, there exists a leaf-only action a ∈ AL6C for L where
vars(pre(a)) ⊆ C ∪ L and vars(eff(a)) ⊆ L. Thus, there exists a variable v ∈ C such
that v 6∈ vars(eff(a)).

Let Π be a task with a variable v ∈ V and an action a ∈ A such that v 6∈ vars(eff(a)).
We construct a mobile factoring F = {C,L} with a leaf L = vars(eff(a)) and center
C = V \ L. First, because v 6∈ vars(eff(a)) F is a partition of the variables V with non-
empty center C ⊇ {v}. All actions a′ ∈ Awith an effect only on L are leaf-only actions
of L, where trivially vars(pre(a′)) ⊆ C ∪ L. All other actions are center actions. The
leaf L is mobile because a is a leaf-only action for L. Because Π does not contain static
variables, so v appears in the effect of some action, there also exists a center action.
Thus, F is a mobile star factoring.

With this result, we can efficiently check a sufficient condition for the existence of
a mobile factoring with at least one leaf. If there exists a variable that appears in the
effect of all actions, then no mobile factoring exists.

As pointed out in the previous section, we will always aim at maximizing the number
of leaf factors, because the state-space reduction of decoupled search is exponential in
that number. Therefore, we will only even start decoupled search if there are at least
two mobile leaves. We next show how to efficiently check if a factoring with at least

5.2. COMPLEXITY 61

two mobile leaves exists. To do so, we introduce the concept of action schemas, which
group together actions that are preconditioned by and affect the same sets of variables.

Definition 23 (Action Schema). Let Π be a planning task. An action schema A of Π is
a pair of variable subsets 〈pre(A), eff(A)〉 such that there exists an action a ∈ A where
vars(pre(a)) = pre(A) and vars(eff(a)) = eff(A).

An important observation is that to obtain a mobile factoring each leaf must be a
superset of the effect variables of an action. Thus, mobile factorings can be computed
at the granularity of the action schema effects, and there is no benefit in considering
individual variables. This leads to the result that for a mobile factoring with at least two
leaves, there need to be two action schemas with non-overlapping effects. To ensure
a proper star factoring, we additionally need that there is a non-empty center, and that
leaf-only actions do not have preconditions on another leaf:

Theorem 9 (Existence of Mobile 2-Leaf Factoring). Let Π be a planning task without
static variables. We can construct a mobile factoringF = {C}∪L for Π with |L| ≥ 2 iff
there exist action schemasA1, A2 such that eff(A1)∪eff(A2) ⊂ V , eff(A1)∩eff(A2) = ∅,
eff(A1) ∩ pre(A2) = ∅, and pre(A1) ∩ eff(A2) = ∅.

Proof. Let A1, A2 be action schemas such that eff(A1) ∪ eff(A2) ⊂ V , eff(A1) ∩
eff(A2) = ∅, eff(A1) ∩ pre(A2) = ∅, and pre(A1) ∩ eff(A2) = ∅. We construct a factor-
ing F with center C and two leaves L1, L2 as follows: L1 = eff(A1), L2 = eff(A2), and
C = V \ (L1 ∪ L2). We next show that F is a proper factoring with mobile leaves.

(i) By construction F is a partition of V; all factors are non-empty. The latter is true
for the center C because eff(A1) ∪ eff(A2) ⊂ V .

(ii) If there exists an action without effects on C, but (a) with effects on both L1 and
L2, or (b) with effects on L1 and precondition on L2, or vice versa, then we add
an auxiliary variable vaux with D(vaux) = {0} to Π. We set I[vaux] = 0 and
add a redundant effect eff(a)[vaux] = 0 to all actions as of (a) and (b). Then all
actions are either leaf-only actions of one of the leaves, or have a center effect, so
F = {C,L1, L2} is a proper star factoring.

(iii) Each leaf factor Li is mobile because (a) by construction there exists an action
a ∈ A that affects only Li, and because (b) pre(A1) ∩ eff(A2) = ∅ there exists an
action such that vars(pre(a)) ⊆ C ∪ L1. The same argument also holds for L2.

(iv) Since there are no static variables, there exists an action affecting C.

By (i) and (ii), F is a star factoring, from (iii) and (iv) we get that F is mobile. The
auxiliary variable introduced in (ii) is redundant and does not have any effect on Π.

62 CHAPTER 5. PROBLEM DECOMPOSITION – FACTORING STRATEGIES

Let now F = {C} ∪ L be a mobile factoring with center C and at least two leaves
L1 6= L2 ∈ L. Because F is mobile, there exists a leaf-only action ai for each of
the leaves Li where vars(pre(ai)) ⊆ C ∪ Li and vars(eff(ai)) ⊆ Li. Thus, such a1

and a2 are part of action schemas A1 and A2 where eff(A1) ∩ eff(A2) = ∅, and where
eff(Ai)∩ pre(Aj) = ∅ for {i, j} = {1, 2}. Furthermore, we have eff(A1)∪ eff(A2) ⊂ V
because C is non-empty.

The construction from point (ii) in the proof serves to meet the requirement that
center actions have an effect on a center variable. The factoring methods we propose
later on do not make use of this construction. Still, the conditions named in Theorem 9
are necessary for the existence of mobile two-leaf factorings. Thus, as they can be
checked efficiently, we will implement them to decide if a factoring is possible before
actually attempting to find a factoring.

Concluding this section, we prove that it is NP-complete to compute a, not necessar-
ily mobile, strict-star factoring with the maximum number of leaves. Hardness follows
from a construction based on computing maximum independent sets of the causal graph
of a planning task. First, we prove that this construction is correct:

Lemma 5 (Factoring from Independent Set). Let Π be a planning task. From a strict-
star factoring F for Π with n leaves we can construct an independent set of size n of
CGΠ, and vice versa.

Proof. Let F = {C,L1, . . . , Ln} be a strict-star factoring. Since it is a strict-star factor-
ing, there are no edges between any pair of leaves in IGFΠ . Thus, for any pair of variables
vi, vj , where vi ∈ Li, vj ∈ Lj , and i 6= j, there is no edge 〈vi, vj〉 in CGΠ. We can
therefore select an arbitrary variable from each leaf, and the set of these variables forms
an independent set in CGΠ.

Let {v1, . . . , vn} be an independent set of CGΠ. We can construct a factoring F =
{C,L1, . . . , Ln} with n leaves as follows: Li = {vi}, C = V \ {v1, . . . , vn}. Since the
variables vi are not connected in the causal graph, there are no edges between any leaves
in IGFΠ , so F is a strict-star factoring.

While we can construct strict-star factoring with this approach, it is not reasonable
to obtain factorings, because there is no guarantee that the leaves are mobile. Using the
construction, we next show NP-completeness for maximizing the number of leaves:

Theorem 10 (Maximize Number of Leaves). Let Π be a planning task. The maximum
number of leaves in a strict-star factoring equals the size of a maximum independent set
in CGΠ. Given n ∈ N, it is NP-complete to decide if the maximum number of leaves in
a strict-star factoring is n.

Proof. Follows immediately from Lemma 5 and the fact that computing a Maximum
Independent Set is NP-complete [Garey and Johnson, 1979].

5.3. FACTORING BASED ON THE CAUSAL GRAPH 63

This result allows to compute an upper bound on the number of leaves in strict-star
factorings, and thereby a bound for more restricted factorings, too. It does not have
implications for general-star factorings, though, nor on the number of mobile leaves in
strict-star factorings.

5.3 Factoring Based on the Causal Graph
In this section, we introduce several factoring strategies that identify strict-star factor-
ings. The strategies are based on an analysis of the causal graph CGΠ. First, we show
how fork and inverted-fork can be obtained from the strongly connected components
(SCCs) of CGΠ [Gnad and Hoffmann, 2018]. We then propose two greedy algorithms,
one based on computing a maximum independent set (MIS) of the causal graph, another
based on the connectivity of variables in CGΠ [Gnad et al., 2017a]. A base variant of the
algorithm in Figure 5.1, as well as a first version of its implementation, is due to Valerie
Poser. She also contributed an extended variant of the algorithm in Figure 5.2, which is
not presented in this work. The author of this work contributed the underlying ideas of
both algorithms, and refined and simplified the algorithm in Figure 5.1.

For fork and inverted-fork factorings, observe that each causal graph SCC must be
subsumed by a factor. If an SCC is split across multiple factors, this implies a bidirec-
tional connection between these factors in the interaction graph. Thus, (inverted-)fork
factorings need to be computed at the level of SCCs. Let SCCs(G) be a function that
returns the strongly connected components of a graph G. Interpreting SCCs(CGΠ) as a
factoring (it is not guaranteed to be a star factoring), we can construct the interaction
graph IG

SCCs(CGΠ)
Π as before. From this graph, we can obtain a (inverted-)fork factor-

ing by selecting the leaf (root) vertices of IG
SCCs(CGΠ)
Π to be leaf factors and moving the

remaining variables to the center. In fact, this maximizes the number of leaves in any
(inverted-)fork factoring:

Theorem 11 (Fork & Inverted-Fork Factorings). Let Π be a planning task. Then fork
and inverted-fork factorings exist iff |SCCs(CGΠ)| > 1. The maximum number of leaves
in a fork (inverted-fork) factoring equals the number of leaf (root) vertices in IG

SCCs(CGΠ)
Π .

Proof. The “only if” direction in the first part of the claim holds because any fork or
inverted-fork factoring must be coarser than SCCs(CGΠ). The “if” direction follows
from the second part of the claim.

We prove the second part of the claim for fork factorings; the argument for in-
verted forks is symmetric because those are equivalent to forks in the modification of
IG

SCCs(CGΠ)
Π where the direction of each arc is inverted.

Denote by K the maximum number of fork leaves. Denote by K ′ the number of
leaves in IG

SCCs(CGΠ)
Π .

64 CHAPTER 5. PROBLEM DECOMPOSITION – FACTORING STRATEGIES

K ≥ K ′ holds because we obtain a fork factoring by setting the leaves in IG
SCCs(CGΠ)
Π

to be the leaf factors, and taking the remaining state variables to form the center.
K ≤ K ′ holds because any fork leaf must be closed under following arcs in the

causal graph, and hence every fork leaf must contain at least one leaf in IG
SCCs(CGΠ)
Π .

Precisely, let F be any fork factoring, and let L be any leaf factor of F . Let F, F ′

be components in SCCs(CGΠ) such that F → F ′ is an arc in IG
SCCs(CGΠ)
Π . If F ⊆ L,

then we must have F ′ ⊆ L: otherwise, either F ′ ⊆ C in contradiction, or F ′ ⊆ L2

for some other leaf factor L2 in contradiction. As F is coarser than SCCs(CGΠ), there
exists at least one F where F ⊆ L. Applying the argument transitively starting from
F , we obtain a leaf F ′′ in IG

SCCs(CGΠ)
Π so that F ′′ ⊆ L. But then, as the leaf factors in F

are disjoint, there cannot be more leaf factors than leaves in IG
SCCs(CGΠ)
Π , concluding the

argument.

This result immediately provides us with an efficient algorithm to compute fork and
inverted-fork factorings with maximum number of leaf factors. We also experimented
with variants that (1) combine several SCCs into one leaf, and (2) combine fork with
inverted-fork leaves into what is called an X-shape factoring. For (1), there are some
planning domains in which this proved useful. In general, however, it is not clear when
it is beneficial to combine leaves, since, as mentioned before, there is always a trade-
off between potential reduction and the efficiency of handling large leaf state spaces.
For (2), say we have a fork factoring F with leaves L and center C, where C contains
causal-graph root SCCsLR. We can then make these SCCs additional leaves, unless this
introduces an edge LR→L in the interaction graph between any LR∈LR and an L∈L.

Factoring strategies that are based on the causal graph SCCs are restricted to plan-
ning tasks where the causal graph is not strongly connected. We next introduce two
strategies that lift this restriction, identifying strict-star factorings even if the causal
graph is a single SCC.

Our first algorithm is presented in Figure 5.1 and is based on the construction in
the proof of Lemma 5, namely the computation of a maximum independent set of the
causal graph. Let MIS(G) be a function that returns a maximum independent set of a
graph. Then we obtain an initial factoring F by making every variable v in MIS(CGΠ)
a separate leaf factor. This, however, does not necessarily result in a mobile factoring.
Therefore, we post-process F by identifying center variables vL that are only connected
to one of the leaves L. We move such vL into the corresponding leaf L, since this can
only lead to a higher mobility of L and ensures that F is still a strict-star factoring.

After considering all such variables, we remove leaves from L that are still not mo-
bile. We do so because there is no easy way to make these leaves mobile, since this
would introduce a dependency to another leaf. One could attempt to merge several
leaves if there exists a shared center variable with causal graph connection to all of
them. We experimented with several strategies for doing so, but did not obtain any con-
clusive results. Having removed the non-mobile leaves, we try to increase the mobility

5.3. FACTORING BASED ON THE CAUSAL GRAPH 65

1 IndependentSetFactoring(Π = 〈V,A, cost, I,G〉):
2 L ← {{v} | v ∈ MIS(CGΠ)}
3 L ←maximizeMobility(L)
4 L ← {L ∈ L | L is mobile}
5 L ←maximizeMobility(L)
6 C ← {V \⋃L∈L L}
7 return F ← {C} ∪ L
8 maximizeMobility (L0):
9 C ← {V \⋃L∈L0

L}
10 V ′ ← {v ∈ C | |neighbourLeaves(v,L0)| = 1}
11 Lmax ← L0

12 i← 1
13 for v ∈ V ′ do
14 {Lv} ← neighbourLeaves(v,Lmax)
15 Li ← Lmax ∪ {Lv ∪ {v′}} \ {Lv}
16 i← i+ 1

17 end
18 return Lj with max # of mobile leaves

19 neighbourLeaves (v,L):
20 return N ← {L ∈ L | ∃v′ ∈ L s.t. v → v′ ∈ CGΠ ∨ v′ → v ∈ CGΠ}

Figure 5.1: Factoring strategy based on maximum independent sets of the causal graph.

of the remaining leaves again by extending them with center variables. This is possible
because a variable that was part of a leaf that has been removed may have put a restric-
tion on the choice of variables with only a single neighbouring leaf in the first iteration
in line 10 of the algorithm.

The resulting algorithm, IndependentSetFactoring, by construction always returns
strict-star factorings. It is not complete, though, neither guaranteeing to find a factoring
if one exists, nor returning the factoring with the maximum number of leaves (in case a
leaf has been removed in line 4).

Last in this section, we include another greedy algorithm that identifies strict-star
factorings. The IncidentArcsFactoring algorithm is shown in Figure 5.2. It is based
on the connectivity of variables in the causal graph, namely the number of incident arcs
of a variable. Formally, the number of incident arcs of a variable v in CGΠ is the number
of edges it is connected to, |{(v1, v2) ∈ CGΠ | v ∈ {v1, v2}}|. We sort the variables V
by decreasing number of incident arcs and start by moving the most densely connected
variables to the center C. The rationale behind this is that having such variables in a
leaf factor will introduce inter-leaf dependencies. Consequently, the key idea is that
after moving densely connected variables to the center, the causal graph without these

66 CHAPTER 5. PROBLEM DECOMPOSITION – FACTORING STRATEGIES

1 IncidentArcsFactoring(Π = 〈V,A, cost, I,G〉):
2 C ← ∅
3 i← 1
4 for v ∈ V do

// V sorted by decreasing # of incident arcs in CGΠ

5 C ← C ∪ {v}
6 Li ← WCCs(CGΠ′), where Π′ := 〈V \ C,A|V\C , cost, I[V \ C],G[V \ C]〉
7 i← i+ 1

8 end
9 L ← select Li with max # of mobile leaves

10 L ← {L ∈ L | L is mobile}
11 C ← {V \⋃L∈L L}
12 return F ← {C} ∪ L

Figure 5.2: A greedy factoring strategy based on the number of incident arcs of a
variable in the causal graph.

variables will be disconnected, separated into several non-connected components that
will become leaves.

We move variables into C one by one, every time generating a potential factoring
with leaves Li. For each iteration, we compute the weakly connected components in
the causal graph projected on the remaining variables. Concretely, let Ci be the cen-
ter factor after moving the i most densely connected variables to the center. Then we
project the task onto V \ C, removing all occurrences of the respective variables from
Π, obtaining a projected task Π′. Let WCCs(G) be a function that returns the weakly
connected components of a graph G. On the projected task, we make each component
L in WCCs(CGΠ′) a leaf factor. Note that these leaves are not necessarily mobile, since
for a leaf L there might only be actions that affect L and a center variable at the same
time. Therefore, we need to remove the non-mobile leaves.

Upon termination, we pick the factoring with the maximum number of mobile leaves
in Li. Similar to the previously introduced MIS-based algorithm, IncidentArcsFac-
toring does not provide any guarantees regarding the quality of the factoring, nor for
finding a factoring if one exists. Still, empirically, both algorithms provide good results.
As we will see in Chapter 7.3, many standard benchmark domains can be decomposed
into strict-star factorings. There is also a significant number of domains that allow for
(inverted-)fork factorings.

5.4. FACTORING VIA INTEGER LINEAR PROGRAMMING 67

5.4 Factoring via Integer Linear Programming
All contributions in this section are due to Schmitt [2018]. The author of this work only
acted as an advisor for the Bachelors thesis and came up with the idea that the factoring
process could be formulated as an integer linear program (ILP). We include the approach
here because it presents the only complete and optimal algorithm to obtain strict- and
general-star factorings with the maximum number of leaves (maximum mobility). The
idea of using action schemas (introduced in the previous section) is based on the effect
schemas from Schmitt [2018].

In this section, we view the factoring process as an optimization problem that assigns
variables to leaf factors while maximizing an objective function. We formulate the
problem as an ILP, optimizing either the number of mobile leaf factors, or the mobility
of the factoring. Based on the observation that a mobile leaf must subsume the effect
variables of at least one action, we construct the ILP such that only factorings on the
granularity of effect schemas are considered, which we introduce next.

We also experimented with an ILP encoding of factorings that searches over all
possible combinations of variables across any number of leaf factors. While this is
interesting conceptually, possibly resulting in factorings that are different from the ones
we obtain with the methods introduced next, it is infeasible to solve the generated ILPs
for non-trivial planning instances, due to the high number of constraints. Furthermore,
the method never resulted in better factorings when given reasonable runtime limits.
Therefore, we herein only introduce the encoding that builds on effect schemas. This
avoids the complete search of the naive approach while preserving the guarantee that we
can construct a factoring that maximizes the number of mobile leaf factors. So, in fact,
a complete search over all possible assignments of variables to leaves is not required to
maximize that number.

We next define the effect schemas of a planning task and based on these the potential
leaves for a factoring F .

Definition 24 (Effect Schema). Let Π be a planning task. An effect schema E ⊆ V is a
subset of the variables of Π, such that there exists an action a ∈ A with vars(eff(a)) =
E. We denote the set of all effect schemas of a task by ESΠ.

As explained before, if we want to obtain a mobile factoring F , then every leaf
L ∈ L must be the superset of at least one effect schema E ∈ ESΠ. Every leaf L
for which there does not exist an effect schema E ⊆ L cannot be mobile. Based on
this observation, we consider each effect schema E ∈ ES∗Π := ESΠ \ {V} as a po-
tential leaf, and construct a graph with nodes ES∗Π, such that any independent set of
the graph forms a proper factoring. These graphs are different for strict and general-
star factorings, so we introduce them separately. We will then encode the computation
of a maximum independent set of these graphs as an ILP and formulate the objective
function accordingly.

68 CHAPTER 5. PROBLEM DECOMPOSITION – FACTORING STRATEGIES

l1 l2

T1 T2

p1 p2

T1 T2

p1 p2

Figure 5.3: Illustration and causal graph of the running example.

Example 7. As example, we will consider a variant of our previous logistics task Π with
two trucks T1, T2 and two packages p1, p2 on a map with two locations. The example
is illustrated in the left of Figure 5.3; in the right, there is the causal graph CGΠ. The
task is defined as usual, with an additional action loadAllDrive(Tx, ly, lz) that loads
all packages into a truck and drives the truck at once: pre(loadAllDrive(Tx, ly, lz)) =
{Tx = ly, p1 = ly, p2 = ly}, eff(loadAllDrive(Tx, ly, lz))={Tx = lz, p1 = Tx, p2 = Tx}.
The initial and goal state are not of interest to us, as they do not affect the factoring.

Note that the red edges in the causal graph are only induced by the loadAll() actions.
Without these, fork and inverted-fork factorings would be possible with (a subset of) the
trucks or packages as leaves. With these actions, no such factorings are possible, and
only the two algorithms from the previous section are able to find strict-star factorings
where, e. g., the trucks are the leaves.

In the next two sections, we introduce the graph structures that can be employed
to compute strict- and general-star factorings based on a maximum independent set.
For both types of graphs, we prove the correctness and optimality of the approach for
obtaining mobile factorings. In Chapter 5.4.3, we describe the ILP encoding and the
objective functions we want to maximize.

5.4.1 Strict-Star Factorings
As a basis for the ILP encoding, we next introduce the potential strict-leaf graph, which
captures the overlap and dependencies between the potential leaves.

Definition 25 (Potential Strict-Leaf Graph). Let Π be a planning task and CGΠ its
causal graph. The potential strict-leaf graph PSLGΠ(S) is an undirected graph with
vertices S ⊆ P(V) \ {∅,V}, where P(V) denotes the powerset of V , and edges (i)
(S, S ′) if S 6= S ′ and S ∩ S ′ 6= ∅, and (ii) (S, S ′) if S 6= S ′ and there exist v ∈ S and
v′ ∈ S ′, such that (v, v′) is an edge in CGΠ.

The potential strict-leaf graph PSLGΠ(S) has an edge between (i) every pair of
overlapping variable sets, and (ii) variable sets that are connected via their variables
in the causal graph. Note that this exactly captures the requirements of a strict-star
factoring, in that two connected sets cannot both be leaves.

5.4. FACTORING VIA INTEGER LINEAR PROGRAMMING 69

{t1} {t2}{p1} {p2}

{t1, p1, p2} {t2, p1, p2}

Figure 5.4: The potential strict-leaf graph of the example.

Example 8. Figure 5.4 shows the potential strict-leaf graph PSLGΠ(ES∗Π) of our
example, where type-(ii)-only edges are dashed, and all solid edges are both from
type (i) and type (ii). The (only) mobile strict-star factoring with the maximum num-
ber of two leaves has the packages in the center C = {p1, p2} and each truck as a
leaf L = {{T1}, {T2}}. All other factorings have only a single leaf and result from
PSLGΠ(ES∗Π) by picking any one node in the graph as leaf and putting the remaining
variables into the center.

We next show that independent sets of the potential strict-leaf graph indeed are in
one-to-one correspondence with strict-star factorings:

Lemma 6 (Strict-Star Factoring from Independent Set). Let Π be a planning task and
let S = P(V) \ {∅,V}. Then F = {L1, . . . , Ln, C} is a strict-star factoring for Π, iff
I = {L1, . . . , Ln} forms an independent set of PSLGΠ(S), where C = V \⋃n

i=1 Li.

Proof. From left to right, let F = {L1, . . . , Ln, C}, with all Li ∈ S , be a strict-star
factoring. We prove that I = {L1, . . . , Ln} forms an independent set in PSLGΠ(S).
Assume for contradiction that there exist Li, Lj ∈ I , with Li 6= Lj , such that (Li, Lj) is
an arc in PSLGΠ(S). Such an arc exists if (i) Li ∩ Lj 6= ∅, or (ii) there exist variables
vi ∈ Li and vj ∈ Lj such that (vi, vj) is an arc in CGΠ. Reason (i) contradicts the
assumption that F is a valid factoring, i. e., a partitioning of V; (ii) is in contradiction to
F forming a strict-star factoring, as it implies a causal-graph arc between variables in
Li and Lj .

From right to left, let I = {L1, . . . , Ln} be an independent set of PSLGΠ(S). First,
we prove that F = {L1, . . . , Ln, C} with C = V \L1∪· · ·∪Ln is a valid factoring, i. e.,
a partitioning of V . By definition, every element of I is a non-empty proper subset of V .
From (i) in the definition of PSLGΠ(S) it follows that all elements of F are pairwise
disjoint. Furthermore, from the definition of C it follows that L1 ∪ · · · ∪ Ln ∪ C = V .
It remains to show that C is non-empty. If |I| = 1, then C 6= ∅, because V 6∈ S.
Otherwise, assume for contradiction that C = ∅. Then I forms a partitioning of V such
that for all Li, Lj ∈ I , with Li 6= Lj , it holds that there exist no variables vi ∈ Li and
vj ∈ Lj such that (vi, vj) is an arc in CGΠ. This contradicts our general assumption that
CGΠ is weakly connected. Finally, we prove thatF forms a strict-star factoring. Assume

70 CHAPTER 5. PROBLEM DECOMPOSITION – FACTORING STRATEGIES

for contradiction that there exists an arc (vi, vj) in CGΠ, where vi ∈ Li and vj ∈ Lj ,
connecting Li and Lj . This is in contradiction to type (ii) edges in the definition of
PSLGΠ(S), since I forms an independent set in the graph.

With Lemma 6, and the observation that every leaf that subsumes an effect schema
is mobile, we can construct mobile strict-star factorings from the independent sets of
PSLGΠ(ES∗Π), and vice versa.

Theorem 12. Let Π be a planning task and let ES∗Π be the set of its potential leaves.
Then from an independent set of size k of PSLGΠ(ES∗Π) we can construct a mobile
strict-star factoring F with k leaves, and vice versa.

Proof. From left to right, let I = {L1, . . . , Lk} be an independent set of size k in
PSLGΠ(ES∗Π). As ES∗Π ⊆ P(V) \ {∅,V} we know from Lemma 6 that F = {L1, . . . ,
Lk, C}, with C = V \ L1 ∪ . . . ∪ Lk, forms a strict-star factoring with k leaves. By
construction, every leaf Li is mobile.

From right to left, let F be a mobile strict-star factoring with center C and k leaves
L = {L1, . . . , Lk}. By definition, each mobile leaf is affected by at least one leaf-only
action. We refer to the leaf-only action that affects Li as ai. We next show that F ′ =
L′ ∪ {C ′} is a strict-star factoring with leaves L′ = {vars(eff(a1)), . . . , vars(eff(ak))}
and center C ′ = V \ ⋃L∈L′ L. Assume for contradiction that there exist L′i, L

′
j ∈ L′

and vi ∈ L′i and vj ∈ L′j , such that (vi, vj) is an arc in CGΠ. Since L′i ⊆ Li and
L′j ⊆ Lj , this would imply a causal-graph connection between Li and Lj in contra-
diction to the assumption that F forms a strict-star factoring. Thus, F ′ is a strict-star
factoring. Since ES∗Π contains all effect schemas, so in particular all vars(eff(ai)), it
follows from Lemma 6 that {vars(eff(a1)), . . . , vars(eff(ak))} is an independent set in
PSLGΠ(ES∗Π).

With this result, we have an algorithm that computes a strict-star factoringF with the
maximum number of mobile leaves from a maximum independent set of PSLGΠ(ES∗Π).

5.4.2 General-Star Factorings
All factoring strategies that we introduced so far produce only strict-star factorings, but
none of the methods is able to identify general-star factorings. In this section, we intro-
duce the potential general-leaf hypergraph, based on which we can compute general-
star factorings.

Definition 26 (Potential General-Leaf Hypergraph). Let Π be a planning task and CGΠ

its causal graph. The potential general-leaf hypergraph PGLGΠ(S) is a hypergraph
with vertices S ⊆ P(V) \ {∅,V}, and edges (i) {S, S ′} if S ∩ S ′ 6= ∅, (ii) {S, S ′} if
there exist v ∈ S, and a ∈ A, such that v ∈ vars(pre(a)), and vars(eff(a)) ⊆ S ′, and

5.4. FACTORING VIA INTEGER LINEAR PROGRAMMING 71

{T1} {T2}{p1} {p2}

{T1, p1, p2} {T2, p1, p2}

. .

Figure 5.5: The potential general-leaf hypergraph of the example.

(iii) {S1, . . . , Sn} if n > 1 and there exists an action a ∈ A such that vars(eff(a)) ⊆
S1 ∪ · · · ∪ Sn and ∀Si : vars(eff(a)) ∩ Si 6= ∅ ∧ vars(eff(a)) 6⊆ Si.

The potential general-leaf hypergraph PGLGΠ(S) has an edge between (i) ev-
ery pair of overlapping variable sets as in the strict-star case. Type (ii) edges pre-
vent precondition-effect dependencies between two leaves caused by leaf-only actions
a ∈ AL \ AC . Condition (iii) ensures that no action a ∈ A in the obtained factoring
affects more than one leaf without affecting the center at the same time. At least one of
S1, . . . , Sn cannot become a leaf, since otherwise a affects only leaf factors. Note that
the last part of the condition (vars(eff(a)) 6⊆ Si) only prevents hyperedges between sets
that are connected by type (i) edges, anyway.

Example 9. Figure 5.5 shows the potential general-leaf hypergraph PGLGΠ(ES∗Π) of
our example, where, like in Figure 5.4, type-(ii)-only edges are dashed, and all solid
connections result from both type (i) and type (ii) edges in the graph. The differ-
ence here is that there is no type (ii) edge between the packages, because, although
there are causal-graph edges between them (caused by the loadAllDrive() actions),
condition (ii) of the definition is not satisfied. Additionally, there are 10 type (iii) hy-
peredges that result from the loadAllDrive() actions. Figure 5.5 only shows two of
them (dotted), namely E0

x = {{Tx}, {p1}, {p2}, {Ty, p1, p2}}, where x 6= y. From
each E0

x, there result 4 additional hyperedges, namely all subsets of E0
x that cover

all variables of the effect schema of the loadAllDrive() actions of truck tx. These are:
E1
x = {{Tx}, {Ty, p1, p2}},E2

x = {{Tx}, {p1}, {p2}},E3
x = {{Tx}, {p2}, {Ty, p1, p2}},

and E4
x = {{Tx}, {p1}, {Ty, p1, p2}}. We omitted these in the example for readability.

There are two maximum independent sets of the hypergraph, again of size 2, namely
{{T1}, {T2}} and {{p1}, {p2}}. The latter forms a general-star, though not a strict-star,
factoring because the loadAllDrive() actions affect one of the trucks, thus are center
actions for which there is no restriction in general-star factorings.

As for strict-star factorings, we can prove that from an independent set of size k of
PGLGΠ(ES∗Π) we can construct a mobile general-star factoring F with k leaves. The
proof idea is similar to that of Theorem 12.

72 CHAPTER 5. PROBLEM DECOMPOSITION – FACTORING STRATEGIES

Lemma 7 (General-Star Factoring from Independent Set). Let Π be a planning task and
let S=P(V) \ {∅,V}. Then F={L1, . . . , Lk, C} is a general-star factoring for Π, iff
I = {L1, . . . , Lk} forms an independent set of PGLGΠ(S), where C = V \⋃k

i=1 Li.

Proof. From left to right, let F = {L1, . . . , Lk, C}, with Li ∈ S, be a general-star
factoring. We prove that I = {L1, . . . , Lk} forms an independent set in PGLGΠ(S).
Assume for contradiction that there exists {Li1 , . . . , Lin} ⊆ I such that {Li1 , . . . , Lin}
forms a hyperedge in PGLGΠ(S). According to the definition of PGLGΠ(S), such
a hyperedge exists for one of three reasons denoted by (i), (ii), and (iii). Reason (i)
contradicts the assumption that {L1, . . . , Lk, C} forms a valid factoring, i. e., a parti-
tioning of V . Reason (ii) is in contradiction to F forming a general-star factoring, as
it would imply that there exists an action a ∈ A with vars(eff(a)) ∩ C = ∅ such that
vars(eff(a)) ⊆ F but vars(pre(a)) * F ∪ C. Reason (iii) also contradicts the fact
that F forms a general star factoring, more precisely, that for each action a ∈ A with
vars(eff(a)) ∩ C = ∅ it holds that there exists F ∈ F such that vars(eff(a)) ⊆ F .

From right to left, let I = {L1, . . . , Lk} be an independent set in PGLGΠ(S).
Note that F = {L1, . . . , Lk, C} with C = V \ L1 ∪ . . . ∪ Lk is a valid factoring, i. e., a
partitioning of V , for the same reason as in the proof of Lemma 6.

We next prove that F forms a general-star factoring. Let a ∈ A be an action such
that vars(eff(a)) ∩ C = ∅. We must show that there exists an F ∈ F such that
vars(eff(a)) ⊆ F and vars(pre(a)) ⊆ F ∪ C. Assume for contradiction that there
exists no F ∈ F such that vars(eff(a)) ⊆ F . From vars(eff(a)) ∩ C = ∅ it fol-
lows that there exists {L′1, . . . , L′n} with n > 1, L′i 6= C, and L′i ∩ vars(eff(a)) 6= ∅
such that vars(eff(a)) ⊆ L′1 ∪ · · · ∪ L′n. This is in contradiction to (iii) in the defini-
tion of PGLGΠ(S), which introduces a hyperedge between such L′i. Consequently,
there exists an F ∈ F such that vars(eff(a)) ⊆ F . Further, we need to show that
vars(pre(a)) ⊆ F ∪ C. Assume for contradiction that there exists a v ∈ vars(pre(a))
such that v ∈ F ′ where F ′ 6= F and F ′ 6= C. This contradicts part (ii) in the definition
of PGLGΠ(S), which introduces an edge in PGLGΠ(S) between such F and F ′.

Similar to before, we are now ready to proof that we can construct a general-star
factoring with the maximum number of mobile leaves from a maximum independent
set of the potential general-leaf hypergraph:

Theorem 13. Let Π be a planning task and let ES∗Π be the set of its potential leaves.
Then from an independent set of size k of PGLGΠ(ES∗Π) we can construct a mobile
general-star factoring F with k leaves, and vice versa.

Proof. From left to right, let I = {L1, . . . , Lk} be an independent set of size k in
PGLGΠ(ES∗Π). As ES∗Π ⊆ P(V) \ {∅,V} it follows directly from Lemma 7 that
F = {L1, . . . , Lk, C}, with C = V \ L1 ∪ · · · ∪ Lk, forms a general-star factoring with
k leaves. By construction, every leaf Li is mobile.

5.4. FACTORING VIA INTEGER LINEAR PROGRAMMING 73

From right to left, let F be a mobile general-star factoring with k leaves L =
{L1, . . . , Lk} and center factor C. By definition, each mobile leaf is affected by at least
one leaf-only action. We refer to the leaf-only action that affects Li as ai. We next show
that F ′ = L′ ∪ {C ′} is a general-star factoring with leaves L′ = {vars(eff(a1)), . . . ,
vars(eff(ak))} and center C ′ = V \ ⋃L∈L′ L. Let a ∈ A be an action such that
C ′ ∩ vars(eff(a)) = ∅. We show that there exists L′i ∈ L′ such that vars(eff(a)) ⊆ L′i
and vars(pre(a)) ⊆ L′i ∪ C ′. Assume for contradiction that no L′i ∈ L′ exists such that
vars(eff(a)) ⊆ L′i. From vars(eff(a))∩C ′ = ∅ it follows that there exist at least two leaf
factors L′n = vars(eff(an)) and L′m = vars(eff(am)) such that L′n∩ vars(eff(a)) 6= ∅ and
L′m∩vars(eff(a)) 6= ∅. From L′n ⊆ Ln and L′m ⊆ Lm it follows that Ln∩vars(eff(a)) 6=
∅ and Lm ∩ vars(eff(a)) 6= ∅. From C ⊆ C ′, it follows that also C ∩ vars(eff(a)) = ∅,
in contradiction to F forming a general-star factoring. Thus, there exists a leaf factor
L′i ∈ L′ such that vars(eff(a)) ⊆ L′i. Further, we prove that vars(pre(a)) ⊆ L′i ∪ C ′.
Assume for contradiction that there exists a v ∈ vars(pre(a)) such that v /∈ L′i∪C ′, i. e.,
there exists L′j = vars(eff(aj)) with L′i 6= L′j and v ∈ L′j . From L′i ⊆ Li and L′j ⊆ Lj
it follows that vars(eff(a)) ⊆ Li and v ∈ Lj . As before, since C ⊆ C ′ and therefore
C∩vars(eff(a)) = ∅ this is in contradiction to F forming a general-star factoring. Thus,
F ′ forms a general-star factoring. As vars(eff(ai)) ∈ ES∗Π, it follows from Lemma 7
that {vars(eff(a1)), . . . , vars(eff(ak))} is an independent set in PGLGΠ(ES∗Π).

This result provides us with the first approach to compute general-star factorings,
the most-general types of factorings. As we will see in Chapter 7.3, there are many
benchmark domains in which general-star factorings can be identified. This is, however,
not always beneficial for the search, because the additional dependencies between the
leaves reduce the potential reduction of decoupled search.

5.4.3 Objective Function
Concluding this chapter, we briefly describe the ILP encoding and the objective func-
tion. We construct ILPs that compute independent sets on the aforementioned graphs.
For each potential leaf L ∈ ES∗Π, we have a binary variable xL that encodes if L is a
leaf (xL = 1) or not. We add a constraint for every (hyper-)edge in the potential-leaf
graphs G:

xL1 + · · ·+ xLk
≤ k − 1 for {L1, . . . , Lk} ∈ G

It is easy to see that the solutions to this ILP directly correspond to star factorings F
where each potential leaf L where xL = 1 becomes a leaf in F . The center consists of
the remaining, non-leaf, variables.

For every potential leaf, we specify an objective value oL, which is 1 if we aim at
maximizing the number of mobile leaves, or the mobility |AL6C | of the leaf if that is the

74 CHAPTER 5. PROBLEM DECOMPOSITION – FACTORING STRATEGIES

property we want to optimize. Then
∑

L∈ES∗Π
oL ·xL is the objective function of the ILP,

maximizing the sum of the respective measures in the factoring.
We remark that, when maximizing the number of mobile leaves, an optimal ILP

solution indeed results in the factoring that globally maximizes that number. In contrast,
when maximizing mobility, we do not obtain the factoring with maximum mobility,
because we do only consider leaves that result from a single effect schema. To obtain
the global maximum, we need to consider also all unions of effect schemas. We did
some preliminary experiments with this, but experienced that even considering only all
pairs of schemas leads to a prohibitive runtime overhead.

Chapter 6

Related Work – Exponential
Separations

Decoupled search relates to several existing techniques that attempt to tackle the state
explosion problem by pruning the state space or representing it in a compact way. In this
chapter, we will compare decoupled search to the most popular such methods, namely
partial-order reduction via stubborn sets, Petri-net unfolding, symmetry breaking, and
symbolic representations using binary decision diagrams (BDDs). We also show the
relation to existing works in factored planning, and discuss the connection to other more
remotely related techniques.

We put an emphasis on the relation to Petri-net unfolding and stubborn sets prun-
ing, which exploit the independence of components, and actions affecting these, similar
to decoupled search. For both, we present exponential separations showing that the
reduction achieved by these methods is in general incomparable to the reduction of
decoupled search. For unfolding, we additionally prove that under certain conditions—
single-variable factors, absence of prevail conditions, and compatible search orders—
the state-space representations are polynomially related. We also look more closely into
the relation to symbolic representations via BDDs, which, like decoupled search, use a
different state representation and search over compactly represented sets of states.

Previous works have introduced several forms of factored planning in the past, where
the search considers partial states with support for different types of dependencies across
factors. We show how decoupled search relates to these techniques.

Symmetry breaking is not that closely related to decoupled search, being based
on symmetric components, not component independence. Consequently, the reduction
achieved is naturally orthogonal to decoupled search.

This chapter is mostly based on Gnad and Hoffmann [2018]. The formal comparison
to unfolding was introduced in Gnad and Hoffmann [2019], the exponential separations
to stubborn set pruning were introduced in Gnad et al. [2019a]. The idea behind the
proof of Theorem 22 is due to Álvaro Torralba.

75

76 CHAPTER 6. RELATED WORK – EXPONENTIAL SEPARATIONS

6.1 Petri-Net Unfolding
Petri net unfolding is a well-known partial-order reduction method (e. g. McMillan,
1992; Esparza et al., 2002; Baldan et al., 2012). Instead of building the forward state
space and trying to prune permutative parts as in other methods (e. g. Valmari, 1989;
Godefroid and Wolper, 1991; Wehrle and Helmert, 2012), the state variables are not
multiplied with each other in the first place. The unfolding process incrementally adds
transitions to an acyclic graph, when the transition’s input “places” (precondition facts)
can be reached jointly. A new output place is then added for each effect. The outcome
structure is an acyclic Petri net, a complete prefix, that preserves reachability exactly
relative to the input Petri net.

Planning tasks can be translated into Petri nets [Hickmott et al., 2007; Bonet et al.,
2008], where each place in an unfolding then corresponds to a state-variable value and
net transitions correspond to actions. The complete prefix is an acyclic fact-action de-
pendency structure that captures reachability.

Unfolding and decoupled search are related. Consider a singleton-component fac-
toring, where each factor contains a single state variable. The component states then are
exactly the places in the unfolding, and, like unfolding, decoupled search expands these
separately. So how do the techniques relate exactly?

A significant known separation is the complexity of deciding whether a conjunc-
tive condition is reachable. Given an unfolding prefix, this test is NP-complete as the
transition histories supporting two places may be in conflict [McMillan, 1992]. In con-
trast, given a decoupled state space, the test can be done in time linear in the num-
ber of reached decoupled states: thanks to the star-topology organization, there are no
conflicts. But what about the sizes of the fully expanded prefixes, i. e., the respective
complete representation of reachability?

We will show that the reachable decoupled state space can be exponentially smaller
in the presence of prevail conditions (non-deleted preconditions, whose treatment in
Petri nets leads to blow-ups); and that the complete unfolding prefix can be exponen-
tially smaller in the presence of non-singleton factors. We also show corresponding
dominance results: without prevail conditions, unfolding size dominates the size of the
reachable decoupled state space; with only singleton components, the size of the reach-
able decoupled state space dominates unfolding size. Both hold subject to compatible
search orders, that prefer expansions on leaves over ones on the center whenever possi-
ble, and that are identical on the ordering of center-action sequences. For incompatible
search orders, exponential advantages are possible in either direction. Overall, we ob-
tain a complete classification along the three dimensions of prevail conditions (yes/no),
non-singleton components (yes/no), and incompatible search orderings (yes/no).

In this chapter, we only state our results in the form of separation and domination
theorems. The full proofs as well as additionally required backgrounds covering un-
foldings are provided in Appendix A.3.

6.1. PETRI-NET UNFOLDING 77

pi = l

pi = T

pi = r

T = l

T = r

load(pi , l)

unload(pi , l)

load(pi , r)
unload(pi , r)

drive(l) drive(r)

pi = lT = l

T = l

T = l

pi = T
T = r

pj = l

pj = T

load(pi , l)

load(pj , l)

drive(r)

Figure 6.1: Part of the petri-net encoding of our running example (left), and an incom-
plete prefix of its unfolding (right).

6.1.1 Background – Petri-Net Unfolding
Planning tasks can be encoded in Petri nets Σ = 〈P, T, F,M0〉, which are digraphs
whose nodes are the places P and transitions T of Σ. When encoding a planning task
Π, the places P correspond to the facts of Π, and the transitions T correspond to the
actions A [Hickmott et al., 2007; Bonet et al., 2008]. The flow relation F connects
precondition places as input to transitions, and effects as their outcome, e. g., (p, t) ∈ F
means that t has precondition p. A state s of Π (a set of facts) becomes a markingM in Σ
(a set of places). M0 = I is the initial marking. A transition t can fire (i. e., is applicable)
in a marking M if pre(t) ⊆M . The resulting marking is M ′ = (M \ pre(t)) ∪ eff(t).1

We will use a scaling variant of our logistics example with a single truck T , n pack-
ages pi, and two locations l, r. The truck can drive left, drive(l), and right, drive(r),
and packages can be (un)loaded, (un)load(pi, x) for x ∈ {l, r}, as usual. Initially,
truck and packages are at l. Figure 6.1 (left) illustrates part of the Petri net encoding of
the task, showing only one package. Places are blue circles, transitions gray boxes. A
marking M places a token in every place p ∈M .

Petri nets do not natively support prevail conditions—variables preconditioned, but
not affected by an action. The input places of transitions are “consumed” when a tran-
sition fires. Prevail conditions can be encoded by re-adding a token to the respective
place. In our example, the encoding of (un)load actions consumes the current truck
position, and adds it back in the effect. This incurs a blow-up in the unfolding, as a
distinction is introduced between the truck position before vs. after such actions.

The outcome of the unfolding process for a Petri net Σ is a triple UnfΣ = 〈B,E,G〉
that captures all markings reachable from M0 in Σ. The conditions b ∈ B and events
e ∈ E of UnfΣ are labeled with the places p ∈ P and transitions t ∈ T in Σ. G extends

1We assume that there are no actions with effect-only variables v, i. e., v ∈ vars(eff(a)) but v 6∈
vars(pre(a)). Such actions can cause an exponential blow-up in the net itself, as mentioned in Chapter 7.2.

78 CHAPTER 6. RELATED WORK – EXPONENTIAL SEPARATIONS

the flow relation F according to these labels. The unfolding process ensures that G is
acyclic. A configuration is a set C ⊆ E of events, partially ordered by G, that includes
all its predecessor events and that can be sequenced to an executable transition sequence.
Working on singleton conditions (facts), the unfolding does not enumerate permutations
of concurrent events, i. e., events whose effects are defined on disjoint variable sets.

The unfolding is generated as follows. Initially, for every p ∈ M0, there is a condi-
tion b in the unfolding. Then, the unfolding incrementally extends UnfΣ by appending
possible events e, adding a new condition to UnfΣ for every b ∈ eff(e). An event e
can fire at a configuration C if the outcome C ∪ {e} is again a configuration (i. e., can
still yield an executable transition sequence), and e is not a cut-off event. An event e
is cut-off if its marking M , obtained when executing the configuration supporting e,
equals the marking M ′ of an already generated configuration. The unfolding terminates
if no more events can fire; it then represents all markings reachable in Σ. We define the
size of an unfolding |UnfΣ| := |B| as the number of its conditions. We assume a search
order�, an order over configurations, constraining the firing order: at each point in the
unfolding process, the�-minimal possible event e is added.

Figure 6.1 (right) illustrates some unfolding steps. Observe the blow-up due to
missing support for prevail conditions: any load event can choose to either use the
initial occurrence of (T = l), or any other occurrence generated by previous load events,
so that the number of possibilities multiplies over the number of load events and thus
packages.

We denote the Petri net encoding a planning task Π by Σ(Π), and the corresponding
unfolding by UnfΠ.

6.1.2 Results Overview
Our results are exponential separations and domination properties, between decoupled
search and unfolding. Here we give an overview and state the theorems and proof intu-
itions afterwards. We show that, using compatible search orders, unfolding dominates
decoupled search on planning tasks without prevail conditions, and decoupled search
dominates unfolding with singleton-component factorings. We consider the following
three dimensions:

(i) Presence or absence of prevail conditions.

(ii) Presence or absence of multi-variable components.

(iii) Compatibility, or lack thereof, of the search orders�.

Dimension (i) concerns the planning tasks Π. We denote the class of task Π without
prevail conditions by “-P”, and the class of all (arbitrary) task Π, not making that restric-
tion, by “+P”. For dimension (ii), we denote by -M the restriction where the factoring F

6.1. PETRI-NET UNFOLDING 79

+P+M+O

+P+M-O+P-M+O -P+M+O

-P+M-O+P-M-O -P-M+O

-P-M-O #ΘRF
Π ≤ |UnfΠ| ≤ |ΘRF

Π |

#ΘRF
Π ≤ |UnfΠ| |UnfΠ| ≤ |ΘRF

Π |

Figure 6.2: Subsumption hierarchy and results overview. Above the green line, decou-
pled search can yield exponentially smaller representation size, below that line it cannot.
Above the red line, unfolding can yield exponentially smaller representation size, below
it cannot.

may not contain multi-variable components, and by +M the class of all F not imposing
this limitation.

Regarding dimension (iii), note that we are not interested in heuristic search here; the
target is to build a complete representation of reachability (the reachable decoupled state
space, a complete prefix in unfolding). Still, the order of expansions can significantly
impact representation size, potentially incurring or avoiding exponential blow-ups as
we shall see. We capture this in terms of the search orders �. We say that a pair of
search orders (�U ,�D) is compatible if (O1)�U always orders new leaf events before
new center events; and (O2)�D and�U agree on center paths: a�-minimal event in
the unfolding corresponds to�D-minimal center paths adding the corresponding center
action to the decoupled state space. In other words, the only degree of freedom in�U ,
over�D, is the relative ordering of leaf events. We denote that restriction by -O, and
the unrestricted case by +O. Note that (O1) mimics the factor-state generation order in
decoupled search, where after adding a center action, all reachable leaf states are added
prior to considering the next center action. Formal definitions of (O1) and (O2) are
given in Appendix A.3.1.

For comparing the size of the state-space representations, we define the size of the
reachable decoupled state space ΘRFΠ as the number of facts reached in the decoupled
states |ΘRFΠ | :=

∑
sF∈ΘRFΠ

(|C| +∑sL∈SL∧prices(sF)[sL]<∞ |sL|). We denote the number
of decoupled states in ΘRFΠ by #ΘRFΠ .

Figure 6.2 gives an overview of the hierarchy of sub-classes induced by dimensions
(i) – (iii), and the associated reachability representation size results. In this hierarchy,
exponential separations are inherited upwards, to more permissive classes, as separating
example families get preserved; while domination properties are inherited downwards,
to more restricted classes, as the required prerequisites are preserved.

The next section shows our separation theorems. We show that for the class +P-M-O
there exist planning task families where decoupled search results in exponentially smaller
reachability representations. We show that, within -P+M-O, unfolding size can be ex-

80 CHAPTER 6. RELATED WORK – EXPONENTIAL SEPARATIONS

ponentially smaller. For incompatible orders -P-M+O, we show separations in both
directions.

Afterwards, we show our domination theorems. Within +P-M-O, the number of
decoupled states is always at most as large as the unfolding, #ΘRFΠ ≤ |UnfΠ|. On the
other hand, within -P+M-O, the unfolding is at most as large as the decoupled state
space, |UnfΠ| ≤ |ΘRFΠ |. As #ΘRFΠ and |ΘRFΠ | are polynomially related given -M, with
downward inheritance in particular we get that, in the most restricted class -P-M-O,
decoupled state-space size and unfolding size are polynomially related.

6.1.3 Separation Theorems
We show exponential separations between decoupled search and unfolding. The plan-
ning task families Πn in the following theorems have size linear in n.

Theorem 14. There exists a family of tasks Πn in +P, with factorings in -M and search
orders in -O, where |ΘRFΠn | is polynomial in n while |UnfΠn| is exponential in n.

Our example is such a family Πn. There are only 3 decoupled states, independently
of n; the number of factor states is linear in n. The number of conditions in the unfolding
is exponential in n, because all possible combinations of, e. g., load(pi, l) actions are
enumerated in the initial state.

The so-called place-replication method in Petri nets encodes prevail conditions dif-
ferently, with copies of the prevail places [Baldan et al., 2012]. In our example, though,
this incurs the same blow-up. Contextual Petri nets [Baldan et al., 2012] have built-in
support for prevail conditions (“read arcs”), yet contextual unfoldings must keep track
of “event histories” which again incur the same blow-up.

Theorem 15. There exists a family of tasks Πn in -P, with factorings in +M and search
orders in -O, where #ΘRFΠn is exponential in n while |UnfΠn| is polynomial in n.

Such example families can be constructed through permutability (concurrency, in
Petri net parlance) within factors. For example, scaling the number of trucks in logistics,
if all truck variables are in the center, then decoupled search enumerates all possible
interleavings of truck drives. Unfolding expands the trucks separately, avoiding that
blow-up.

Theorem 16. There exists a family of tasks Πn in -P, with factorings in -M and search
orders in +O, where |ΘRFΠn | is polynomial in n while |UnfΠn| is exponential in n.

Theorem 17. There exists a family of tasks Πn in -P, with factorings in -M and search
orders in +O, where #ΘRFΠn is exponential in n while |UnfΠn| is polynomial in n.

6.1. PETRI-NET UNFOLDING 81

For both theorems, we construct example families and search orders where one
technique enters a part of the search space that is exponential in n, while the other
technique takes a “short-cut”, entering a part of the search space that allows to capture
complete reachability with polynomial representation size. For Theorem 16, the task
family is constructed so that the unfolding search has a detrimental priority to expand
center actions—even though leaf actions could be expanded, violating (O1)—missing
the “short-cut” offered by leaf actions after a single center action has been applied. For
Theorem 17, vice versa, complying with (O1) may lead to an exponential disadvantage,
due to generating the leaf preconditions of center actions causing a blow-up.

6.1.4 Domination Theorems
We now show domination results between the size of the decoupled state space and that
of the unfolding. With a singleton center factor C, there is no concurrency within C, so
unfolding can only exploit the concurrency inherent in the factoring and within leaves.
Formally:

Theorem 18. For Π in +P, factorings with singleton center factor (-M), and search
orders in -O, with hypercube pruning #ΘRFΠ ≤ |UnfΠ|.

The proof consists of Lemmas 22 and 23 in Appendix A.3.2. Lemma 22 shows
that, with a singleton center factor C, no events that affect C can be concurrent. In
Lemma 23, we show that decoupled states sF in ΘRFΠ that are not pruned by hypercube
pruning can be injectively mapped to non-cut-off events in UnfΠ. Say action occurrence
a in sF generates a state not contained in any previous hypercube, and say a is mapped
to e. Then e is not a cut-off: with compatibility of �, the only additional conditions
generated in UnfΠ are duplicates of prevail conditions, and the only additional events are
duplicates of actions consuming these conditions. With Lemma 22, conditions in UnfΠ
cannot be combined across decoupled states, because their center sub-configurations are
not concurrent.

If additionally all leaf factors are singleton, too, there is no blow-up relative to un-
folding incurred there, either, and the number of factor state occurrences in ΘRFΠ is at
most the number of conditions in UnfΠ.

Our next result is perhaps more surprising. The exponential advantage of decoupled
search disappears without prevail conditions:

Theorem 19. For Π in -P, factorings in +M, and search orders in -O, |UnfΠ| ≤ |ΘRFΠ |.

The proof consists of two parts. The first part considers the non-pruned versions
of the decoupled state space and the unfolding prefix, and shows that the factor-state
occurrences in ΘRFΠ can be surjectively mapped to corresponding factor co-sets in UnfΠ:
jointly reachable conditions over the variables of a factor. During the construction of

82 CHAPTER 6. RELATED WORK – EXPONENTIAL SEPARATIONS

UnfΠ and ΘRFΠ , for every new event e in UnfΠ, every new factor co-set supported by e is
matched by corresponding new factor states in ΘRFΠ . The crucial part of the argument is
that, in the absence of prevail conditions, all new conditions b generated by e correspond
to a factor-state change in the planning task, matched by the generation of a new factor
state in ΘRFΠ .

The second part of the proof observes that, for any event e, corresponding new factor
state occurrences in ΘRFΠ map to factor co-sets including the new conditions added by
e. The factor co-sets mapped to are different for every event. Further, at any point in the
construction, with compatibility of �, the current ΘRFΠ prefix cannot represent states
not represented in the UnfΠ prefix (Lemma 24). Thus, if e is a non-cut-off event, at
least one decoupled state sF containing the new factor-state occurrences is not pruned
by hypercube pruning.

Corollary 1. For Π in -P, factorings in -M, and search orders in -O, with hypercube
pruning #ΘRFΠ ≤ |UnfΠ| ≤ |ΘRFΠ |.

Our results completely characterize the possibility of exponential size differences,
or lack thereof, between decoupled search and unfolding as a function of three major
dimensions. The search organization in decoupled search, exploiting the star topology,
yields advantages over unfolding not only in terms of the complexity of deciding reach-
ability, but also in terms of state-space size when there are prevail conditions. The latter
is the only source of size advantages, given compatible search orders. The only source
of size advantages for unfolding are non-singleton components.

6.2 Partial-Order Reduction – Stubborn Sets
Partial-order reduction (POR) methods prune applicable transitions, preserving com-
pleteness (and optimality) while avoiding the exploration of unnecessary action per-
mutations. POR originates in formal verification (e. g. Valmari, 1989; Godefroid and
Wolper, 1991; Valmari, 1992; Peled, 1993; Godefroid, 1996; Edelkamp et al., 2004a),
and has also been successfully applied in planning, specifically in the form of stubborn
sets [Wehrle et al., 2013; Wehrle and Helmert, 2014; Winterer et al., 2017].

Some POR variants, e. g., sleep sets [Godefroid and Wolper, 1991] and their deriva-
tives, reduce only the number of transitions in the reachable state space. Decoupled
search is trivially exponentially separated from transition-pruning methods, since these
do not affect the set of states reached during search.

Stubborn sets [Valmari, 1989], on the other hand, reduce the number of reachable
states. Herein, we will formally compare decoupled search to three of its variants in-
troduced in planning, namely strong stubborn sets, weak stubborn sets, and compliant
stubborn sets [Sievers and Wehrle, 2021]. We distinguish these three variants since
there is no dominance of the pruning power between them.

6.3. SYMBOLIC STATE REPRESENTATION 83

Applying stubborn sets pruning in search, a set of actions T—the stubborn set—
is identified for each state s, such that pruning all actions applicable in s that are not
in T preserves completeness and optimality of the underlying search algorithm. The
computation of stubborn sets relies crucially on the notions of interference of actions
and necessary enabling sets. The latter capture that progress needs to be made towards
the goal, interference ensures that actions not in T are not missed that might be needed
later on, but that might not be applicable behind s any more.

Interference, or lack thereof, of actions hints at a type of conditional independence,
similar to what decoupled search exploits. If there are two actions applicable in the
same state that are not interfering, stubborn sets will capture this by only including one
of them, thereby reducing the search space.

Decoupled search and stubborn sets are complementary in that each is exponentially
separated from the other. So although both make use of a similar structure of a plan-
ning task, this is exploited in different ways. We next show results of the exponential
separation, giving brief intuitions here only. The full proofs are given in Appendix A.4.

Theorem 20. Decoupled search is exponentially separated from all three variants of
stubborn sets.

The scaling example detailed in the proof is similar to our standard logistics task,
but has an additional action that interferes with all load actions. This causes all variants
of stubborn sets to include all load actions, so the search visits, e. g., all 2n states where
any subset of the packages are loaded into the truck, vs. still in the initial location. The
decoupled state space, though, has only three reachable states and the additional action
only introduces transitions that go back from each of these states to IF .

Theorem 21. All three variants of stubborn sets are exponentially separated from de-
coupled search.

The opposite claim follows from an example with n variables that can be changed
independently after applying an action a that synchronizes them in the initial state. Here,
the state space under stubborn sets pruning is linear because after applying a to I only a
single applicable action will be in any stubborn set. Decoupled search, however, cannot
exploit the independence because of leaf-leaf interactions that forbid a star factoring,
but never trigger during search.

6.3 Symbolic State Representation
Decoupled search relates to search with compact state-set representations, in particular
with binary decision diagrams (BDD) (e. g. Bryant, 1986; McMillan, 1993; Edelkamp,
2003b), to the extent that a decoupled state sF is a compact representation of a state set,
namely its hypercube [sF]. This connection is weak, of course, as hypercubes are very

84 CHAPTER 6. RELATED WORK – EXPONENTIAL SEPARATIONS

particular state sets, pertaining to particular points in the search, whereas BDDs are used
to represent large parts of the search space. Hypercubes always have a small represen-
tation by definition; whereas BDDs can represent arbitrary state sets and, consequently,
may become large. The source of reduction is different in nature, where decoupled
search exploits component independence, BDDs rely on the fact that large state sets can
be characterized with a boolean function that results in a compact representation in the
decision diagram.

We next show that decoupled search is exponentially separated from symbolic breadth-
first search with BDDs. The full proof is given in Appendix A.5.

Theorem 22. Decoupled search is exponentially separated from symbolic breadth-first
search with BDDs.

The task family that leads to an exponential blow-up in the symbolic representa-
tion essentially encodes the function that represents the adjacency matrix of an n × n
grid, which has been proven to necessarily cause blow-ups in BDDs [Edelkamp and
Kissmann, 2011].

For the opposite direction, examples where symbolic search has a polynomial rep-
resentation size and decoupled search shows an exponential blow-up can be constructed
easily. The Gripper domain, which is a standard benchmark in classical planning, for
example, is known to have a compact BDD representation [Edelkamp and Kissmann,
2008], but cannot be decoupled due to pairwise variable dependencies.

6.4 Factored Planning
Decoupled search has been inspired by factored planning, which also partitions the state
variables into factors [Sacerdoti, 1974; Knoblock, 1994; Lansky and Getoor, 1995; Amir
and Engelhardt, 2003; Brafman and Domshlak, 2006; Kelareva et al., 2007; Brafman
and Domshlak, 2008; Fabre et al., 2010; Nissim et al., 2010; Crosby et al., 2013; Braf-
man and Domshlak, 2013; Nissim and Brafman, 2014; Wang and Williams, 2015].

In localized factored planning, the planning process is formulated as local planning
on individual components, followed by global cross-component constraint resolution.
The latter is done in terms of constraint satisfaction or message-passing methods over
exhaustive sets of local plans. Several works have analyzed the worst-case complex-
ity of such planning processes in depth, with major sources of exponential complexity
being the length of local plans, and the treewidth of the global constraint graph (the
interaction graph, in our terminology). Decoupled search eliminates both of these com-
plexity sources by restricting the form of global interactions allowed.

The most recent, and empirically the most successful, localized factored planning
method is partition-based pruning [Nissim and Brafman, 2014], which originates from
multi-agent planning. The local planning here takes place as part of a state-space search,

6.4. FACTORED PLANNING 85

where a local component state space—an agent’s “private” part of the search—is pur-
sued exclusively, until “public” state changes (relevant to other components) are encoun-
tered. This can be viewed as a form of partial-order reduction, exploiting permutability
of local plans across components.

In hierarchical factored planning, the factors are used within a hierarchy of increas-
ingly more detailed levels, accumulating the factors processed so far as search proceeds
down the hierarchy. As a high-level plan may not be realizable at lower levels, one needs
to allow backtracking across levels. In decoupled search, the maintenance of compliant
paths (low-level plans in a 2-level hierarchy with bidirectional dependencies) eliminates
that need.

Almost all factored planning approaches cannot guarantee global plan optimality;
sometimes, it is a hypothetical but impractical possibility involving exhaustive search
over all local plan lengths. The single exception is the work by Fabre et al. [2010],
which uses finite automata to represent the local-plan languages (the sets of local plans)
at any point in the search.

Algorithmically, decoupled search is quite different from both, localized and hier-
archical factored planning. At the core of the differences is the assumption of a par-
ticular structural profile, a star topology, in our method; vs. the handling of arbitrary
cross-factor interactions in previous methods. Consequently, whereas previous works
concentrate on the resolution of complex interactions—via constraint satisfaction, tree
decomposition, message passing, backtracking—our work concentrates on algorithms
specialized to star topologies, which facilitate a much different direct handling of the
simple interactions between center and leaves. In particular, thanks to the latter, our
algorithms end up being like state-space search, only on a more complex state structure;
this is not the case for any previous factored planning method (save partition-based
pruning which is a partial-order reduction technique). The only strong conceptual com-
monality between decoupled search and factored planning thus remains the use of a
state variable partition.

Turning our attention to exponential separations, consider first localized factored
planning. It is easy to see that our scaling example is an exponential separation from
partition-based pruning, as the only private actions are those of the truck, which do
not affect the exponential behavior in the number n of packages. For most other local-
ized factored planning approaches, exponential separations result from their exponen-
tial scaling behaviour in local plan length [Amir and Engelhardt, 2003; Brafman and
Domshlak, 2006, 2008, 2013]. For example, one can modify our scaling example so
that packages have to traverse a more complex internal state space in addition to being
loaded/unloaded (leaf state spaces can be made arbitrarily complex, without increas-
ing the number of decoupled states, so long as the additional transitions do not have
preconditions on the center). Similarly, the framework of Fabre et al. [2010] scales ex-
ponentially on leaf factors whose sets of local plans have no compact finite-automata

86 CHAPTER 6. RELATED WORK – EXPONENTIAL SEPARATIONS

representation.
Regarding hierarchical factored planning, in our scaling example such approaches

will start with high levels containing only the packages (planning “from the leaves to
the root”). So the example becomes an exponential separation when each object may
choose between several goal paths. For example, this happens when introducing several
trucks which serve different parts of the map.

6.5 Other Methods
Symmetry reduction (e. g. Starke, 1991; Emerson and Sistla, 1996; Fox and Long, 1999;
Rintanen, 2003; Domshlak et al., 2012) reduces the search space by not distinguishing
between states that are symmetric. Given a symmetry relation, for each new state s in
the search it is checked whether a state s′ symmetric to s has been visited before. If that
is the case, then s is pruned. That way, symmetry breaking can exponentially reduce
the search effort. The achieved reduction, however, is in general incomparable to that of
decoupled search. It is complementary to decoupled search as leaf factors do not need
to be symmetric at all. What is more, even if leaf factors are symmetric, decoupled
search may have a stronger effect than symmetry reduction. Our scaling example is
an exponential separation because even perfect symmetry breaking still keeps track of
the number of objects at every location. Vice versa, consider again the gripper domain
mentioned in Chapter 6.3. The domain is about moving balls between two room with
a robot. Here, all balls are symmetric and the search space using symmetry breaking is
polynomial, while it is exponential for decoupled search, since it cannot be decomposed
reasonably.

Fork/inverted-fork factorings may be somewhat reminiscent of safe abstraction for
automatic planning-task specification. This method is rooted in early works on hierar-
chical factored planning with the downward refinement property [Bacchus and Yang,
1994; Knoblock, 1994], where all abstract plans are realizable at lower levels. Helmert
[2006a] introduced this as an optimization in (an early version of) the Fast Downward
system [Helmert, 2006b], removing inverted-leaf variables with strongly connected state
spaces. Haslum [2007] generalized this method to consider only the relevant variable
values, Tozicka et al. [2016] introduced a related reduction technique merging mu-
tually reachable variable values. All these methods work at the level of single state
variables, not factors; none of them can guarantee global optimality; downward refine-
ment is only possible in case of single-directional dependencies, unable to handle more
general star topologies. Furthermore, all these techniques rely on mutual reachability
between variable values, so that exponential separations are trivial to construct by re-
moving “backwards-actions” not needed in the plan (e. g., in our scaling example, truck
moves towards l1 and unloading actions at locations other than lm).

Analyzing task structure has a long tradition in planning. The causal graph, which

6.5. OTHER METHODS 87

we use for factoring, has been extensively explored for complexity analysis, in partic-
ular the identification of tractable fragments [Jonsson and Bäckström, 1995; Domshlak
and Dinitz, 2001; Brafman and Domshlak, 2003; Helmert, 2004; Katz and Domshlak,
2008; Giménez and Jonsson, 2008, 2009; Giménez and Jonsson, 2012; Katz and Key-
der, 2012; Aghighi et al., 2015]. Recent research has extended this to the consideration
of fixed-parameter tractability, with “backdoors” to planning encapsulating the expo-
nential part of the search [Kronegger et al., 2014, 2015]. While many structural aspects
considered in such research relate to our factoring types, decoupled search is directed
not at tractable parts of the task, but at worst-case exponential parts that interact in a
limited manner. That said, work on the identification of backdoors might inspire new
factoring methods in the future.

Compositional verification (e. g. Pnueli, 1985; Clarke et al., 1989; Cobleigh et al.,
2003) checks properties of composed systems by making assumptions on, and prov-
ing guarantees for, the behavior of their components. This is very different from the
interleaved exploration of center paths vs. compliant leaf paths in decoupled search.

88 CHAPTER 6. RELATED WORK – EXPONENTIAL SEPARATIONS

Chapter 7

Experimental Evaluation

In this chapter we will provide an experimental evaluation of decoupled search. We will
compare its performance in the three algorithmic planning problems—optimal planning,
satisficing planning, and proving unsolvability—to state-of-the-art planners. Extending
the theoretical comparison to related techniques presented in Chapter 6, we will com-
pare decoupled search empirically to planners based on orthogonal state-space-pruning
techniques, namely partial-order reduction, symmetry breaking, symbolic representa-
tions, Petri-net unfolding, and partition-based pruning.

We start by describing our implementation and experimental setup. Our first evalua-
tion compares the different factoring strategies presented in Chapter 5. Before showing
our evaluation for each of the three algorithmic planning problems, we take a closer
look at the state-space representation size of decoupled search and related methods.

7.1 Implementation

Our implementation of decoupled search is based on the Fast Downward (FD) frame-
work [Helmert, 2006b]1, extending its C++ search component. Our decoupled-search
fork of FD is publicly available.2 FD is the most commonly used framework in classical
planning, and it contains state-of-the-art heuristic search algorithms. Our implemen-
tation is modular in that it affects only FD’s state representation, and the computation
of state transitions. All of its search algorithms can be run via Proposition 6; all of its
heuristic functions can be run (in principle) via Theorem 6. In our experiments, we
instantiate these connections with canonical baseline algorithms. These algorithms are
orthogonal to ours, and their details are not needed to understand our results. Hence we
only give a brief overview. The search algorithms we use are:

1http://www.fast-downward.org
2https://gitlab.com/dgnad/decoupled-fast-downward/

89

http://www.fast-downward.org
https://gitlab.com/dgnad/decoupled-fast-downward/

90 CHAPTER 7. EXPERIMENTAL EVALUATION

• A∗, which is used in most state-of-the-art heuristic search optimal-planning sys-
tems [Hart et al., 1968; Pearl, 1984].

• Greedy best-first search (GBFS) [Doran and Michie, 1966], specifically FD’s
GBFS implementation with lazy state evaluation and optionally a dual-queue
open list for preferred operators [Richter and Helmert, 2009]. This algorithm
is canonical for satisficing heuristic search planning, in that, if used with a strong
heuristic, it has state-of-the-art performance.

Preferred operators are applicable actions used in the abstract plan internally gen-
erated by a heuristic. One of the two open lists uses only these actions; the other
open list retains the states generated by other actions, preserving completeness.
For decoupled search, we restrict the set of preferred operators to center actions.

We extended the following heuristics to support our decoupled state representation:

• hmax [Bonet and Geffner, 2001], a basic admissible heuristic function mainly use-
ful for detecting unsolvable states during search. The heuristic estimates remain-
ing cost by assuming that, from each subgoal conjunction, it suffices to achieve
the single most costly variable value.

• hLM-cut [Helmert and Domshlak, 2009], a canonical admissible heuristic function,
close to the state-of-the-art in optimal planning and widely used as a baseline
in that context. The heuristic estimates remaining cost through identifying land-
marks [Hoffmann et al., 2004; Karpas and Domshlak, 2009], action sets that must
be hit by every plan.

• hFF [Hoffmann and Nebel, 2001], a canonical inadmissible heuristic function,
widely used in satisficing-planning systems. The heuristic estimates remaining
cost through the cost of an abstract plan pretending that state variables accumu-
late, rather than switch between, their values (this is commonly known as the
delete relaxation, McDermott [1999]; Bonet and Geffner [2001]).

• A blind heuristic, which returns 0 on goal states and the cost of the cheapest action
otherwise. Using this in A∗ is the most common design of a cost-optimal blind
search in FD.

For the decomposition of the input planning task for decoupled search, we imple-
mented the following factoring strategies to compute star factorings:

• Fork and inverted-fork (IFork) factorings as described in Chapter 5.3, maximizing
the number of leaf factors.

We do not employ more complex strategies based on these strategies that extend
the causal graph leaf SCCs, since sticking with the leaf SCCs gives consistently

7.1. IMPLEMENTATION 91

good results. Combining fork and inverted-fork factorings in an X-shape strat-
egy almost always simplifies to a portfolio that returns either of the two, since
X topologies are not common in our benchmarks, so we focus on the simpler
topologies.

• Incident-arcs strategy (IA): we use the algorithm shown in Figure 5.2.

• Factorings based on causal graph maximum independent sets (MIS): we use the
algorithm shown in Figure 5.1.

• Strategies based on linear programming: we distinguish between strict-star (LPS)
and general-star (LPG) encodings, as described in Chapter 5.4. We solve the
maximum independent set optimization problem with the IBM CPLEX solver3,
maximizing leaf mobility.

As the benefit of decoupled search lies in avoiding the multiplication of states across
leaves, we abstain from solving a task if the factoring strategy returns a single-leaf
factoring. In such cases, it is more reasonable to use explicit-state search instead, since
the overhead of handling decoupled states outweighs the reduction achieved, which is
linear in the number of leaf-only actions. We implemented the checks described in
Theorems 8 and 9 to efficiently decide if a factoring with at least two leaves is possible.
Thus, there is little overhead before taking the decision to abstain and handing over to
standard search.

As decoupled states explicitly enumerate leaf-factor state spaces, these should not be
excessively large. We apply a simple sanity criterion, where we check that all leaves L
satisfy the size bound

∏
v∈L |D(v)| < 232. While this bound may seem extremely high,

note that the reachable leaf state spaces are typically significantly smaller. Without
running the search, however, we do not know how many leaf states will be reached, so
we opt for this simple approximation.

A crucial question when implementing decoupled search is how to represent and
process decoupled states during execution. To efficiently store leaf states across decou-
pled states and maintain pricing functions, we precompute the component state space of
each leaf factor L ∈ L just once before search begins by projecting the task onto L, pre-
tending that all conditions outside L are achieved.4 This gives an over-approximation
of the set of leaf states reachable during search. We can hence give IDs to the leaf states
and store the reachability functions and pricing functions efficiently as bit-vectors, re-
spectively vectors of numbers, assigning >, respectively the price, to the entry with
the corresponding leaf state ID. We reconstruct compliant-path graphs merely once the

3https://www.ibm.com/analytics/cplex-optimizer
4We limit the size of the leaf state spaces that are precomputed for non-optimal planning to at most

10,000 states, since the memory and runtime overhead can be prohibitive otherwise. This only pertains
to leaf-state transitions, though, we still compute IDs for leaf states and store them only once.

https://www.ibm.com/analytics/cplex-optimizer

92 CHAPTER 7. EXPERIMENTAL EVALUATION

search terminates successfully on a decoupled goal state. This construction is linear in
the length of the decoupled plan and polynomial in the size of the leaves, so efficient.

Another important part of the implementation is dominance pruning. As indicated
in Gnad [2021b], dominance pruning can consume a significant percentage of the over-
all search time, in particular in optimal planning where up to more than 90% of the
time is spent on dominance pruning. The underlying issue is that dominance cannot be
checked efficiently, in contrast to exact duplicate checking in explicit-state search that is
usually done via hashing. Since dominance of decoupled states is just a generalization
of equivalence, as pointed out in Chapter 3.4.1, we also experiment with exact dupli-
cate checking for decoupled states, trading an efficient duplicate check for the pruning
power of dominance. Like for explicit states, we can simply use hashing to decide if
two decoupled states differ.

For the implementation of hypercube pruning, we use an algorithm called cube elim-
ination proposed by Hoffmann and Kupferschmid [2005]. We also experimented with
an encoding into SAT, and a SAT solver API (Z3, Moura and Bjørner [2008]), but
found our specialized cube elimination implementation more efficient. Still, hypercube
pruning consumes prohibitive amounts of runtime and memory. We enable hypercube
pruning in the experiments in Chapter 7.4, to show its effect on the reachable state space
size when exhausting the decoupled state space. It remains an open question whether
hypercube pruning can be made effective in practice.

7.2 Experimental Setup
We consider five different types of evaluations. First, we investigate the effectiveness
of the factoring strategies, i. e., in how many instances are they successful, how many
leaves are produced, what is the average leaf mobility. We then take a closer look at the
representation size of the reachable state space under decoupled search, vs. explicit-state
search, and related reduction techniques, namely partial-order reduction, symbolic state
representation, symmetry breaking, and Petri-net unfolding. We do so by exhausting
the entire reachable state space using these methods, pretending that no goal state is
reachable. We then address the three main algorithmic planning problems, satisficing
planning (finding any plan), optimal planning (finding an optimal plan), and proving
unsolvability (proving that no goal state is reachable).

In our evaluation, we consider the planning systems listed below, most of which are
implemented in Fast Downward (FD). Some of the planners have competed in one of
the International Planning Competitions (IPC) of the past years, which were held from
1998 to 2018.5

• Explicit-state search (Base), the default in FD.
5http://www.icaps-conference.org/index.php/Main/Competitions

http://www.icaps-conference.org/index.php/Main/Competitions

7.2. EXPERIMENTAL SETUP 93

• Partition-based pruning (PP) [Nissim and Brafman, 2014], a pruning method
which is a variant of factored planning originating from multi-agent planning,
implemented in FD.

• Partial-order reduction via strong stubborn sets (POR). We use the variant SSS-
EC that is implemented in FD [Wehrle et al., 2013].

• Symmetry breaking (Sym), in particular the orbit search algorithm from [Domsh-
lak et al., 2015b], which is also implemented in FD.

• A combination of the former two methods, stubborn sets pruning and symmetry
breaking in explicit-state search (PSy).

• A version of FD extended with symbolic state representation [Torralba et al.,
2017] via binary decision diagrams (SBD). We use a blind bidirectional sym-
bolic search, which according to Torralba et al. [2017] performs very similar to
the Symba planner, the winner of the optimal track in IPC’14 [Torralba et al.,
2014].

• Two Petri-net unfolding tools, Cunf [Rodríguez and Schwoon, 2013], and Mole
[Bonet et al., 2014]. Cunf performs contextual unfolding [Baldan et al., 2012],
which has native support for prevail conditions (compare Chapter 6.1). Cunf
constructs a finite prefix, so can only be used to exhaust the state space. Mole
does directed unfolding with a heuristic and can perform optimal and satisficing
planning as well [Bonet et al., 2008]. It supports blind search, hmax, and hFF.

• LAMA is a strong planner commonly used as baseline for comparisons in satis-
ficing planning [Richter and Westphal, 2010; Richter et al., 2011]. It is based on
landmarks [Richter et al., 2008] in combination with the delete-relaxation heuris-
tic hFF [Hoffmann and Nebel, 2001]. LAMA is implemented in FD.

• Best-First Width Search (BFWS) is a search algorithm based on the notion of
state novelty [Lipovetzky and Geffner, 2012, 2017; Francès et al., 2018]. We use
the variant called DUAL-BFWS. BFWS is not based on FD and uses a different
preprocessing that leads to alternative task encodings. BFWS is the runner-up of
IPC’18 in the satisficing track. We do not include the winner here, since it is a
portfolio approach that runs many planner configurations with short time limits
sequentially. Therefore, its results are not very consistent and not well suited for
our evaluations.

• The Complementary planner (C2) competed successfully in IPC’18, being runner-
up in the optimal planning track [Franco et al., 2018]. We include it here, and not
the winner, since the winner is based on a learned portfolio that was trained on

94 CHAPTER 7. EXPERIMENTAL EVALUATION

a subset of the domains that we use in our evaluation. It is based on symbolic
pattern databases [Franco et al., 2017]. C2 is implemented in FD.

• The Sympa planner [Torralba, 2016], the runner-up of the Unsolvability IPC
2016, which is build on top of the Symba planner [Torralba et al., 2014]. The
UIPC’16 winner is also a portfolio, so we do not include it in our comparison.
Sympa is implemented in FD.

Many of the planners that participated in an IPC make use of an enhanced prepro-
cessing that can decrease the size of the FDR planning task significantly by pruning
irrelevant parts [Alcázar and Torralba, 2015]. We disable this so-called h2-preprocessor
in all planners to get a fair comparison.

For both unfolding tools, we construct a Petri net based on the FDR encoding pro-
duced by the translator component of FD [Helmert, 2009], where an FDR fact directly
corresponds to a net place. Care must be taken with planning actions with (1) prevail
conditions, i. e., variables defined in the preconditions, but not in the effect of an action,
and (2) effect-only variables which are not defined in the precondition. Prevail condi-
tions (1) are only an issue for Mole, where we need to add a redundant effect to the net
transition. In Cunf, we can simply encode prevail conditions with read arcs. Effect-
only variables (2) can lead to a blow-up in the net, since we need to add preconditions
for all combinations of facts of the corresponding variables to obtain a safe net [Hick-
mott et al., 2007]. We also experimented with an encoding into transition normal form,
which avoids the blow-up, but makes plans longer [Pommerening and Helmert, 2015].
For Cunf, the exponential encoding always worked better. For Mole, the results were
mixed, different encodings benefit different settings. In the following sections we will
indicate which encoding was used.

For decoupled search, we distinguish the following configurations:

• DS: basic configuration of decoupled search, using a pricing function, augmented-
cost dominance�aug, g-value Adaptation, and a star heuristic in optimal planning,
and a reachability function, basic dominance pruning �, and a center heuristic in
non-optimal planning.

• opt/sat: denote the optimal/non-optimal planning variant of DS in Chapter 7.4.

• dup: like DS, but with exact duplicate checking instead of �aug.

• hc: sat with hypercube pruning.

• aT: an implementation of the Anytime D-A∗ algorithm described in Chapter 4.2.1.

• sd: like DS for optimal planning, but using the simple dominance pruning � in-
troduced in Chapter 3.4.1, and disabling the g-value Adaptation from Chapter 4.3.

7.2. EXPERIMENTAL SETUP 95

Our comparison is done on the established planning benchmarks introduced in the
International Planning Competitions. The benchmarks are grouped into domains that
contain instances described using the same action rules. Domains and instances are
modeled in the Planning Domain Definition Language (PDDL) [McDermott et al., 1998],
which planners translate into an FDR task before attempting to find a plan. We use
all domains and instances from the deterministic optimal, satisficing, and unsolvability
tracks of all IPCs. To extend the set of unsolvable benchmarks, we show results for the
domains introduced in Hoffmann et al. [2014] that have not been reused in the Unsolv-
ability IPC 2016. Since there is a large overlap of benchmark instances used in different
competitions, we filter out duplicate instances, i. e., instances where the PDDL files are
identical. This results in 2727 instances distributed across 62 domains. We aggregate
domains that appeared in several iterations into a single entry.

In all settings except the optimal planning results from Chapter 7.6, we apply a cost
transformation to all instances, setting the cost of all actions to 1. These unit costs
can often be exploited by heuristics and search algorithms. For decoupled search, we
use reachability functions in these cases, anyway, so distinguish only if a leaf state is
reached or not. Thus, the unit costs only affect the center actions.

In our evaluation, we mainly report two types of results: (1) coverage, i. e., the num-
ber of instances solved by a planner (respectively proved unsolvable), and (2) scatter
plots showing a per-instance comparison of the runtime, memory consumption, or the
size of the generated search space of two planners. For (1), we use tables that, for each
pair of a planner and a domain show the coverage. Each such table only contains de-
coupled search configurations that use the same factoring strategy. This allows us to
filter out instances in which that strategy abstains, focusing on the subset of instances
in which decoupled search is actually effective. Thus, the instance basis for tables with
different factoring strategies is not the same.

We include a comparison across strategies at the end of each section, taking all
instances into account. In this comparison, if a strategy abstains, we run explicit-state
search instead.6 In the factoring comparison, we also include results for a best combined
factoring portfolio (〈Fi〉), which simulates a sequential portfolio of several factoring
strategies. This is a fixed sequence of strategies, where, on each instance, the factoring
obtained by the first successful strategy is employed. If none of the methods returns a
factoring, we run Base. If, for example, the best portfolio for a setting is 〈Fork,LPG〉,
then we run decoupled search with factorings obtained by Fork; where Fork fails, we
employ factorings of LPG; if both fail, we run Base. Then, an instance is considered
solved if the sum of (the preprocessing time and) the factorings times plus the search
time are below the time limit. We compute the best sequence of strategies by simulat-

6We did not actually run the experiments like this, but rather combined the results of explicit-state
search and decoupled search by considering an instance solved if either decoupled search does not ab-
stain and solves the task, or decoupled search abstains, but explicit-state search solves the task such that
(preprocessing time plus) factoring time plus search time of explicit-state search are below the time limit.

96 CHAPTER 7. EXPERIMENTAL EVALUATION

ing all possible sequences, and return the sequence that maximizes total coverage. We
remark that, although the results for 〈Fi〉 in our evaluation are only simulated by com-
bining the results of several runs, this portfolio could easily be implemented in practice
without additional overhead.

The factoring evaluation takes the form of a table that shows a pairwise comparison
of all factorings, plus Base, 〈Fi〉, and some strong competitors. An entry in row X and
column Y indicates in how many domains methodX solved strictly more instances than
method Y . We also show the total coverage across all domains of all techniques.

The scatter plots (2) compare two planners directly, with one planner on the x-axis
and the other on the y-axis. Each point in a plot corresponds to one instance that was
solved by at least one of the planners. For runtime data, for example, a point below
the diagonal line (which is shown in each plot), corresponds to an instance where the
method on the y axis terminated faster than the method on the x-axis. All plots are in
log-log scale. When comparing the size of the search space, we consider the number of
expanded states for the state-space exhaustion and proving unsolvability; the number of
expanded states until the last f -layer of A∗ for optimal planning, and the number of state
evaluations for satisficing planning. For unfolding, we take the total number of histories
of non-cut-off events for Cunf, Mole does not output useful statistics. BFWS and SBD
do not have any measure for state-space size that could be reasonably compared to the
statistics of FD.

The evaluation was performed on a cluster of Intel E5-2660 machines running at
2.20 GHz, running a Fedora 33 Linux. We used the Downward Lab Python package to
conduct the experiments [Seipp et al., 2017].

We use the common memory and runtime limits of 30min and 4GiB of memory. For
all factoring strategies we impose a time limit of 30 seconds (except in the next section).
As we shall see in Chapter 7.3, the factoring time is typically small and all strategies are
able to identify a factoring within the time limit in almost all instances.

The source code of our decoupled search implementation as well as all evaluation
data are publicly available [Gnad, 2021a].

7.3 Factoring Statistics
In this section, we provide an analysis of the factoring strategies. We did not impose a
separate time limit for the factoring process in this evaluation, but wait until the process
terminates, or the 30 min overall time limit is reached. First, we want to briefly look
into the runtime and memory requirements of the factoring process:

The checks described in Theorems 8 and 9 are usually very efficient, with a median
(mean) runtime across all instances rounded to 0.0s (0.37s). The maximum time to
perform this check is 169.13s, which is in an instance of the Organic domain that has
more than 200.000 actions.

7.3. FACTORING STATISTICS 97

Strategy Median Mean Max #> 30s #Timeout
Fork 0.003s 0.12s 103.077s 1 0
IFork 0.003s 0.11s 89.5538s 1 0
IA 0.006s 0.63s 193.213s 14 0
MIS 0.009s 12.31s > 1800s 88 191
LPS 0.014s 28.17s > 1800s 190 51
LPG 0.017s 31.72s > 1800s 260 110

Figure 7.1: Runtime statistics of the factoring strategies when not imposing a time limit
on the left. On the right, we show in how many instances the factoring time is > 30s,
respectively > 1800s. The total number of instances considered is 2679.

The actual strategies are typically fast, too, but some fail to terminate on huge in-
stances. We show detailed statistics in Figure 7.1. The Fork and IFork strategies finish
almost instantaneously for all instances; the only instance where the runtime is >30s is
in Organic. The IA strategy shows a similar runtime behaviour, yet, as we will see soon,
is a lot more effective in computing factorings. MIS, LPS, and LPG all run into the
timeout of 30 min in many instances. Recall that all three at some point solve an NP-
hard subproblem, so it is not surprising that on huge instances this can be prohibitive.

An important question when looking at the cases with high factoring times is whether
there is any benefit in giving the strategy arbitrary time to terminate. It turns out that this
is not the case. Fork, IFork, and IA are successful in the same instances if the factoring
is cut off after 30s and the best factoring obtained until that point is returned, if one has
been found. For MIS we implemented a mechanism that terminates the computation
of the causal-graph MIS after the timeout, still doing the post-processing described in
the algorithm in Figure 5.1, which is always fast, on the largest independent set found
until then. This mechanism actually increases the number of instances where MIS is
successful by 78. For LPS and LPG, though, imposing the time limit we lose 48, re-
spectively 124, instances. However, we observed that even if a factoring is detected,
then decoupled search does usually obtain only a small state-space reduction in these
instances. We conjecture that in particular the ILP-based strategies typically perform
bad if the planning task is tighly coupled, having to satisfy many constraints induced by
the edges in the potential-leaf graphs. Hence, even if a factoring is returned, there will
probably be few leaves, or a lot of cross-factor interaction, leading to a poor reduction
of decoupled search. Therefore, in the coming sections, we will limit the factoring time
to 30s, without losing many instances where decoupled search would perform well.

The MIS, LPS, and LPG strategies occasionally run out of memory, too. This
happens in 12 instances for MIS (in 3-SAT, Maintenance, Organic-Split, PegSolR5),
1 instances for LPS (Organic-Split), and 11 instances for LPG (BagBarman, Organic-
Split, Tidybot). When imposing a time limit of 30s, the memory limit is never reached.

98 CHAPTER 7. EXPERIMENTAL EVALUATION

Figure 7.2 provides detailed results on the number of instances successfully decom-
posed, the obtained type of factoring, the number of leaf factors, and the average leaf
mobility. We group the results by domain, where the column # shows the total number
of instances of a domain. The column #F shows the number of instances in which the
checks in Theorems 8 and 9 imply that a mobile factoring with at least two leaves ex-
ists. The subsequent columns show the number of fork (F), inverted-fork (IF), strict-star
(SS), and general-star (GS) factorings obtained by the respective factoring strategies.
For all instances where a strategy returned a factoring, #L denotes the average number
of leaf factors, M denotes the average of the per-instance leaf mobility (the total number
of leaf-only actions).

First and foremost, it is remarkable that almost all domains can be decomposed for
decoupled search. Only in Blocksworld, PegSol, Snake, Sokoban, and VisitAll, there
provably exists no instance where a mobile 2-leaf factoring is possible at all. Overall,
more than 86% of the instances can be tackled with decoupled search. The average num-
ber of leaf factors and average leaf mobility indicate furthermore that in many domains
we can expect a strong state-space reduction.

Comparing the different strategies, we observe that Fork and IFork are often orthog-
onal, returning factorings in different domains. Still, there are seven domains where both
types of factorings are possible, indicating a loosely coupled causal graph. Since these
strategies are complete, i. e., detect a (inverted-)fork factoring if one exists, the results
show that in 563 instances of our benchmark set there exists a fork factoring, and in 589
instances there exists an inverted-fork factoring.

IA, which is very greedy and comes without any guarantee, proves very successful.
It finds factorings in all domains where there exist fork or inverted-fork factorings, ex-
cept BagTransport. It does not succeed in all instances in these domains, though, and
sometimes returns strict-star factorings instead. The MIS strategy shows not as good
results as IA. We conjecture that the limited post-processing performed on the causal-
graphs MISs is not enough to “repair” bad independent sets into mobile factorings.

The ILP-based strategies yield by far the best results, with more than 1900 computed
factorings each getting significantly closer to the possible maximum of 2313. Compar-
ing the two strategies in detail reveals that they often agree, i. e., there are no general-star
factorings with higher leaf mobility than that of strict-star factorings. There are many
domains, however, where LPG achieves a higher mobility, so prefers a general-star fac-
toring. Note that LPG also has a certain overhead compared to LPS, which is due to the
more complex potential-leaf graphs. This results in a few instances where LPS returns
a factoring, but LPG does not (e. g., in Airport, BagBarman, PegSolR5).

7.3. FACTORING STATISTICS 99

Fork IFork IA MIS LPS LPG
Domain # #F F #L M IF #L M F IF SS #L M F IF SS #L M F IF SS #L M F IF SS GS #L M
Agricola 40 40 0 - - 0 - - 0 0 40 7.7 64.5 0 0 0 - - 0 0 40 8.7 13.8k 0 0 0 40 16.4 35.7k
Airport 50 44 0 - - 0 - - 0 0 0 - - 0 0 10 3.4 38.2 0 0 44 5.5 257 0 0 3 40 5.3 246
Barman 74 74 0 - - 0 - - 0 0 2 17.0 170 0 0 0 - - 0 0 74 10.6 84.6 0 0 0 74 12.6 88.6
Blocksworld 35 0 0 - - 0 - - 0 0 0 - - 0 0 0 - - 0 0 0 - - 0 0 0 0 - -
Childsnack 30 30 0 - - 30 3.1 36.8 0 30 0 3.1 36.8 0 0 0 - - 0 6 24 16.4 59.9 0 6 24 0 16.4 59.9
DataNetwork 40 40 0 - - 0 - - 0 0 40 96.9 96.9 0 0 40 96.9 96.9 0 0 40 75.4 260 0 0 0 40 97.0 515
Depots 22 22 0 - - 22 2.8 120 0 22 0 2.8 120 0 11 0 3.3 193 0 22 0 2.8 120 0 22 0 0 2.8 120
Driverlog 20 20 20 8.3 1045 0 - - 6 0 14 9.1 1150 12 0 8 9.8 1143 0 0 20 11.2 1319 0 0 20 0 11.2 1319
Elevators 70 70 0 - - 70 4.6 209 0 40 0 3.9 107 0 0 5 4.4 119 0 70 0 4.6 209 0 10 0 60 4.6 227
Floortile 70 70 0 - - 70 2.3 4.6 0 0 70 6.2 55.5 0 0 70 14.2 116 0 0 70 13.9 116 0 0 0 70 28.1 232
Freecell 80 80 0 - - 0 - - 0 0 42 2.2 6.9 0 0 0 - - 0 0 79 3.6 12.9 0 0 0 80 4.9 306
GED 40 40 0 - - 0 - - 0 0 40 13.4 26.9 0 0 40 13.4 26.9 0 0 40 13.4 37.4 0 0 0 40 26.9 253
Grid 5 5 0 - - 0 - - 0 0 5 11.8 207 0 0 5 11.8 207 0 0 5 11.8 207 0 0 5 0 11.8 207
Gripper 20 20 0 - - 0 - - 0 0 0 - - 0 0 0 - - 0 0 0 - - 0 0 0 0 - -
Hiking 30 30 0 - - 0 - - 0 0 0 - - 0 0 0 - - 0 0 25 2.3 136 0 0 25 0 2.3 136
Logistics 63 63 63 11.2 5953 63 23.3 2113 29 34 0 25.3 2226 29 34 0 25.3 2226 60 3 0 13.5 6047 60 3 0 0 13.5 6047
Maintenance 25 25 1 2.0 27.0 1 2.0 27.0 0 0 14 5.0 7.6 0 0 5 7.6 11.6 0 0 25 10.6 12.3 0 0 0 15 45.5 49.2
Miconic 150 145 145 16.0 32.0 0 - - 145 0 0 16.0 32.0 145 0 0 16.0 32.0 145 0 0 16.0 32.0 145 0 0 0 16.0 32.0
Mprime 35 35 0 - - 0 - - 0 0 6 2.0 632 0 0 0 - - 0 0 35 2.0 133 0 0 31 4 2.0 134
Mystery 30 25 0 - - 4 2.5 135 0 0 1 2.0 109 0 0 0 - - 0 0 8 2.2 25.6 0 0 1 24 2.3 91.2
NoMystery 40 40 40 9.0 190 0 - - 40 0 0 9.0 190 40 0 0 9.0 190 40 0 0 9.0 190 40 0 0 0 9.0 190
Openstacks 135 128 0 - - 0 - - 0 0 105 43.5 48.3 0 0 88 34.3 34.3 0 0 128 72.7 72.7 0 0 23 105 72.6 283
Organic 40 6 0 - - 0 - - 0 0 0 - - 0 0 0 - - 0 0 1 2.0 4.0 0 0 0 5 2.0 1107
Organic-Split 40 39 0 - - 5 48.8 0.0 0 0 35 11.1 7573 0 0 0 - - 0 0 5 8.4 656 0 0 0 9 21.0 1815
ParcPrinter 30 28 0 - - 0 - - 0 0 20 2.2 175 0 0 0 - - 0 0 26 4.2 143 0 0 11 16 6.3 222
Parking 80 80 0 - - 0 - - 0 0 0 - - 0 0 0 - - 0 0 0 - - 0 0 0 0 - -
Pathways 30 30 29 21.1 42.2 0 - - 0 0 30 40.6 73.6 0 0 30 24.7 38.5 0 0 30 52.0 172 0 0 0 30 57.2 183
PegSol 36 0 0 - - 0 - - 0 0 0 - - 0 0 0 - - 0 0 0 - - 0 0 0 0 - -
PetriNet 20 0 0 - - 0 - - 0 0 0 - - 0 0 0 - - 0 0 0 - - 0 0 0 0 - -
Pipesworld 100 100 0 - - 0 - - 0 0 0 - - 0 0 0 - - 0 0 61 2.4 6.4 0 0 0 70 9.4 13.4
PSR 50 50 3 2.0 4.0 0 - - 0 0 48 6.8 8.9 0 0 48 7.2 7.8 0 0 48 2.9 255 0 0 13 37 3.7 255
Rovers 40 40 40 20.9 1122 38 7.7 731 0 0 40 21.4 2382 12 0 28 18.4 979 0 0 40 33.9 3530 0 0 40 0 33.9 3530
Satellite 36 36 36 54.8 525 34 7.4 108k 7 0 29 33.9 4043 26 1 9 54.2 1071 0 0 36 14.1 102k 0 0 36 0 14.1 102k
Scanalyzer 30 30 0 - - 0 - - 0 0 9 8.6 182 0 0 9 8.7 226 0 0 9 4.9 3151 0 0 9 0 4.9 3151
Snake 40 0 0 - - 0 - - 0 0 0 - - 0 0 0 - - 0 0 0 - - 0 0 0 0 - -
Sokoban 40 0 0 - - 0 - - 0 0 0 - - 0 0 0 - - 0 0 0 - - 0 0 0 0 - -
Spider 40 40 0 - - 0 - - 0 0 0 - - 0 0 3 3.3 7.0 0 0 6 9.2 15.2 0 0 0 16 18.9 60.8
Storage 30 25 0 - - 0 - - 0 0 0 - - 0 0 0 - - 0 0 0 - - 0 0 0 17 2.0 10.2
Termes 40 0 0 - - 0 - - 0 0 0 - - 0 0 0 - - 0 0 0 - - 0 0 0 0 - -
Tetris 37 37 0 - - 0 - - 0 0 30 12.3 41.2 0 0 0 - - 0 0 6 13.8 27.7 0 0 0 9 80.7 161
Thoughtful 20 20 0 - - 0 - - 0 0 13 2.4 3.5 0 0 5 2.6 5.2 0 0 20 6.0 733 0 0 0 20 19.4 778
Tidybot 40 40 0 - - 0 - - 0 0 40 4.3 5.9 0 0 0 - - 0 0 1 2.0 419 0 0 0 4 6.0 584
TPP 30 30 27 8.3 3856 26 4.8 86.3 0 0 29 10.8 3991 0 0 3 3.0 3.0 0 0 29 27.1 1262 0 0 29 0 27.1 1262
Transport 117 117 0 - - 117 3.1 713 0 39 0 2.5 171 0 0 6 2.0 17.3 0 117 0 3.1 713 0 0 0 117 3.1 918
Trucks 30 30 0 - - 0 - - 0 0 27 11.4 11.5k 0 0 13 51.3 15.1k 0 0 30 32.5 13.7k 0 0 30 0 32.5 13.7k
VisitAll 66 0 0 - - 0 - - 0 0 0 - - 0 0 0 - - 0 0 0 - - 0 0 0 0 - -
Woodworking 70 70 47 4.1 571 62 4.2 467 0 1 62 7.2 985 0 0 1 2.0 4.0 0 0 70 14.6 772 0 0 2 68 15.6 774
Zenotravel 20 20 20 9.9 1191 18 3.5 6466 0 0 20 13.2 1787 0 0 20 13.2 1787 0 18 2 3.5 5825 0 18 2 0 3.5 5825∑

2256 1914 471 560 227 166 811 264 46 446 245 236 1077 245 59 304 1010
Unsolvability IPC 2016

BagBarman 20 20 0 - - 0 - - 0 0 16 3.0 59.6 0 0 0 - - 0 0 20 3.9 32.3 0 0 0 12 6.0 52.0
BagGripper 25 2 0 - - 0 - - 0 0 0 - - 0 0 0 - - 0 0 0 - - 0 0 0 0 - -
BagTransport 29 29 0 - - 29 2.9 799 0 0 0 - - 0 0 0 - - 0 29 0 2.9 799 0 18 0 4 2.5 205
Bottleneck 25 25 0 - - 0 - - 0 0 0 - - 0 0 0 - - 0 0 0 - - 0 0 0 0 - -
Cavediving 25 25 0 - - 0 - - 0 0 21 14.3 438 0 0 13 7.4 69.2 0 0 25 11.8 376 0 0 0 25 11.8 381
Chessboard 23 23 0 - - 0 - - 0 0 0 - - 0 0 0 - - 0 0 22 37.2 37.2 0 0 0 23 74.9 74.9
DocTransfer 20 20 0 - - 0 - - 0 0 20 35.6 2470 0 0 20 35.6 2470 0 0 20 35.6 2470 0 0 20 0 35.6 2470
NoMystery 23 23 23 14.3 460 0 - - 23 0 0 14.3 460 23 0 0 14.3 460 23 0 0 14.3 460 23 0 0 0 14.3 460
Rovers 19 19 19 13.2 90.6 0 - - 0 0 19 18.9 773 0 0 19 20.6 1023 0 0 19 21.3 1025 0 0 1 18 2.7 4070
TPP 30 30 0 - - 0 - - 0 0 30 6.3 21.1 0 0 14 3.3 6.6 0 0 30 4.6 112 0 0 30 0 4.6 112
PegSolR5 15 14 0 - - 0 - - 0 0 12 2.9 14.3 0 0 0 - - 0 0 13 16.6 33.2 0 0 0 10 17.1 34.2
PegSol 24 24 0 - - 0 - - 0 0 24 4.0 8.0 0 0 0 - - 0 0 24 4.0 8.0 0 0 0 24 8.0 16.0
Tiles 20 20 0 - - 0 - - 0 0 10 2.0 88.0 0 0 0 - - 0 0 20 2.5 49.0 0 0 20 0 2.5 49.0
Tetris 20 20 0 - - 0 - - 0 0 20 9.5 33.5 0 0 0 - - 0 0 10 16.0 32.0 0 0 0 10 50.0 100∑

318 294 42 29 23 0 172 23 0 66 23 29 203 23 18 71 126
Unsolvable Benchmarks from Hoffmann et al. [2014]

3-SAT 30 30 0 - - 0 - - 0 0 1 2.0 2.0 0 0 0 - - 0 0 20 3.0 3.0 0 0 0 30 9.0 9.0
NoMystery 25 25 25 15.0 360 0 - - 25 0 0 15.0 360 25 0 0 15.0 360 25 0 0 15.0 360 25 0 0 0 15.0 360
Rovers 25 25 25 26.6 172 0 - - 20 0 5 26.8 213 0 0 25 30.0 716 0 0 25 29.8 720 0 0 1 24 2.8 3736
TPP 25 25 0 - - 0 - - 0 0 25 8.0 42.2 0 0 0 - - 0 0 25 7.8 196 0 0 25 0 7.8 196∑

105 105 50 0 45 0 31 25 0 25 25 0 70 25 0 26 54
Total 2679 2313 563 589 295 166 1014 312 46 537 293 265 1350 293 77 401 1190

1475 895 1908 1961

Figure 7.2: Statistics for all factoring methods. The number of resulting fork/inverted-
fork/strict-star/general-star factorings is denoted by F/IF/SS/GS. The average number
of leaf factors is denoted by #L, the average mobility of the factorings by M. #F is the
number of instances per domain where a mobile 2-leaf factoring exists.

100 CHAPTER 7. EXPERIMENTAL EVALUATION

7.4 State-Space Size
We herein compare decoupled search to related state-space reduction methods when
completely exhausting the reachable state space. This evaluation compares the potential
for reduction, avoiding the impact that a heuristic, or stopping at a goal state, can have.
In this section, we show results on all IPC benchmarks, i. e., we include domains and
instances from all competition tracks described in Chapter 7.2.

In Figure 7.3 we show results on instances where Fork is successful, i. e., returns
a factoring with at least two mobile leaves. We compare three variants of decoupled
search, opt, sat, and hc to explicit-state search without and with several pruning meth-
ods, unfolding (Unf.) with Cunf, and symbolic (Sym.) bidirectional search with SBD.
All variants of decoupled search strongly outperform the explicit-state methods and
Cunf. There are only three domains (Rovers, Satellite, Woodworking) where pruning
with symmetries or stubborn sets can construct more state spaces. Cunf also shows
good results in these domains. The strongest competitor is symbolic search, which con-
structs more state spaces than the optimality-preserving decoupled search variant opt,
and decoupled search with hypercube pruning (hc). Interestingly, decoupled and sym-
bolic search excel in different domains, showing their orthogonal reduction effects.

Comparing the decoupled search variants to each other, we clearly see the advantage
of the reachability functions, sat can construct 112 more state spaces than opt. This
effect is most pronounced in Miconic, where the difference is 99 instances. Hypercube
pruning overall clearly deteriorates the performance, which is to be expected given its
computational overhead. But this highly varies across domains. In some domains it is
just as good as the other variants, often with a higher coverage than opt.

In Figure 7.4, we see the same evaluation for inverted-fork factorings. The differ-
ence to the results on fork factorings is obvious. While sat and hc still outperform all
explicit-state variants and unfolding, this is no longer true for opt. The configurations
that include symmetry breaking (Sym, PSy) can construct more state spaces than opt
consistently across most domains. In general, the advantage of decoupled search is sig-
nificantly reduced, and symbolic search has a higher coverage in many domains. The
most significant advantage is in Floortile (49 instances), where it is known that symbolic
search performs well. Still, we see that decoupled and symbolic search are orthogonal;
no method dominates the other in all domains.

We conjecture that the performance difference between decoupled search with fork
and inverted-fork factorings is due to two reasons: (1) the different kind of monotonic-
ity briefly discussed in Chapter 3.4.1 and Chapter 5.1, and (2) the different state-space
topology. Point (1) highly influences the pruning potential of dominance pruning, as
discussed in Example 4, where, in particular in optimal planning, leaf preconditions
of center actions can cause diverging pricing functions. The same effect occurs with
reachability functions, too, if the leaf state spaces are not invertible, so a commitment
to a leaf precondition restricts the set of reachable leaf states in all descendant states.

7.4. STATE-SPACE SIZE 101

Explicit Search Unf. Sym. Decoupled
Domain # #F Base PP POR Sym PSy Cunf SBD opt sat hc

Driverlog 20 20 5 5 5 6 6 3 8 8 11 10
Logistics 63 63 12 12 12 13 13 11 18 25 27 18
Miconic 150 145 45 45 40 51 43 30 107 46 145 79
NoMystery 40 40 11 11 11 12 12 7 16 28 30 13
Pathways 30 29 3 3 3 3 3 3 4 3 3 3
Rovers 40 40 5 5 6 5 6 6 13 5 5 5
Satellite 36 36 4 5 5 5 5 6 7 4 4 4
TPP 30 27 5 4 5 6 6 4 7 11 14 8
Woodworking 70 47 7 8 10 7 12 13 22 9 10 10
Zenotravel 20 20 7 7 7 7 7 4 7 7 8 7
Other 1727 4 4 4 4 4 4 4 4 4 4 4∑

2226 471 108 109 108 119 117 91 213 150 261 161
Unsolvability IPC 2016

NoMystery 23 23 2 2 2 2 2 1 5 11 12 3
Rovers 19 19 6 6 5 6 5 2 12 7 7 7
Other 276 0 0 0 0 0 0 0 0 0 0 0∑

318 42 8 8 7 8 7 3 17 18 19 10
Unsolvable Benchmarks from Hoffmann et al. [2014]

NoMystery 25 25 0 0 0 0 0 0 4 24 24 2
Rovers 25 25 0 0 0 0 0 0 5 0 0 0
Other 85 0 0 0 0 0 0 0 0 0 0 0∑

135 50 0 0 0 0 0 0 9 24 24 2
Total 2679 563 116 117 115 127 124 94 239 192 304 173

Figure 7.3: Coverage data, i. e., the number of state spaces exhausted completely on
instances where Fork does not abstain. #F denotes the number of such instances per
domain. Domains with the same coverage for all planners are summarized in “Other”.
We highlight the best coverage in bold face.

Point (2) is also related to the inter-factor dependencies. Consider the Logistics domain,
which is very similar to our logistics running example, where all instances are tackled
by both factoring strategies. Here, twice as many state spaces can be constructed using
Fork. With a fork factoring, i. e., all trucks in the center, decoupled search only enu-
merates different sequences of drive actions. Thus, the branching factor compared to
explicit-state search is reduced (the same drive actions applicable in a decoupled state
are applicable in all its member states). Considering an inverted-fork factoring in the
same domain, where each truck forms a leaf and all packages are in the center, the
branching factor actually increases dramatically. This is because the set of load/unload
actions applicable in a decoupled state is the union of all such actions applicable in
any member state. As each truck can always reach all locations, unloading is possible

102 CHAPTER 7. EXPERIMENTAL EVALUATION

Explicit Search Unf. Sym. Decoupled
Domain # #F Base PP POR Sym PSy Cunf SBD opt sat hc

Childsnack 30 30 0 0 0 6 6 0 4 0 0 0
Depots 22 22 4 4 3 5 4 2 3 4 5 5
Elevators 70 70 11 13 6 17 13 2 18 17 23 23
Floortile 70 70 2 2 2 2 2 0 51 2 2 2
Logistics 63 63 12 12 12 13 13 11 18 13 15 15
Organic-Split 40 5 1 1 1 1 1 0 1 0 0 0
Rovers 40 38 3 3 4 3 4 4 11 3 4 4
Satellite 36 34 2 3 3 3 3 4 5 3 5 5
TPP 30 26 2 1 2 3 3 1 4 2 2 2
Transport 117 117 19 23 18 23 18 10 24 23 28 28
Woodworking 70 62 8 10 13 9 15 16 34 12 12 12
Zenotravel 20 18 5 5 5 5 5 2 5 5 8 8
Other 1618 1 1 1 1 1 1 1 1 1 1 1∑

2226 556 70 78 70 91 88 53 179 85 105 105
Unsolvability IPC 2016

BagTransport 29 29 7 7 5 7 5 3 8 8 12 12
Other 289 0 0 0 0 0 0 0 0 0 0 0∑

318 29 7 7 5 7 5 3 8 8 12 12
Unsolvable Benchmarks from Hoffmann et al. [2014]

Mystery 30 4 0 0 1 0 2 0 0 0 0 0
Other 105 0 0 0 0 0 0 0 0 0 0 0∑

135 4 0 0 1 0 2 0 0 0 0 0
Total 2679 589 77 85 76 98 95 56 187 93 117 117

Figure 7.4: Same setup as in Figure 7.3, on instances where IFork does not abstain.

everywhere for all packages loaded in a truck in the center state.
Another interesting observation is that hypercube pruning does not seem to incur

an overhead for tasks under IFork. This is probably because the leaf state spaces in the
tackled instances are in fact invertible, so even for sat dominance pruning only preserves
a single decoupled state per center state.

Figures 7.5 and 7.7 show the same evaluation for factorings obtained by IA and
LPG, as representatives that produce strict-star, respectively general-star, factorings.
The overall picture is similar in both cases. Overall, all decoupled search variants beat
explicit-state search and unfolding, except with LPG, where Sym has higher total cov-
erage than opt. Symbolic search consistently shows the highest coverage.

A more interesting per-domain comparison reveals that all presented methods are
quite complementary. While for example POR works really well in ParcPrinter and 3-
SAT, symmetries are apparently good in Barman, Childsnack, Organic-Split, and Cave-
diving. SBD is extremely good in Floortile, Openstacks, and Woodworking. Partition-

7.4. STATE-SPACE SIZE 103

Explicit Search Unf. Sym. Decoupled
Domain # #F Base PP POR Sym PSy Cunf SBD opt sat hc
Agricola 40 40 0 0 0 2 0 0 4 0 0 0
Childsnack 30 30 0 0 0 6 6 0 4 0 0 0
DataNetwork 40 40 1 1 0 1 0 0 6 1 1 0
Depots 22 22 4 4 3 5 4 2 3 4 5 5
Driverlog 20 20 5 5 5 6 6 3 8 8 11 10
Elevators 70 40 11 13 6 17 13 2 18 17 23 23
Floortile 70 70 2 2 2 2 2 0 51 2 2 2
Freecell 80 42 3 2 0 3 0 0 2 0 2 2
GED 40 40 10 10 10 15 10 7 15 15 15 15
Grid 5 5 0 0 0 0 0 0 1 0 0 0
Logistics 63 63 12 12 12 13 13 11 18 25 26 19
Miconic 150 145 45 45 40 51 43 30 107 46 145 79
Mprime 35 6 2 1 1 2 1 1 4 1 2 2
NoMystery 40 40 11 11 11 12 12 7 16 28 30 13
Openstacks 135 105 12 12 12 14 13 12 58 13 13 13
Organic-Split 40 35 8 7 6 10 7 1 8 5 8 8
ParcPrinter 30 20 1 1 20 1 20 1 10 3 3 3
Pathways 30 30 4 4 4 4 4 4 5 4 4 4
PSR 50 48 47 47 45 48 48 38 48 48 48 48
Rovers 40 40 5 5 6 5 6 6 13 6 6 6
Satellite 36 36 4 5 5 5 5 6 7 5 5 5
Scanalyzer 30 9 6 6 3 6 3 3 6 3 6 6
Tetris 37 30 4 4 2 5 3 1 2 4 4 4
TPP 30 29 5 4 5 6 6 4 7 4 4 4
Transport 117 39 19 20 18 20 18 10 20 20 22 22
Trucks 30 27 5 5 4 7 4 2 9 4 4 4
Woodworking 70 63 10 12 15 11 17 18 37 11 13 13
Zenotravel 20 20 7 7 7 7 7 4 7 7 13 9
Other 826 69 6 6 6 6 6 6 6 6 6 6∑

2226 1203 249 251 248 290 277 179 500 290 421 325
Unsolvability IPC 2016

BagBarman 20 16 12 12 4 12 7 0 14 8 12 12
Cavediving 25 21 3 3 3 7 7 1 7 4 4 4
DocTransfer 20 20 5 5 5 5 10 4 5 5 5 5
NoMystery 23 23 2 2 2 2 2 1 5 11 12 3
PegSol 24 24 24 24 24 24 24 20 24 24 24 24
Rovers 19 19 6 6 5 6 5 2 12 9 9 9
Tetris 20 20 5 5 5 10 5 5 5 5 5 5
TPP 30 30 17 17 14 17 14 9 20 12 12 12
Other 137 22 2 2 2 2 2 2 2 2 2 2∑

318 195 76 76 64 85 76 44 94 80 85 76
Unsolvable Benchmarks from Hoffmann et al. [2014]

3-SAT 30 1 1 1 1 1 1 0 0 1 1 1
NoMystery 25 25 0 0 0 0 0 0 4 24 24 2
Rovers 25 25 0 0 0 0 0 0 5 0 0 0
TPP 25 25 6 5 0 6 1 0 7 0 0 0
Other 30 1 1 1 1 1 1 1 1 1 1 1∑

135 77 8 7 2 8 3 1 17 26 26 4
Total 2679 1475 333 334 314 383 356 224 611 396 532 405

Figure 7.5: Same setup as in Figure 7.3, on instances where IA does not abstain.

based pruning (PP) does not beat all other planners in any domain.
In general, with these more complex factorings, the picture is somewhat mixed for

decoupled search. There are still domains where it is significantly better than all other
methods, e. g., NoMystery, Logistics, Miconic, but in some domains it even performs

104 CHAPTER 7. EXPERIMENTAL EVALUATION

Base Fork IFork IA MIS LPS LPG 〈Fi〉 Sym SBD Coverage
Base - 0 1 9 2 12 13 2 0 8 623
Fork 9 - 9 10 4 13 15 2 8 13 699
IFork 6 5 - 12 7 14 14 5 2 8 639
IA 17 10 13 - 7 11 13 5 8 12 686
MIS 11 5 12 10 - 11 13 0 8 12 693
LPS 16 11 12 11 8 - 7 5 11 11 684
LPG 13 8 11 11 6 5 - 5 11 11 668
〈Fi〉 16 9 13 13 5 14 15 - 11 13 712
Sym 33 28 28 29 30 34 33 27 - 16 738
SBD 42 36 42 37 37 39 41 35 33 - 966

Figure 7.6: Pairwise comparison of factoring strategies using opt, including a simulated
sequential portfolio of strategies 〈Fi〉, plus Sym and SBD.

worse than the explicit-state search baseline, e. g., Hiking, Pipesworld, or the unsolv-
able variant of TPP. That said, Base also outperforms all of the other methods in several
domains, so all reduction techniques share that if the obtained reduction is not high
enough, there is a certain overhead that outweighs the use of the technique. In decou-
pled search, we believe that being more selective in the factorings for which decoupled
search is actually invoked could prevent many cases where it would be better to run
explicit-state search. There are several domains where, although there are at least two
mobile leaves in each factoring, (some of) these leaves do not contribute enough to the
reduction. We get back to this discussion at the end of this chapter.

Figures 7.6 and 7.8 compare the factoring strategies to each other, where whenever
a strategy abstains, we run Base as backup.7 We compare all strategies to each other, a
simulated portfolio combining several of them (〈Fi〉), Sym, and SBD, the two strongest
competitors. In Figure 7.6 we use opt for decoupled search, in Figure 7.8 we use sat.

For opt, observe that the best single factoring is Fork, the by-far weakest results
are achieved by IFork. This means that, on tasks tackled by decoupled search, it per-
forms significantly better with fork factorings compared to inverted-fork factorings,
even though more instances are tackled with IFork.

7See Chapter 7.2 for details

7.4. STATE-SPACE SIZE 105

Explicit Search Unf. Sym. Decoupled
Domain # #F Base PP POR Sym PSy Cunf SBD opt sat hc
Agricola 40 40 0 0 0 2 0 0 4 0 0 0
Airport 50 18 11 11 13 12 13 13 11 11 11 11
Barman 74 74 4 4 4 11 4 0 11 4 4 4
Childsnack 30 20 0 0 0 6 6 0 4 0 0 0
DataNetwork 40 40 1 1 0 1 0 0 6 1 1 0
Depots 22 20 4 4 3 5 4 2 3 4 5 5
Driverlog 20 20 5 5 5 6 6 3 8 9 11 10
Elevators 70 70 11 13 6 17 13 2 18 11 20 20
Floortile 70 70 2 2 2 2 2 0 51 0 2 0
Freecell 80 80 19 15 8 19 8 7 14 13 14 14
GED 40 40 10 10 10 15 10 7 15 10 15 15
Grid 5 5 0 0 0 0 0 0 1 0 0 0
Hiking 30 25 6 5 1 11 4 0 9 4 5 5
Logistics 63 63 12 12 12 13 13 11 18 25 27 18
Miconic 150 145 45 45 40 51 43 30 107 46 145 81
Mprime 35 35 2 1 1 4 1 1 5 1 2 2
NoMystery 40 40 11 11 11 12 12 7 16 28 30 13
Openstacks 135 125 12 12 12 14 13 12 71 17 17 17
Organic 40 5 5 4 4 5 4 4 5 5 5 5
ParcPrinter 30 27 3 2 27 3 27 2 16 4 4 4
Pathways 30 30 4 4 4 4 4 4 5 4 4 4
Pipesworld 100 46 13 13 12 27 17 4 12 10 12 12
PSR 50 50 49 49 47 50 50 40 50 48 49 49
Rovers 40 40 5 5 6 5 6 6 13 7 7 7
Satellite 36 36 4 5 5 5 5 6 7 5 7 7
Scanalyzer 30 9 6 6 3 6 3 3 6 3 4 4
Spider 40 6 6 6 6 6 6 2 6 6 6 6
Storage 30 11 0 0 0 3 2 0 0 0 0 0
TPP 30 29 5 4 5 6 6 4 7 5 5 5
Transport 117 117 19 23 18 23 18 10 24 13 19 23
Trucks 30 30 6 6 5 8 5 3 10 5 5 5
Woodworking 70 70 11 13 18 12 20 21 42 15 17 16
Zenotravel 20 20 7 7 7 7 7 4 7 7 10 10
Other 539 32 7 7 7 7 7 7 7 7 7 7∑

2226 1488 305 305 302 378 339 215 589 328 470 379
Unsolvability IPC 2016

BagBarman 20 8 8 8 4 8 7 0 8 8 8 8
BagTransport 29 19 7 7 5 7 5 3 8 8 11 11
Cavediving 25 19 7 7 7 11 11 5 11 7 7 7
Chessboard 23 23 5 5 6 5 6 5 11 5 5 5
DocTransfer 20 20 5 5 5 5 10 4 5 5 5 5
NoMystery 23 23 2 2 2 2 2 1 5 11 12 3
PegSolR5 15 14 4 4 4 4 4 3 4 3 3 3
PegSol 24 24 24 24 24 24 24 20 24 20 20 20
Rovers 19 19 6 6 5 6 5 2 12 6 6 6
TPP 30 30 17 17 14 17 14 9 20 14 15 15
Other 90 20 10 10 10 10 10 10 10 10 10 10∑

318 219 95 95 86 99 98 62 118 97 102 93
Unsolvable Benchmarks from Hoffmann et al. [2014]

3-SAT 30 30 15 15 20 15 20 8 10 15 15 15
Mystery 30 25 3 3 4 3 5 2 3 3 3 3
NoMystery 25 25 0 0 0 0 0 0 4 24 24 2
Rovers 25 25 0 0 0 0 0 0 5 1 1 1
TPP 25 25 6 5 0 6 1 0 7 1 1 1∑

135 130 24 23 24 24 26 10 29 44 44 22
Total 2679 1837 424 423 412 501 463 287 736 469 616 494

Figure 7.7: Same setup as in Figure 7.3, on instances where LPG does not abstain.

106 CHAPTER 7. EXPERIMENTAL EVALUATION

Base Fork IFork IA MIS LPS LPG 〈Fi〉 Sym SBD Coverage
Base - 0 1 5 1 9 9 1 0 8 623
Fork 10 - 9 6 4 10 11 2 10 16 811
IFork 9 8 - 9 6 11 12 2 8 12 663
IA 19 12 14 - 5 9 13 2 12 16 822
MIS 16 10 14 8 - 9 12 0 11 15 818
LPS 19 13 14 10 7 - 6 4 16 16 826
LPG 17 11 13 10 7 4 - 5 15 15 815
〈Fi〉 20 13 15 11 5 12 16 - 16 19 856
Sym 33 27 27 26 26 27 28 22 - 16 738
SBD 42 35 39 33 34 33 35 30 33 - 966

Figure 7.8: Same setup as in Figure 7.6, but with sat.

For 〈Fi〉, the best portfolio for both opt and sat uses the following strategies: 〈MIS,
Fork, IFork〉, where, as explained above, first MIS is executed, and decoupled search is
invoked if it does not abstain, then the same is done with Fork, and finally with IFork.
If none of the strategies returns a factoring, the portfolio runs Base with the remaining
time.8

In Figure 7.9 and 7.10 we show scatter plots comparing the search space size (num-
ber of expanded states), memory consumption, and runtime of decoupled search to the
other methods. We do not include PP in the comparison, since it is by far the weakest
form of pruning, as we have seen in the coverage results.

For the methods that preserve optimality, i. e., Base, POR, and Sym, we compare to
opt, for Cunf we compare to sat, and for SBD we compare to both opt and sat. We also
compared the optimality-preserving methods to sat, where similar to the comparison
to SBD in Figure 7.10, the advantage of decoupled search is more pronounced when
moving to sat.

Figure 7.9 proves that decoupled search consistently expands significantly fewer
states than all other methods, up to many orders of magnitude. The decoupled state
representation comes at a cost though, which is visible in the memory and runtime
plots. Here, we see the complementarity of the methods again. There is a certain trend
that decoupled search performs quite well in terms of memory usage, though. For all
explicit-state methods, all techniques have strengths in a subset of the instances, al-
though decoupled search seems to compare well against the stubborn-sets pruning of
POR, overall. Cunf is not competitive in most instances.

The comparison to SBD in Figure 7.10 shows some weird behaviour of the symbolic-
search planner. We conjecture that this is due to the underlying BDD library allocating
a lot of memory initially, respectively the precomputation of the symbolic transition re-

8We remark that one could easily improve the results by running Sym or SBD as base planner if all
strategies abstain.

7.4. STATE-SPACE SIZE 107

100 101 102 103 104 105 106 107 108
100
101
102
103
104
105
106
107
108

Base (lower for 0 tasks)

op
t

(l
ow

er
fo

r2
88

ta
sk

s)
Exhaustive – Expansions

104 105 106 107
104

105

106

107

Base (lower for 85 tasks)

op
t

(l
ow

er
fo

r1
31

ta
sk

s)

Exhaustive – Memory

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

Base (lower for 148 tasks)

op
t

(l
ow

er
fo

r1
32

ta
sk

s)

Exhaustive – Runtime

100 101 102 103 104 105 106 107 108
100
101
102
103
104
105
106
107
108

POR (lower for 31 tasks)

op
t

(l
ow

er
fo

r2
45

ta
sk

s)

Exhaustive – Expansions

104 105 106 107
104

105

106

107

POR (lower for 85 tasks)

op
t

(l
ow

er
fo

r1
22

ta
sk

s)

Exhaustive – Memory

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

POR (lower for 62 tasks)

op
t

(l
ow

er
fo

r2
06

ta
sk

s)

Exhaustive – Runtime

100 101 102 103 104 105 106 107 108
100
101
102
103
104
105
106
107
108

Sym (lower for 37 tasks)

op
t

(l
ow

er
fo

r2
80

ta
sk

s)

Exhaustive – Expansions

104 105 106 107
104

105

106

107

Sym (lower for 122 tasks)

op
t

(l
ow

er
fo

r1
13

ta
sk

s)

Exhaustive – Memory

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

Sym (lower for 162 tasks)

op
t

(l
ow

er
fo

r1
47

ta
sk

s)

Exhaustive – Runtime

100 101 102 103 104 105 106 107 108
100
101
102
103
104
105
106
107
108

Cunf (lower for 35 tasks)

sa
t

(l
ow

er
fo

r1
82

ta
sk

s)

Exhaustive – Expansions

104 105 106 107
104

105

106

107

Cunf (lower for 69 tasks)

sa
t

(l
ow

er
fo

r1
17

ta
sk

s)

Exhaustive – Memory

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

Cunf (lower for 41 tasks)

sa
t

(l
ow

er
fo

r1
63

ta
sk

s)

Exhaustive – Runtime

Figure 7.9: Scatter plots comparing the number of expanded states (top), memory
(middle), and runtime (bottom) of opt to (from left to right) explicit-state search without
pruning, with stubborn-sets pruning, and symmetry breaking. In the rightmost column,
we compare sat to unfolding with Cunf. In all plots we use factorings obtained by IA.

lation. Besides this, we see that both methods can gain huge advantages over the other
in many instances, where decoupled search can increase its margin when using sat.

The comparison of sat to hc (Figure 7.10, right) reveals that across all instances,
hypercube pruning very rarely leads to smaller reachable decoupled state spaces. This
does not come as a surprise, since we have seen in the top left of Figure 7.9 that even
opt always expands fewer decoupled states than Base expands standard states. Looking
at the runtime, the picture is mixed. On many instances, there is little to no overhead
visible. On the other hand, the steep increase of runtimes shows that there are also many
instances where hypercube pruning has to spend a lot of time to check if new decoupled
states are covered by previously seen states.

108 CHAPTER 7. EXPERIMENTAL EVALUATION

104 105 106 107
104

105

106

107

SBD (lower for 29 tasks)

op
t

(l
ow

er
fo

r3
18

ta
sk

s)

Exhaustive – Memory

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

SBD (lower for 110 tasks)

op
t

(l
ow

er
fo

r2
37

ta
sk

s)

Exhaustive – Runtime

104 105 106 107
104

105

106

107

SBD (lower for 23 tasks)

sa
t

(l
ow

er
fo

r4
01

ta
sk

s)

Exhaustive – Memory

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

SBD (lower for 76 tasks)

sa
t

(l
ow

er
fo

r3
48

ta
sk

s)

Exhaustive – Runtime

100 101 102 103 104 105 106 107 108
100
101
102
103
104
105
106
107
108

sat (lower for 1 tasks)

h
c

(l
ow

er
fo

r9
3

ta
sk

s)

Exhaustive – Expansions

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

sat (lower for 354 tasks)

h
c

(l
ow

er
fo

r1
24

ta
sk

s)

Exhaustive – Runtime

Figure 7.10: Scatter plots comparing the memory usage (top), and runtime (bottom) of
opt (left) and sat (middle) to SBD. In the rightmost column, we compare sat to hc. In
all plots we use factorings obtained by IA.

7.5 Satisficing Planning

In this section, we investigate the performance of decoupled search (DS) in satisfic-
ing planning. We compare decoupled search using GBFS with the hFF heuristic to
directed unfolding using Mole, explicit-state search without pruning (Base, abbreviated
B), with PP, and with Sym. We split the evaluation into two, with and without the use
of preferred-operator (PO) pruning (which is not supported for Mole). With PO, we also
include the state-of-the-art planners LAMA (abbreviated LA) and BFWS (abbreviated
BF). For Mole, we use the Petri-net encoding that can lead to a blow-up, which never-
theless showed better performance. We run the comparison on all satisficing-track IPC
benchmarks.

Figures 7.11 and 7.12 show extremely good results for decoupled search. With the
Fork and IFork factoring strategies, decoupled search beats all baseline competitors by
a large margin and even shows higher coverage than the state-of-the-art planners LAMA
and BFWS. For Fork without preferred operators, there are only four domains where
another method has higher coverage; with PO, it is only in Pathways. In some domains,
decoupled search has state-of-the-art performance even without PO. With the pruning,
DS solves almost all instances tackled—427/437.

Using IFork, decoupled search without PO is only outperformed in Childsnack (by
Sym), Organic-Split (by Mole), and Woodworking (by PP). With PO, there is only a
single domain, where Sym and BFWS have an advantage of one instance.

With the more general factoring strategies IA and LPG shown in Figures 7.13

7.5. SATISFICING PLANNING 109

GBFS with hFF + PO Pruning
Unf. Explicit Dec. Explicit Dec.

Domain # #F Mole B PP Sym DS B PP Sym DS LAMA BFWS

Driverlog 20 20 15 18 18 19 19 20 20 20 20 20 20
Logistics 63 63 44 51 53 57 63 61 61 60 63 63 62
Miconic 150 145 134 145 145 145 145 145 145 145 145 145 145
NoMystery 20 20 13 8 9 9 19 9 9 9 19 11 17
Pathways 30 29 4 10 10 10 12 20 28 20 20 22 29
Rovers 40 40 16 22 23 23 22 40 40 40 40 40 40
Satellite 36 36 12 25 24 32 26 36 27 36 36 36 31
TPP 30 27 4 22 21 24 23 27 27 27 27 27 27
Woodworking 40 34 6 28 33 28 30 34 34 34 34 34 18
Zenotravel 20 20 16 20 20 20 20 20 20 20 20 20 20
Other 1237 3 3 3 3 3 3 3 3 3 3 3 3
Total 1686 437 267 352 359 370 382 415 414 414 427 421 412

Figure 7.11: Coverage data, i. e., the number of solved tasks on instances where Fork
does not abstain. #F denotes the number of such instances per domain. Domains with
the same coverage for all planners are summarized in “Other”. We highlight the best
coverage (separately for search with vs. without PO) in bold face.

GBFS with hFF + PO Pruning
Unf. Explicit Dec. Explicit Dec.

Domain # #F Mole B PP Sym DS B PP Sym DS LAMA BFWS

Childsnack 20 20 0 0 0 7 2 6 3 17 20 6 8
Depots 22 22 12 15 14 18 19 19 18 22 21 20 22
Elevators 40 40 12 39 37 39 40 39 38 39 40 40 40
Floortile 40 40 4 8 8 8 9 8 9 9 9 8 5
Logistics 63 63 44 51 53 57 63 61 61 60 63 63 62
Mystery 30 4 1 0 0 0 1 1 1 1 1 1 1
Organic-Split 20 2 1 0 0 0 0 0 0 0 0 1 1
Rovers 40 38 14 20 21 21 38 38 38 38 38 38 38
Satellite 36 34 10 23 22 30 34 34 25 34 34 34 29
TPP 30 26 2 19 18 21 26 26 26 26 26 26 25
Transport 58 58 10 17 16 20 58 41 35 40 58 52 58
Woodworking 40 38 7 32 37 32 35 38 38 38 38 38 22
Zenotravel 20 18 14 18 18 18 18 18 18 18 18 18 18
Other 1227 0 0 0 0 0 0 0 0 0 0 0 0
Total 1686 403 131 242 244 271 343 329 310 342 366 345 329

Figure 7.12: Same setup as in Figure 7.11, on instances where IFork does not abstain.

110 CHAPTER 7. EXPERIMENTAL EVALUATION

GBFS with hFF + PO Pruning
Unf. Explicit Dec. Explicit Dec.

Domain # #F Mole B PP Sym DS dup B PP Sym DS dup LA BF

Agricola 20 20 0 10 0 8 10 10 12 1 10 12 12 12 10
Barman 40 2 0 0 0 1 0 0 0 0 2 0 0 2 2
Childsnack 20 20 0 0 0 7 2 2 6 3 17 20 20 6 8
DataNetwork 20 20 3 7 4 7 6 6 10 10 10 7 5 13 9
Depots 22 22 12 15 14 18 19 19 19 18 22 21 21 20 22
Driverlog 20 20 15 18 18 19 19 19 20 20 20 20 20 20 20
Elevators 40 10 9 10 10 10 10 10 10 10 10 10 10 10 10
Floortile 40 40 4 8 8 8 5 3 8 9 9 6 3 8 5
Freecell 80 42 30 42 41 42 41 41 42 41 42 42 42 42 42
GED 20 20 0 20 20 20 20 20 20 20 20 20 20 20 20
Grid 5 5 3 4 4 4 3 3 4 5 4 5 5 5 5
Logistics 63 63 44 51 53 57 63 63 61 61 60 63 63 63 62
Maintenance 20 9 1 1 1 1 1 1 2 1 2 2 2 3 8
Miconic 150 145 134 145 145 145 145 145 145 145 145 145 145 145 145
NoMystery 20 20 13 8 9 9 19 19 9 9 9 19 19 11 17
Openstacks 90 60 9 60 34 60 60 60 60 34 60 60 60 60 60
Organic-Split 20 19 7 12 6 12 11 10 11 6 12 11 11 12 12
ParcPrinter 30 20 6 20 19 20 20 20 20 20 20 20 20 20 19
Pathways 30 30 5 11 11 11 14 14 21 29 21 21 21 23 30
PSR 50 48 46 48 48 48 48 48 48 48 48 48 48 48 48
Rovers 40 40 16 22 23 23 21 20 40 40 40 40 40 40 40
Satellite 36 36 12 25 24 32 26 26 36 27 36 33 33 36 31
Scanalyzer 30 9 7 9 6 9 9 9 9 6 9 9 9 9 9
Tetris 20 17 1 4 1 5 4 4 9 9 10 11 10 14 13
Thoughtful 20 13 6 5 5 5 5 5 7 12 7 6 6 11 12
Tidybot 20 20 3 16 12 16 15 15 16 13 16 15 15 17 18
TPP 30 29 4 22 21 24 26 26 29 29 29 25 24 29 28
Transport 58 9 8 9 9 9 9 9 9 9 9 9 9 9 9
Trucks 30 27 9 13 16 15 13 13 16 18 17 15 15 16 14
Woodworking 40 37 8 31 36 31 33 33 37 37 37 37 37 37 21
Zenotravel 20 20 16 20 20 20 20 20 20 20 20 20 20 20 20
Other 542 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Total 1686 899 438 673 625 703 704 700 763 717 780 779 772 788 776

Figure 7.13: Same setup as in Figure 7.11, on instances where IA does not abstain.

and 7.14, on top of DS we also include dup in the comparison, which does exact du-
plicate checking instead of dominance pruning. Duplicate checking shows the same
coverage across most domains, but only improves in a single domain, namely Wood-
working with LPG. On the other hand, coverage is significantly reduced in Floortile,

7.5. SATISFICING PLANNING 111

GBFS with hFF + PO Pruning
Unf. Explicit Dec. Explicit Dec.

Domain # #F Mole B PP Sym DS dup B PP Sym DS dup LA BF

Agricola 20 20 0 10 0 8 10 10 12 1 10 12 12 12 10
Airport 50 18 18 17 17 18 18 17 18 18 18 18 18 18 18
Barman 40 40 0 17 30 38 3 2 24 33 40 19 16 40 40
Childsnack 20 10 0 0 0 7 0 0 6 3 10 0 0 5 7
DataNetwork 20 20 3 7 4 7 1 1 10 10 10 7 5 13 9
Depots 22 20 11 14 13 17 18 18 17 17 20 19 19 19 20
Driverlog 20 20 15 18 18 19 19 19 20 20 20 19 19 20 20
Elevators 40 40 12 39 37 39 40 40 39 38 39 40 40 40 40
Floortile 40 40 4 8 8 8 31 22 8 9 9 35 26 8 5
Freecell 80 80 66 80 79 80 80 80 80 79 80 78 78 79 80
GED 20 20 0 20 20 20 20 20 20 20 20 20 20 20 20
Grid 5 5 3 4 4 4 3 2 4 5 4 4 3 5 5
Hiking 20 18 0 17 14 18 18 18 18 17 18 18 18 18 8
Logistics 63 63 44 51 53 57 63 63 61 61 60 63 63 63 62
Maintenance 20 20 1 6 4 6 13 13 9 10 9 13 13 11 17
Miconic 150 145 134 145 145 145 145 145 145 145 145 145 145 145 145
Mprime 35 35 25 31 30 34 28 28 35 34 35 35 35 35 35
Mystery 30 25 17 16 16 16 15 15 14 14 15 15 15 17 17
NoMystery 20 20 13 8 9 9 19 18 9 9 9 19 19 11 17
Openstacks 90 80 9 80 54 80 40 40 80 54 80 7 7 80 80
Organic 20 1 0 1 0 1 1 1 1 0 1 1 1 1 1
ParcPrinter 30 27 9 27 23 27 27 27 27 27 27 27 27 27 26
Pathways 30 30 5 11 11 11 16 16 21 29 21 18 18 23 30
Pipesworld 100 46 35 36 35 44 37 36 44 44 45 45 45 46 46
PSR 50 50 48 50 50 50 50 50 50 50 50 50 50 50 50
Rovers 40 40 16 22 23 23 22 22 40 40 40 40 40 40 40
Satellite 36 36 12 25 24 32 36 36 36 27 36 36 36 36 31
Scanalyzer 30 9 7 9 6 9 8 8 9 6 9 9 9 9 9
Storage 30 11 2 6 5 8 7 7 7 7 8 8 8 6 11
TPP 30 29 4 22 21 24 21 20 29 29 29 29 28 29 28
Transport 58 58 10 17 16 20 58 58 41 35 40 58 58 52 58
Trucks 30 30 10 14 17 16 14 14 17 20 18 16 15 17 15
Woodworking 40 40 8 34 39 34 38 40 40 40 40 38 40 40 24
Zenotravel 20 20 16 20 20 20 20 20 20 20 20 20 20 20 20
Other 337 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Total 1686 1171 562 887 850 954 944 931 1016 976 1040 986 971 1060 1049

Figure 7.14: Same setup as in Figure 7.11, on instances where LPG does not abstain.

112 CHAPTER 7. EXPERIMENTAL EVALUATION

Base Fork IFork IA MIS LPS LPG 〈Fi〉 Sym Coverage
Base - 0 0 7 3 7 8 0 1 1187
Fork 7 - 3 7 6 8 8 0 5 1217
IFork 11 10 - 13 13 11 10 0 11 1288
IA 9 4 3 - 7 7 8 1 7 1218
MIS 5 1 2 5 - 6 7 0 4 1211
LPS 12 9 6 11 11 - 7 4 10 1247
LPG 15 12 10 15 13 6 - 8 11 1244
〈Fi〉 14 10 3 13 14 11 10 - 13 1302
Sym 20 17 14 21 20 17 16 12 - 1285

Figure 7.15: Pairwise comparison of factoring strategies without PO pruning. We
include a simulated sequential portfolio of strategies 〈Fi〉, and Sym.

and somewhat in DataNetwork with PO. We conclude that in satisficing planning the
advantage of the more efficient duplicate check via hashing does not lead to a big reduc-
tion in overall search time, which is confirmed by the plots on the right of Figure 7.18.

Similar to the previous section, we see that the advantage of decoupled search to the
other techniques is less pronounced with more general factorings, since we now include
instances in the benchmark set where the cross-factor dependencies are more complex.
The results are particularly bad in Barman (-35 without PO), and Openstacks (-73 with
PO) when using LPG. These domains aside, we see the known picture where every
method has its advantages in some domains, and decoupled search is competitive with
all other planners.

Base Fork IFork IA MIS LPS LPG 〈Fi〉 Sym LAMA BFWS Coverage
Base - 0 0 7 2 10 9 0 3 4 12 1364
Fork 2 - 1 7 2 10 9 0 4 5 14 1376
IFork 6 5 - 9 7 11 9 0 5 8 14 1401
IA 6 4 3 - 4 9 9 2 7 7 13 1380
MIS 5 3 4 8 - 11 11 3 7 5 13 1376
LPS 6 4 2 9 5 - 5 1 6 7 12 1356
LPG 10 8 6 11 9 8 - 5 7 8 12 1334
〈Fi〉 7 5 1 9 7 11 9 - 6 9 15 1411
Sym 13 13 11 16 15 19 16 11 - 8 12 1406
LAMA 20 18 16 20 17 21 20 15 17 - 15 1463
BFWS 23 21 19 21 20 22 23 18 18 13 - 1477

Figure 7.16: Same setup as in Figure 7.15, but with PO, and with LAMA and BFWS.

In Figure 7.15 and 7.16 we compare the factorings strategies again, without the use
of preferred operators, respectively with PO. In both cases, IFork clearly outperforms

7.5. SATISFICING PLANNING 113

100 101 102 103 104 105 106 107 108
100
101
102
103
104
105
106
107
108

Base (lower for 53 tasks)

D
S

(l
ow

er
fo

r6
04

ta
sk

s)
GBFS + hFF – Evaluations

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

Base (lower for 218 tasks)

D
S

(l
ow

er
fo

r3
69

ta
sk

s)

GBFS + hFF – Runtime

100 101 102 103 104 105 106 107 108
100
101
102
103
104
105
106
107
108

PP (lower for 70 tasks)

D
S

(l
ow

er
fo

r5
35

ta
sk

s)

GBFS + hFF – Evaluations

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

PP (lower for 16 tasks)

D
S

(l
ow

er
fo

r5
88

ta
sk

s)

GBFS + hFF – Runtime

100 101 102 103 104 105 106 107 108
100
101
102
103
104
105
106
107
108

Sym (lower for 92 tasks)

D
S

(l
ow

er
fo

r5
78

ta
sk

s)

GBFS + hFF – Evaluations

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

Sym (lower for 212 tasks)

D
S

(l
ow

er
fo

r3
96

ta
sk

s)

GBFS + hFF – Runtime

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

Mole (lower for 36 tasks)

D
S

(l
ow

er
fo

r3
72

ta
sk

s)

GBFS + hFF – Runtime

Figure 7.17: Scatter plots comparing the number of evaluated states (top), and run-
time (bottom) of DS to (from left to right) explicit-state search without pruning, with
partition-based pruning, and symmetry breaking. In the rightmost column, we compare
the runtime of DS to unfolding with Mole. In all plots we use factorings obtained by IA
and no preferred-operator pruning.

all other factoring strategies. The factoring portfolio (〈Fi〉) accordingly first uses IFork,
then Fork, and falls back to Base if none of the two produce a factoring. This indicates
that in satisficing planning, simple factorings are by far better than structurally more
complex strict-star or general-star factorings.

We conclude this section by looking at the search space size (number of state eval-
uations) and runtime, see Figure 7.17 and 7.18. In most of the instances, DS evaluates
fewer states than Base, PP, and Sym. Regarding runtime, decoupled search also clearly
outperforms Base, PP, and Mole. Compared to Sym, we see many instances where
decoupled search is slower. As mentioned before, this kind of complementarity is ex-
pected given the different sources of state-space reduction.

The comparison to LAMA shows that decoupled search evaluates fewer states, when
search spaces are small for both methods, but that there are also instances where LAMA
requires significantly fewer evaluations. This is due to the landmark heuristic it uses,
which could probably improve the search guidance for decoupled search, too. Regard-
ing runtime, although it seems that there are many instances where DS has a small
advantage, on instances where the runtimes differ significantly, more often LAMA is in
front. For BFWS, we clearly see that the planner is based on a different, faster, transla-
tion from PDDL causing lower minimal runtimes. Since its approach is quite different
from GBFS, we also see that it is very fast in solving many instances, resulting in a
clear advantage over decoupled search. Nevertheless, there are also instances where

114 CHAPTER 7. EXPERIMENTAL EVALUATION

100 101 102 103 104 105 106 107 108
100
101
102
103
104
105
106
107
108

LAMA (lower for 121 tasks)

D
S

(l
ow

er
fo

r6
29

ta
sk

s)

GBFS + hFF + PO – Evaluations

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

LAMA (lower for 223 tasks)

D
S

(l
ow

er
fo

r4
91

ta
sk

s)

GBFS + hFF + PO – Runtime

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

BFWS (lower for 646 tasks)

D
S

(l
ow

er
fo

r8
5

ta
sk

s)

GBFS + hFF + PO – Runtime

100 101 102 103 104 105 106 107 108
100
101
102
103
104
105
106
107
108

DS (lower for 152 tasks)

d
u
p

(l
ow

er
fo

r2
ta

sk
s)

GBFS + hFF – Evaluations

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

DS (lower for 326 tasks)

d
u
p

(l
ow

er
fo

r3
14

ta
sk

s)

GBFS + hFF – Runtime

Figure 7.18: Scatter plots comparing the number of evaluated states (top), and runtime
(bottom) of DS with PO to LAMA (left), and BFWS (middle; only runtime). In the
rightmost column, we compare DS to dup. In all plots we use factorings from IA.

decoupled search is faster by up to two orders of magnitude.
Finally, in the right of Figure 7.18 we compare decoupled search with dominance

pruning to exact duplicate checking. As already indicated by the coverage results, the
more efficient checking rarely pays off in terms of overall runtime. On the positive side,
there are also only few instances where the search space grows, i. e., where the weaker
pruning has an effect.

7.6. OPTIMAL PLANNING 115

Blind Search hmax A∗ with hLM-cut

Unf. Explicit Search Dec. Unf. Explicit Search Dec.
Domain # #F Mole B PP POR Sym PSy aT DS Mole B PP POR Sym PSy aT DS SBD C2
Driverlog 20 20 4 7 7 7 7 7 11 11 7 13 14 13 13 13 13 13 12 15
Logistics 63 63 11 12 14 12 14 14 26 26 13 26 26 27 26 28 33 34 24 28
Miconic 150 145 25 45 45 40 51 43 46 46 20 136 136 136 137 136 135 135 107 98
NoMystery 20 20 4 8 8 8 8 8 20 20 7 14 14 14 15 14 20 20 14 20
Pathways 30 29 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4
Rovers 40 40 2 5 6 7 5 7 6 6 5 7 10 9 7 9 9 9 14 13
Satellite 36 36 7 5 7 6 6 6 6 6 5 7 12 11 13 14 8 7 8 9
TPP 30 27 3 5 5 5 6 6 23 23 3 5 6 5 7 6 23 18 7 14
Woodworking 30 13 7 4 4 6 4 7 5 5 6 6 6 11 7 11 11 10 9 9
Zenotravel 20 20 7 8 8 7 8 7 12 12 7 13 13 13 13 13 12 13 10 13
Other 1191 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Total 1630 417 76 106 111 105 116 112 162 162 80 235 245 247 246 252 272 267 213 227

Figure 7.19: Coverage data, i. e., the number of solved tasks on instances where Fork
does not abstain. #F denotes the number of such instances per domain. Domains with
the same coverage for all planners are summarized in “Other”. We highlight the best
coverage (separately for blind search and A∗ with hLM-cut) in bold face.

7.6 Optimal Planning
For optimal planning, an effective pruning of the search space is most crucial, since
the typical approach of using A∗ with an admissible heuristic often has to explore a
large number of states before finding the optimal solution. In this section, we compare
decoupled search to the baseline techniques with blind search and A∗ search with the
hLM-cut heuristic. When using hLM-cut, we also compare to the state-of-the-art planners
SBD and C2. For Mole, only blind search and hmax are supported. For blind search,
Mole performed best with the exponential net encoding, with hmax we use the alternative
encoding based on TNF. We include all domains and instances from the optimal tracks
of the IPCs.

For decoupled search, we show results for the standard configuration DS, and for
some evaluations we show the Anytime D-A∗algorithm aT, exact duplicate checking
dup, and a simplified dominance pruning without g-value adaptation sd.

We start again by discussing the results obtained with Fork and IFork. With fork
factorings, decoupled search clearly outperforms all other planners. There are only
few domains, e. g., Miconic for blind search, where other planners perform better. The
specialized anytime algorithm performs just like DS for blind search, where there is
little difference between the two approaches. With hLM-cut, aT has an advantage in
TPP, and loses an instance in each of Logistics, and Zenotravel. The results in TPP are
remarkable. Here, decoupled search beats SBD and C2 even without heuristic.

With inverted-fork factorings, the performance decoupled search degrades dramati-
cally. We only show results with hLM-cut; with blind search, the results are even worse.
DS still beats explicit-state search without pruning, but overall performs worse than
most other methods—it is equal to PP overall, and better than Mole. Similar to the

116 CHAPTER 7. EXPERIMENTAL EVALUATION

Unf. Explicit Search Decoupled
Domain # #F Mole Base PP POR Sym PSy aT DS SBD C2

Childsnack 20 20 0 0 0 0 6 6 0 0 4 0
Depots 22 22 2 7 7 7 8 8 7 7 5 7
Elevators 30 30 9 22 23 22 22 22 16 23 25 25
Floortile 40 40 2 13 13 13 16 16 11 12 34 28
Logistics 63 63 13 26 26 27 26 28 22 27 24 28
Mystery 30 4 0 0 0 0 0 1 0 0 0 1
Organic-Split 20 3 1 1 1 1 2 2 0 0 0 1
Rovers 40 38 3 5 8 7 5 7 5 6 12 11
Satellite 36 34 3 5 10 9 11 12 5 10 6 7
TPP 30 26 1 2 3 2 4 3 2 2 4 11
Transport 59 59 14 17 17 17 18 18 16 17 24 23
Woodworking 30 24 9 12 13 22 14 22 13 17 17 15
Zenotravel 20 18 5 11 11 11 11 11 8 11 8 11
Other 1190 1 1 1 1 1 1 1 1 1 1 1
Total 1630 382 63 122 133 139 144 157 106 133 164 169

Figure 7.20: Same setup as in Figure 7.19, on instances where IFork does not abstain.
We use A∗ with hLM-cut for explicit-state and decoupled search; Mole uses hmax.

results in Chapter 7.4, it seems like inverted-fork factorings are not a good choice when
large search spaces need to be explored exhaustively.

The anytime algorithm performs significantly worse on inverted-fork factorings. We
conjecture that this is because it is crucial to take the leaf-prices into account, here, since
these provide necessary preconditions for center actions.

The tables in Figure 7.21 and 7.22 show results for IA and LPG. With blind search
and IA, decoupled search consistently beats all competitors except Sym. The results are
particularly good in Driverlog, Logistics, NoMystery, and Tidybot. Sym performs well
in Openstacks, where we have seen before that decoupled search does not give good
performance. With hLM-cut, the differences between planners become smaller. Here,
PSy is clearly better than decoupled search overall, being competitive with C2, even.

Exact duplicate checking performs well with blind search in Miconic, and improves
moderately over DS in three other domains. With hLM-cut, it performs similar to DS.
The anytime search variant again shows bad results for the same reason as discussed
above. We also see the effect of the augmented-cost dominance pruning and the g-value
adaptation when comparing sd with DS. While in most domains there is little difference,
coverage drops by 12 instances in Elevators.

When using LPG, the performance of decoupled search drops in comparison to IA.
With blind search, total coverage is similar to Base and PP. Interestingly, stubborn-sets
pruning is also ineffective on this set of instances. With hLM-cut, DS overall beats Base

7.6. OPTIMAL PLANNING 117

Blind Search hmax A∗ with hLM-cut

Unf. Explicit Search Dec. Unf. Explicit Search Decoupled
Domain # #F Mo B PP POR Sym PSy DS dup Mo B PP POR Sym PSy aT DS dup sd SBD C2
Agricola 20 20 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0
Childsnack 20 20 0 0 0 0 6 6 0 0 0 0 0 0 6 6 0 0 0 0 4 0
DataNet 20 20 5 7 6 5 7 5 9 5 9 12 12 12 12 12 14 14 12 14 13 13
Depots 22 22 2 4 4 4 6 5 4 4 2 7 7 7 8 8 7 7 7 7 5 7
Driverlog 20 20 4 7 7 7 7 7 11 11 7 13 14 13 13 13 12 13 13 13 12 15
Elevators 30 30 9 13 16 12 15 13 16 10 9 22 23 22 22 22 16 23 22 11 25 25
Floortile 40 40 0 2 2 2 2 2 2 0 2 13 13 13 16 16 9 9 6 9 34 28
Freecell 80 42 0 3 2 0 3 0 0 2 0 2 2 1 2 1 2 2 2 1 2 3
GED 20 20 10 15 15 15 15 15 15 15 10 15 15 15 15 15 15 15 15 15 19 20
Grid 5 5 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3
Logistics 63 63 11 12 14 12 14 14 25 24 13 26 26 27 26 28 33 36 35 34 24 28
Miconic 150 145 25 45 45 40 51 43 46 62 20 136 136 136 137 136 135 135 136 135 107 98
Mprime 35 6 3 6 6 6 6 6 4 4 6 6 6 6 6 6 4 4 4 4 6 6
NoMystery 20 20 4 8 8 8 8 8 20 17 7 14 14 14 15 14 20 20 19 20 14 20
Openstacks 80 50 8 25 23 22 30 26 20 22 8 24 23 22 29 26 20 20 22 20 50 40
Org-Split 20 16 2 6 5 4 7 5 3 3 6 11 8 9 15 11 8 9 9 9 5 5
ParcPrinter 20 13 1 1 1 13 1 13 3 3 3 4 5 13 4 13 7 7 7 7 2 4
Pathways 30 30 3 4 4 4 4 4 4 4 4 5 5 5 5 5 4 5 5 5 5 5
PSR 50 48 42 47 47 47 48 48 48 47 41 47 47 47 48 48 48 48 47 48 48 48
Rovers 40 40 2 5 6 7 5 7 7 7 5 7 10 9 7 9 8 8 8 8 14 13
Satellite 36 36 7 5 7 6 6 6 5 5 5 7 12 11 13 14 7 9 8 7 8 9
Scanalyzer 30 9 3 6 6 3 6 3 3 3 3 5 5 3 5 3 3 5 5 5 6 6
Tetris 17 13 2 4 5 4 7 5 5 4 2 5 5 4 7 5 5 4 4 4 2 10
Tidybot 30 30 3 14 10 5 14 5 16 16 3 18 18 17 19 17 18 17 18 18 7 18
TPP 30 29 3 5 5 5 6 6 5 5 3 5 6 5 7 6 5 5 5 5 7 14
Transport 59 30 12 15 15 13 15 13 15 13 13 14 14 14 14 14 14 14 14 12 16 16
Trucks 30 27 1 5 5 4 7 4 4 6 2 9 9 9 11 9 10 10 10 10 10 12
Woodwork 30 26 10 6 7 10 7 13 7 7 10 14 15 23 16 23 14 17 17 16 19 17
Zenotravel 20 20 7 8 8 7 8 7 9 8 7 13 13 13 13 13 11 13 13 12 10 13
Other 563 6
Total 1630 896 186 285 286 272 325 296 313 314 207 462 471 478 499 501 457 477 471 457 487 502

Figure 7.21: Same setup as in Figure 7.19, on instances where IA does not abstain.

and PP, and performs similar to POR. Like in all evaluations, so far, all methods have
their individual strong and weak domains.

The factoring comparisons in Figure 7.23 and 7.24 confirm that Fork generates the
most-suited factorings for optimal planning. For both blind search and A∗ with hLM-cut,
fork factorings give the best results. Inverted-fork factorings are bad in both cases, and
LPG shows bad performance with blind search. The 〈Fi〉 portfolio selects 〈Fork, IFork〉
for blind search and 〈MIS,Fork,LPG〉 for A∗ with hLM-cut. The comparatively “bad”
strategies are probably chosen because they still improve over Base in the instances not
tackled by Fork, respectively MIS and Fork. With hLM-cut, LPG for example solves 7
more instances in ParcPrinter compared to Base.

The scatter plots in Figure 7.25 nicely illustrate that decoupled search generates
fewer states compared to all other pruning techniques. Still, this reduction does not
always pay off. While there is a clear advantage in runtime compared to Base, PP,
and Sym, POR can also gain significant speed-ups over decoupled search. The run-
time comparison in Figure 7.26 clearly favors decoupled search over unfolding with

118 CHAPTER 7. EXPERIMENTAL EVALUATION

Blind Search hmax A∗ with hLM-cut

Unf. Explicit Search Dec. Unf. Explicit Search Decoupled
Domain # #F Mo B PP POR Sym PSy DS dup Mo B PP POR Sym PSy DS dup sd SBD C2
Agricola 20 20 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 5 0
Airport 50 18 13 12 13 13 13 13 11 11 16 17 17 17 17 17 17 17 17 11 15
Barman 34 34 0 4 4 4 11 4 4 0 0 4 4 4 11 11 4 4 1 11 9
Childsnack 20 20 0 0 0 0 6 6 0 0 0 0 0 0 6 6 0 0 0 4 0
DataNetwork 20 20 5 7 6 5 7 5 6 4 9 12 12 12 12 12 13 12 8 13 13
Depots 22 20 2 4 4 4 6 5 4 3 2 7 7 7 8 8 7 7 7 5 7
Driverlog 20 20 4 7 7 7 7 7 11 9 7 13 14 13 13 13 14 14 12 12 15
Elevators 30 30 9 13 16 12 15 13 14 9 9 22 23 22 22 22 23 21 11 25 25
Floortile 40 40 0 2 2 2 2 2 2 2 2 13 13 13 16 16 2 2 2 34 28
Freecell 80 80 7 20 16 8 20 8 14 14 7 15 15 14 15 14 15 15 15 14 22
GED 20 20 10 15 15 15 15 15 13 13 10 15 15 15 15 15 13 15 13 19 20
Grid 5 5 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3
Hiking 20 15 1 6 6 2 12 5 6 4 1 4 4 3 8 6 5 4 3 10 14
Logistics 63 63 11 12 14 12 14 14 26 26 13 26 26 27 26 28 34 34 34 24 28
Miconic 150 145 25 45 45 40 51 43 46 59 20 136 136 136 137 136 135 136 135 107 98
Mprime 35 35 8 19 19 14 20 16 14 14 18 22 22 22 23 23 22 22 22 24 25
Mystery 30 25 8 13 13 10 13 10 11 10 14 15 15 15 15 16 15 15 15 13 14
NoMystery 20 20 4 8 8 8 8 8 20 17 7 14 14 14 15 14 20 19 20 14 20
Openstacks 80 70 8 25 23 22 30 26 17 11 8 24 23 22 29 26 20 11 18 63 40
Organic 20 4 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
ParcPrinter 20 17 2 4 4 17 4 17 5 5 6 7 8 17 7 17 14 14 14 5 7
Pathways 30 30 3 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5
Pipesworld 100 46 11 24 23 19 32 25 19 18 14 25 25 24 31 30 24 23 22 23 33
PSR 50 50 44 49 49 49 50 50 49 48 43 49 49 49 50 50 49 49 49 50 50
Rovers 40 40 2 5 6 7 5 7 7 7 5 7 10 9 7 9 9 9 8 14 13
Satellite 36 36 7 5 7 6 6 6 7 6 5 7 12 11 13 14 12 12 6 8 9
Scanalyzer 30 9 3 6 6 3 6 3 3 3 3 5 5 3 5 3 5 5 5 6 6
Spider 20 6 4 6 6 6 6 6 6 6 5 6 6 6 6 6 6 6 6 6 6
Storage 30 11 0 1 1 1 3 3 0 0 0 2 2 2 4 4 2 2 2 1 2
TPP 30 29 3 5 5 5 6 6 5 4 3 5 6 5 7 6 6 5 5 7 14
Transport 59 59 12 18 18 15 18 15 14 8 14 17 17 17 18 18 17 16 12 24 23
Trucks 30 30 2 6 6 5 8 5 5 7 3 10 10 10 12 10 11 11 11 11 13
Woodworking 30 30 13 7 8 13 8 16 10 9 13 17 18 27 19 27 22 21 18 22 20
Zenotravel 20 20 7 8 8 7 8 7 8 8 7 13 13 13 13 13 13 13 11 10 13
Other 326 7
Total 1630 1124 237 372 374 347 433 382 373 351 280 547 559 567 598 608 567 552 520 613 621

Figure 7.22: Same setup as in Figure 7.19, on instances where LPG does not abstain.

Mole. Compared to symbolic search (SBD), while we see again the initial overhead
when using BDDs, the methods are obviously complementary. C2 shows some interest-
ing behaviour. This planner is based on abstraction heuristics and spends a significant
amount of time on precomputing the heuristic. This is visible at the vertical line around
800s, where this precomputation has its timeout.

In Figure 7.27, we finally compare different variants of decoupled search to each
other. In the left, we see that exact duplicate checking can cause a moderate to high
increase in the number of expanded states, which then translates to an increase in run-
time. Still, when there is little effect on the search space size, the more efficient hashing
for duplicate checking clearly pays off, leading to a speed-up of up to two orders of
magnitude. The effect of augmented-cost dominance (�aug) and the g-value adaptation
is even more pronounced (middle plots with A∗ and hLM-cut). Here, while most instances

7.6. OPTIMAL PLANNING 119

Base Fork IFork IA MIS LPS LPG 〈Fi〉 Sym Coverage
Base - 0 1 6 3 7 12 1 0 572
Fork 9 - 7 10 7 9 14 1 6 628
IFork 5 2 - 8 4 7 13 0 3 579
IA 13 7 11 - 5 11 16 6 9 600
MIS 10 5 9 6 - 9 13 4 7 605
LPS 8 4 8 4 4 - 8 4 7 588
LPG 9 5 9 4 4 1 - 5 7 573
〈Fi〉 10 2 6 11 7 9 15 - 8 631
Sym 25 21 22 22 22 22 27 20 - 660

Figure 7.23: Pairwise comparison of factoring strategies when running blind search.
We include a simulated sequential portfolio of strategies 〈Fi〉, and Sym.

Base Fork IFork IA MIS LPS LPG 〈Fi〉 SBD PSy C2 Coverage
Base - 1 2 7 4 5 5 5 19 4 8 790
Fork 5 - 6 9 5 5 5 4 21 7 11 822
IFork 5 4 - 9 7 6 5 6 20 5 10 801
IA 10 7 6 - 6 6 6 4 22 8 11 805
MIS 7 5 7 6 - 6 7 1 21 8 10 805
LPS 11 6 9 9 7 - 3 4 21 10 12 811
LPG 12 8 10 11 8 6 - 3 21 10 12 810
〈Fi〉 12 9 11 10 5 10 8 - 23 10 13 832
SBD 23 22 21 19 19 20 19 17 - 17 12 840
PSy 19 17 20 20 18 19 18 17 21 - 15 864
C2 28 24 26 23 25 23 23 23 25 23 - 903

Figure 7.24: Same setup as in Figure 7.15, but with A∗ using hLM-cut. We additionally
include SBD and C2, and show PSy instead of Sym.

are unaffected, there can be tremendous advantages in terms of search space size and
runtime when enabling both methods. In the plots on the right, we compare DS to aT
using A∗ with hLM-cut. In general, as we have seen in the coverage tables, DS performs
a lot better. There are, however, many instances where we see the effect of the early
termination mechanism, where the search can terminate if the achieved leaf goal prices
are globally minimal. This can be seen in the line above the diagonal.

120 CHAPTER 7. EXPERIMENTAL EVALUATION

100 101 102 103 104 105 106 107
100
101
102
103
104
105
106
107

Base (lower for 21 tasks)

D
S

(l
ow

er
fo

r2
74

ta
sk

s)

A∗ + hLM-cut – Expansions

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

Base (lower for 163 tasks)

D
S

(l
ow

er
fo

r2
56

ta
sk

s)

A∗ + hLM-cut – Runtime

100 101 102 103 104 105 106 107
100
101
102
103
104
105
106
107

PP (lower for 26 tasks)

D
S

(l
ow

er
fo

r2
74

ta
sk

s)

A∗ + hLM-cut – Expansions

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

PP (lower for 43 tasks)

D
S

(l
ow

er
fo

r4
06

ta
sk

s)

A∗ + hLM-cut – Runtime

100 101 102 103 104 105 106 107
100
101
102
103
104
105
106
107

POR (lower for 53 tasks)

D
S

(l
ow

er
fo

r2
50

ta
sk

s)

A∗ + hLM-cut – Expansions

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

POR (lower for 92 tasks)

D
S

(l
ow

er
fo

r3
22

ta
sk

s)

A∗ + hLM-cut – Runtime

100 101 102 103 104 105 106 107 108
100
101
102
103
104
105
106
107
108

Sym (lower for 52 tasks)

D
S

(l
ow

er
fo

r2
53

ta
sk

s)

A∗ + hLM-cut – Expansions

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

Sym (lower for 223 tasks)

D
S

(l
ow

er
fo

r1
92

ta
sk

s)

A∗ + hLM-cut – Runtime

Figure 7.25: Scatter plots comparing the number of expanded states before the last f -
layer in A∗ (top), and runtime (bottom) of DS to (from left to right) explicit-state search
without pruning, with partition-based pruning, stubborn-sets pruning, and symmetry
breaking. In all plots we use factorings obtained by IA and run A∗ with hLM-cut.

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

Mole (lower for 25 tasks)

D
S

(l
ow

er
fo

r1
49

ta
sk

s)

Blind Search – Runtime

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

SBD (lower for 81 tasks)

D
S

(l
ow

er
fo

r3
14

ta
sk

s)

A∗ + hLM-cut – Runtime

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

C2 (lower for 34 tasks)

D
S

(l
ow

er
fo

r3
82

ta
sk

s)

A∗ + hLM-cut – Runtime

Figure 7.26: Scatter plots comparing the runtime of DS with blind search to (from left
to right) unfolding with Mole, and with A∗ and hLM-cut to symbolic search with SBD,
and C2. In all plots we use factorings obtained by IA.

7.6. OPTIMAL PLANNING 121

100 101 102 103 104 105 106 107
100
101
102
103
104
105
106
107

DS (lower for 194 tasks)

d
u
p

(l
ow

er
fo

r0
ta

sk
s)

Blind Search – Expansions

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

DS (lower for 135 tasks)

d
u
p

(l
ow

er
fo

r1
21

ta
sk

s)

Blind Search – Runtime

100 101 102 103 104 105 106 107
100
101
102
103
104
105
106
107

sd (lower for 41 tasks)

D
S

(l
ow

er
fo

r8
4

ta
sk

s)
A∗ + hLM-cut – Expansions

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

sd (lower for 162 tasks)

D
S

(l
ow

er
fo

r2
53

ta
sk

s)

A∗ + hLM-cut – Runtime

100 101 102 103 104 105 106 107
100
101
102
103
104
105
106
107

aT (lower for 29 tasks)

D
S

(l
ow

er
fo

r1
85

ta
sk

s)

A∗ + hLM-cut – Expansions

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

aT (lower for 237 tasks)

D
S

(l
ow

er
fo

r1
78

ta
sk

s)
A∗ + hLM-cut – Runtime

Figure 7.27: Scatter plots comparing the search space size and runtime of different
decoupled search configurations. We investigate the effect of (from left to right) exact
duplicate checking, different dominance relations and the g-value adaptation, and the
anytime A∗ variant. In all plots we use factorings obtained by IA.

122 CHAPTER 7. EXPERIMENTAL EVALUATION

Explicit Unf. Sym. Decoupled
Domain # #F B PP POR Sym PSy Mole SBD DS dup Sympa

BagBarman 20 16 8 7 4 8 4 0 14 8 8 11
Cavediving 25 21 3 3 3 7 7 1 6 4 5 3
DocTransfer 20 20 7 7 6 12 10 6 5 13 14 10
NoMystery 23 23 2 2 2 3 2 2 5 12 11 12
PegSol 24 24 24 24 24 24 24 20 24 24 24 24
Rovers 19 19 6 6 6 6 6 2 12 9 9 16
Tetris 20 20 5 5 5 10 5 5 5 5 5 5
TPP 30 30 16 16 14 16 14 10 21 15 16 24
Other 137 22 2 2 2 2 2 2 2 2 2 2∑

318 195 73 72 66 88 74 48 94 92 94 107
Unsolvable Benchmarks from Hoffmann et al. [2014]

3-SAT 30 1 1 1 1 1 1 0 0 1 1 0
NoMystery 25 25 0 0 0 0 0 0 5 25 24 24
Rovers 25 25 1 1 1 2 1 0 5 2 2 18
TPP 25 25 6 5 2 6 2 0 7 1 5 18
Other 11 0 0 0 0 0 0 0 0 0 0 0∑

116 76 8 7 4 9 4 0 17 29 32 60
Total 434 271 81 79 70 97 78 48 111 121 126 167

Figure 7.28: Coverage data, i. e., the number of tasks proved unsolvable when using
A∗ with hmax, on instances where IA does not abstain. #F denotes the number of such
instances per domain. Domains with the same coverage for all planners are summarized
in “Other”. We highlight the best coverage in bold face.

7.7 Proving Unsolvability
We finally cover the last algorithmic planning problem, proving a task unsolvable. For
all explicit-state methods, unfolding, and decoupled search, we run A∗ search with hmax

for dead-end detection. For Mole, we use the Petri-net encoding based on TNF. We also
include the Sympa planner in the comparison, which performed well in the unsolvabil-
ity IPC 2016. We include all domains and instances from that competition, plus the
instances from Hoffmann et al. [2014] that have not already been used in the competi-
tion.

In Figure 7.28, we show the results obtained on the instances where IA returns a fac-
toring. We do not separately show tables for Fork and IFork, since these are subsumed
by IA and LPG, i. e., all instances tackled by the former two are also tackled by the
latter two with a fork, respectively inverted-fork factoring. Overall, decoupled search
performs very well, clearly beating all other planners except Sympa, which is special-
ized to prove unsolvability. Like in the previous evaluations, the techniques yield good
results in different domains. DS gives strong results in NoMystery and DocTransfer,

7.7. PROVING UNSOLVABILITY 123

Explicit Unf. Sym. Decoupled
Domain # #F B PP POR Sym PSy Mole SBD DS dup Sympa

BagBarman 20 8 8 7 4 8 4 0 8 8 8 8
BagTransport 29 19 6 6 5 6 5 3 8 11 10 5
Cavediving 25 19 7 7 7 11 11 5 10 7 7 7
Chessboard 23 23 5 5 6 5 6 6 11 5 4 10
DocTransfer 20 20 7 7 6 12 10 6 5 13 14 10
NoMystery 23 23 2 2 2 3 2 2 5 12 11 12
PegSolR5 15 14 4 4 4 4 4 3 4 3 3 3
PegSol 24 24 24 24 24 24 24 20 24 22 24 24
Rovers 19 19 6 6 6 6 6 2 12 6 5 16
TPP 30 30 16 16 14 16 14 10 21 15 14 24
Other 90 20 10 10 10 10 10 10 10 10 10 10∑

318 219 95 94 88 105 96 67 118 112 110 129
Unsolvable Benchmarks from Hoffmann et al. [2014]

3-SAT 30 30 15 15 26 15 26 10 10 15 15 8
Mystery 11 8 1 1 3 2 3 1 1 1 1 4
NoMystery 25 25 0 0 0 0 0 0 5 25 23 24
Rovers 25 25 1 1 1 2 1 0 5 1 1 18
TPP 25 25 6 5 2 6 2 0 7 2 1 18∑

116 113 23 22 32 25 32 11 28 44 41 72
Total 434 332 118 116 120 130 128 78 146 156 151 201

Figure 7.29: Same setup as in Figure 7.28, on instances where LPG does not abstain.

but is outperformed by SBD in BagBarman, and by Sym in Tetris. Sympa gives good
results across all domains.

Moving to general-star factorings (Figure 7.29), the overall picture is quite similar,
although decoupled search has a smaller advantage in coverage. This is partly due
to more instances being tackled in 3-SAT, where stubborn-sets pruning works well in
comparison. In BagTransport, however, which is tackled by LPG, DS has the highest
coverage.

Comparing DS to dup, coverage increases by 4 instances with IA, obtaining better
results overall. With LPG, dup rarely does a lot better than DS, but loses a few instances
across many domains, so performs worse overall.

The factoring comparison in Figure 7.30 reveals that factorings obtained by MIS
give the best results in combination with Base. Thus, the factoring portfolio chooses the
following ordering of strategies: 〈MIS, IFork〉. The combination with IFork is due to its
good performance in BagTransport. The pairwise comparison of factorings shows that,
similar to the results in the previous sections, the strategies are quite complementary.

The plots in Figure 7.31 indicate a clear advantage of decoupled search over all
explicit-state methods, both in terms of search space size (number expanded states), as

124 CHAPTER 7. EXPERIMENTAL EVALUATION

Base Fork IFork IA MIS LPS LPG 〈Fi〉 Sym Sympa Coverage
Base - 0 0 2 0 2 4 0 0 4 151
Fork 4 - 4 2 0 2 6 0 3 5 189
IFork 1 1 - 3 1 2 4 0 1 4 156
IA 6 3 6 - 1 1 5 1 4 7 191
MIS 6 4 6 3 - 2 6 0 6 6 198
LPS 6 4 5 3 1 - 4 0 6 6 197
LPG 4 2 3 2 1 0 - 0 4 5 189
〈Fi〉 7 5 6 4 1 2 6 - 7 6 203
Sym 6 4 6 5 3 5 8 3 - 7 168
Sympa 11 9 11 8 8 8 9 8 10 - 233

Figure 7.30: Pairwise comparison of factoring strategies when running A∗ with hmax.
We include a simulated sequential portfolio of strategies 〈Fi〉, and Sym and Sympa.

well as in runtime.
The runtime comparison in Figure 7.32 shows similar results. Decoupled search is

clearly superior to unfolding with Mole. In comparison to SBD and Sympa, ignoring
the initial overhead of the BDD library that both share, there is a clear trend favoring
decoupled search on commonly solved instances.

Finally, for the relation of DS to dup (Figure 7.33), we get a mixed picture compared
to satisficing and optimal planning. The advantage in runtime on instances where the
pruning is not much affected is clearly stronger than for satisficing planning, but still
weaker than for optimal planning. Overall, we see a moderate increase in the number
of expanded states in many instances, but the efficiency of the duplicate check seems to
outweigh this to some extent.

7.7. PROVING UNSOLVABILITY 125

100 101 102 103 104 105 106 107
100
101
102
103
104
105
106
107

Base (lower for 0 tasks)

D
S

(l
ow

er
fo

r6
2

ta
sk

s)
A∗ + hmax – Expansions

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

Base (lower for 46 tasks)

D
S

(l
ow

er
fo

r2
5

ta
sk

s)

A∗ + hmax – Runtime

100 101 102 103 104 105 106 107
100
101
102
103
104
105
106
107

PP (lower for 0 tasks)

D
S

(l
ow

er
fo

r6
2

ta
sk

s)

A∗ + hmax – Expansions

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

PP (lower for 21 tasks)

D
S

(l
ow

er
fo

r5
2

ta
sk

s)

A∗ + hmax – Runtime

100 101 102 103 104 105 106 107
100
101
102
103
104
105
106
107

POR (lower for 1 tasks)

D
S

(l
ow

er
fo

r5
9

ta
sk

s)

A∗ + hmax – Expansions

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

POR (lower for 11 tasks)

D
S

(l
ow

er
fo

r5
6

ta
sk

s)

A∗ + hmax – Runtime

100 101 102 103 104 105 106 107 108
100
101
102
103
104
105
106
107
108

Sym (lower for 15 tasks)

D
S

(l
ow

er
fo

r6
3

ta
sk

s)

A∗ + hmax – Expansions

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

Sym (lower for 41 tasks)

D
S

(l
ow

er
fo

r4
2

ta
sk

s)

A∗ + hmax – Runtime

Figure 7.31: Scatter plots comparing the number of expanded states (top), and run-
time (bottom) of DS to (from left to right) explicit-state search without pruning, with
partition-based pruning, stubborn-sets pruning, and symmetry breaking. In all plots we
use factorings obtained by IA and run A∗ with hmax.

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

Mole (lower for 3 tasks)

D
S

(l
ow

er
fo

r4
4

ta
sk

s)

A∗ + hmax – Runtime

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

SBD (lower for 33 tasks)

D
S

(l
ow

er
fo

r5
2

ta
sk

s)

A∗ + hmax – Runtime

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

Sympa (lower for 19 tasks)

D
S

(l
ow

er
fo

r9
2

ta
sk

s)
A∗ + hmax – Runtime

Figure 7.32: Scatter plots comparing the runtime of DS to (from left to right) unfolding
(Mole), symbolic search (SBD), and Sympa. In all plots we use factorings obtained by
IA and run decoupled search with A∗ with hmax.

100 101 102 103 104 105 106 107
100
101
102
103
104
105
106
107

DS (lower for 97 tasks)

d
u
p

(l
ow

er
fo

r0
ta

sk
s)

A∗ + hmax – Expansions

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

DS (lower for 82 tasks)

d
u
p

(l
ow

er
fo

r3
5

ta
sk

s)

A∗ + hmax – Runtime

Figure 7.33: Scatter plots comparing the search space size (left) and runtime (right) of
decoupled search with exact duplicate checking to dominance pruning. In all plots we
use factorings obtained by IA.

126 CHAPTER 7. EXPERIMENTAL EVALUATION

7.8 Discussion
We want to conclude this chapter by briefly summarizing and discussing our findings.
The most important observation is that decoupled search can yield very strong perfor-
mance for all algorithmic planning problems, beating state-of-the-art planners when
there are good problem decompositions. In general, decoupled search has shown a be-
haviour that is complementary to all existing state-space reduction techniques, i. e., the
methods have their strengths in different domains. This confirms our theoretical findings
from Chapter 6, where we showed exponential separations to these related methods.

We observed that, depending on the setting, different factoring types lead to very dif-
ferent results—while inverted-fork factorings beat state-of-the-art planners in satisficing
planning, they perform poor in optimal planning. We tried to provide some intuitions
and explain why such behaviour occurs, but we leave it to future work to investigate
these properties more conclusively.

More generally, we found that it is not always beneficial to invoke decoupled search,
if there are at least two mobile leaves. It seems like this condition is too weak to filter
out instances where it would actually be better to perform, e. g., explicit-state search.
We believe that it is an interesting topic for future research to more closely look into
the conditions when decoupled search really excels, obtaining a significant state-space
reduction. These conditions should be easy to check, for example requiring more leaf
factors, or a minimum number of leaf-only actions per leaf. The monotonicity of the
pricing function might play a role, too. Another option is to require a minimum ratio of
leaf-only actions over the overall actions affecting a leaf. That way, it should be possi-
ble to filter-out instances where currently decoupled search does not perform well. As
indicated before, since the factoring process is typically very fast, there is no drawback
in checking if a good factoring exists, and any other method can be invoked if not.

Regarding the various different decoupled search configurations, we believe that it
could also be interesting to investigate if there are easy-to-check conditions for when
they perform better than the default. The anytime decoupled A∗ variant, for example,
works really well for fork factorings when using a good heuristic. The question is if
similar conditions can be identified that imply, e. g., that duplicate checking will not
lead to an increase in search space size.

In this work, we implemented a basic version of decoupled search in Fast Down-
ward, which has proven to be highly competitive with related state-space reduction
techniques, and state-of-the-art planners. This opens the stage for further fine-tuning
of the implementation and planner configuration when running decoupled search.

Chapter 8

Summary

In this main part we introduced star-topology decoupled state-space search for classical
AI planning. Decoupled search is based on decomposing a given planning task in terms
of factoring its state variables into a center and multiple leaf components, so that the de-
pendencies between these factors form a star topology. In this topology, the center factor
can interact arbitrarily with the leaves, but any inter-leaf interaction must be via the cen-
ter. The leaf factors in this decomposition are thus conditionally independent, given a
sequence of actions that affect the center. Searching in the decoupled state space, we can
hence branch only over center actions and enumerate all reachable leaf states for each
of the leaf factors separately. An endpoint of a center path is called a decoupled state, a
compact representation of the set of explicit states that results from multiplying out the
reached leaf states across leaves. Thereby, a decoupled state represents exponentially
many explicit states, leading to a tremendous reduction in state-space size.

We formally introduced the decoupled state space, which captures the reachability of
leaf states in terms of the compliant-path graph, a structure that allows us to compactly
keep track of the leaf paths compliant with the current center path. We proved the
correctness of the decoupled state space and showed that it preserves completeness as
well as optimality, when maintaining a pricing function for each decoupled state during
search. The pricing function represents the costs of the compliant leaf paths, avoiding
the need to store the compliant-path graph, and is sufficient to perform search. We
looked into the size of the decoupled state space in comparison to the explicit state space,
showing that in general (1) it can in fact be exponentially larger, and (2) even infinite.
(2) can easily be tackled by using a simple dominance pruning that prunes decoupled
states if the price of all leaf states is higher than in a previously seen decoupled state. We
can also address (1), but at the cost of solving a co-NP-hard problem for each reached
decoupled state. The corresponding algorithm, hypercube pruning, incurs a prohibitive
overhead, as shown in our evaluation, but rarely leads to a significantly increased state
pruning. We conclude that, although possible in theory, exponential blow-ups of the
decoupled state space do not usually occur in practice, as far as this is captured by

127

128 CHAPTER 8. SUMMARY

standard planning benchmarks.
Connecting the decoupled state representation to standard search algorithms and

planning heuristics, we opened up the possibilities to combine decoupled search with
all the state-of-the-art techniques that are widely employed in planning research. We
showed that completeness and optimality of the base search algorithm are preserved
by using a simple transformation. For heuristics, we introduced a compilation that (in
principle) allows us to take any planning heuristic and compute estimates for decoupled
states. Importantly, our compilation preserves all important properties of the heuristic,
like admissibility and perfectness in the limit.

We presented several methods that are capable of identifying the required structure
in a planning task and compute a star factoring. We proved that, in general, it is NP-
hard to compute a factoring that maximizes the number of leaf components, which
is desirable because the reduction of decoupled search is exponential in that number.
Besides the number of leaves, we identified the leaf mobility to capture an important
property of factorings, namely the “amount of work” each leaf can do on its own, which
is measured in the number of actions that only affect the leaf, but not the center. We
devised several factoring strategies that are effective in identifying good factorings.

Decoupled search is related to several other state-space reduction techniques, such as
partial-order reduction (POR) and Petri-net unfolding, with which it shares the source of
its reduction, the independence of components/actions of a planning task. For the rela-
tion to unfolding, we proved that under certain conditions—singleton factors, absence of
prevail conditions, and compatible search orders—the state-space representation of the
two methods is actually polynomially related. Compared to both POR and unfolding,
we proved that decoupled search can lead to exponentially higher state-space reduction,
and vice versa. Decoupled search is by nature a form of factored planning, which has
previously seen attention in the planning community in various works. We argued that
decoupled search is a new form of factored planning, since the structural requirements
it imposes on the planning task lead to an efficient handling of the cross-factor depen-
dencies that other forms of factored planning need to resolve in intricate ways. There
is also a connection to techniques like symbolic state representation, which also com-
pactly represent sets of states, and symmetry breaking, which can exponentially reduce
search effort, too. Decoupled search is exponentially separated from both.

Finally, we empirically evaluated our implementation of decoupled search in the Fast
Downward planning framework on three algorithmic planning problems—optimal plan-
ning, satisficing planning, and proving unsolvability. We compared decoupled search to
state-of-the-art planners and the aforementioned related techniques. This revealed that,
indeed, decoupled search can lead to dramatic reductions in search effort, beating state-
of-the-art planning systems in various scenarios. We also observed that the reduction
achieved by decoupled search is often orthogonal to that of other popular and effective
techniques such as symmetry breaking.

Part III

Combination with Other State-Space
Reduction Methods

129

Chapter 9

Introduction

In AI planning, as well as many related areas, the state explosion problem has been
identified as a major challenge to make state-space search algorithms scale up to larger-
sized problems. Various techniques have been developed to tackle the state explosion.
We have discussed several methods in Part II and analyzed their relation to decoupled
search in theory and practice. In this part, we focus on techniques that can yield state-
space reductions orthogonal to the one achieved by decoupled search, and combine
them with decoupled search. In particular, we devise combined algorithms with partial-
order reduction via strong stubborn sets (Chapter 10), symmetry breaking (Chapter 11),
symbolic state representations (Chapter 12), and state-dominance pruning (Chapter 13).

For the first three of these techniques, we have shown exponential separations to de-
coupled search indicating that the state-space reduction is in general orthogonal. There-
fore, it is highly promising to combine the methods with decoupled search to, ideally,
obtain a novel algorithm that inherits the strengths of both components. The connection
to state-dominance pruning is rather weak. While decoupled search exploits component
independence to compactly represent sets of states, state-dominance pruning is based on
dominance relations that ensure that a state s is as close to the goal as another state s′.
Then, if s has been visited first, s′ can be pruned without sacrificing completeness and
optimality. Given this completely different underlying principles, the question arises if
state-dominance can prove effective for pruning the decoupled state space.

Stubborn sets pruning can obtain exponential advantages over decoupled search in
the presence of concurrent center actions. We devise decoupled strong stubborn sets,
which can exploit such independent actions by branching only over a subset of the ac-
tions applicable in a decoupled state. We prove that decoupled strong stubborn sets are
optimality-preserving, and show exponential separations from both individual compo-
nents. This advantage is confirmed in our experimental evaluation, where indeed there
are domains in which the combination improves over both baselines.

The reduction of symmetry breaking is due to objects, or groups of objects, that
have symmetric properties. During search, this can be exploited by keeping only a

131

132 CHAPTER 9. INTRODUCTION

single of a set of symmetric states, the canonical representative of this so-called orbit
of states. This is obviously completely different from decoupled search. Hence, we
extend the symmetry relation over explicit states to decoupled states, which allows a
similar pruning in the decoupled state space, pruning all but the canonical decoupled
representative state from each orbit. Like with stubborn sets, we prove the correctness
of the combined algorithm, show that it is exponentially separated from its components,
and evaluate it empirically on the standard benchmark set.

For the combination with symbolic state representations, we use decision diagrams,
namely binary and algebraic decision diagrams (BDDs/ADDs) to represent the pricing
function of decoupled states. With factorings that have large leaf factors, representing
the pricing function explicitly can be prohibitive both in terms of runtime and memory.
We show how to represent the set of reached leaf states and the prices symbolically, how
to connect to the main search which branches over center actions, and how to compute
decoupled heuristic functions on the symbolic representation.

State-dominance pruning has mostly been applied in optimal planning, where such
kind of pruning leads to significant reductions. We introduce novel notions of decoupled-
state dominance specialized to fork factorings. These dominance relations can improve
the dominance pruning of decoupled search by ignoring leaf states that cannot possibly
contribute to cheaper goal prices, or restricting the dominance check to a relevant subset
of leaf states. We provide a theoretical analysis comparing the new dominance relations
and evaluate their pruning power empirically.

Chapter 10

Partial-Order Reduction

Partial-order reduction is an established method to reduce the search space without af-
fecting the existence of (optimal) plans [Valmari, 1992; McMillan, 1992; Godefroid and
Wolper, 1991; Esparza et al., 2002; Edelkamp et al., 2004a; Rodríguez and Schwoon,
2013]. It analyzes action dependencies to prune commutative parts of the search space.
In this chapter, we show how to apply this idea to decoupled state-space search.

Just like explicit-state search, decoupled search is adversely affected by commuta-
tive parts of its search space. We herein adapt strong stubborn set pruning (SSS), which
was first devised in formal verification [Valmari, 1989], and was later adapted to AI
planning [Alkhazraji et al., 2012; Wehrle et al., 2013; Sievers and Wehrle, 2021].

A major challenge is the more complex structure of the decoupled state space. Here,
for the leaf factors, the distinction between “past” (search path so far) and “future”
(remaining search path) becomes complicated, because even the path the leaf takes up
to a decoupled state sF is committed to only in the future. Hence, even if a leaf state sL

is reached in sF , SSS pruning needs to reason about the enablers of sL, i. e., about the
actions that might be committed to in order to support sL at plan extraction time.

We spell out how to address this challenge, designing optimality-preserving decou-
pled strong stubborn set (DSSS) pruning methods. We introduce a design for star topolo-
gies in full generality, as well as simpler design variants for the practically relevant fork
and inverted-fork special cases. We show that there are cases where DSSS pruning is
exponentially separated from both, decoupled search and SSS pruning, exhibiting true
synergy where the whole is more than the sum of its parts. For the practical evaluation,
we focus on optimal planning, where stubborn sets pruning has been most successfully
applied in planning. DSSS pruning reliably inherits the best of decoupled search and
SSS pruning. Sometimes—being more than the sum of its parts—it outperforms both.
Where both techniques are effective, DSSS pruning is able to compete with state-of-the-
art optimal planning systems. Some technical details are only summarized in the main
text. The full details and proofs are available in Appendix B.1.

This chapter is based on Gnad et al. [2019a], which in turn extends a version of

133

134 CHAPTER 10. PARTIAL-ORDER REDUCTION

decoupled strong stubborn sets restricted to fork topologies [Gnad et al., 2016d]. Martin
Wehrle contributed to the latter work and to early concepts of Gnad et al. [2019a]. All
contributions included in this chapter are due to the author of this work.

10.1 Background
Intuitively, a strong stubborn set (SSS) for a state s is a subset As of the applicable
actions guaranteed to contain the starting action of at least one optimal solution for s.
In a nutshell, such a set As is derived by selecting an open part p of the goal condition,
collecting all actions a that may recursively be used to enable p, and collecting all
actions a′ that these a interfere with. Actions not included by this process can be safely
ignored in s, as they are not relevant to p, and as they are commutative with As, i. e.,
they can still be applied later on if needed for some other part of the goal.

In the remainder of this section, we give a summary presentation of strong stubborn
sets pruning, sufficient to understand its workings and introducing the notations we will
use in our analysis later on.

We need the notion of strong optimality to ensure that the search makes progress
and does not get trapped in 0-cost cycles. A plan π for a state s is strongly optimal if it
is optimal and contains the minimum number of 0-cost actions among all optimal plans
for s. For decoupled search, we say that a decoupled plan πF for a decoupled state sF

is strongly optimal if it is augmented-optimal and πC(πF) contains the minimal number
of 0-cost actions among all augmented-optimal decoupled plans for sF .

We will often talk about compatible vs. incompatible partial variable assignments
(action preconditions or effects), so we introduce shorthands for this. Given partial
assignments p and q, we say that p and q are compatible, written p ‖ q, if there exists
no v ∈ V such that v ∈ vars(p) ∩ vars(q) and p[v] 6= q[v]; we say that p and q are
incompatible, written p ∦ q, if such v does exist.

We say that an action a is reached in a (decoupled) state, if its precondition pre(a)
is reached in that state.

Throughout this chapter, we will use a running example to illustrate the concepts
and definitions. The example is a variant of the logistics task used in other parts of this
work. Next, we briefly describe the variants of the example we will use in this chapter.

Example 10. We have two locations A and B, a single truck whose position is modeled
by variable T with D(T) = {A,B}, and n packages whose position is modeled by
variables pi with D(pi) = {A,B, T}. The truck and all packages are initially at A,
and the goal is for the packages to be at B. The actions take the form drive(T, x, y),
load(T, pi, x), and unload(T, pi, x) where x, y ∈ {A,B}. Actions costs are unit 1 for
simplicity.

In what we will call the Vanilla variant of this example, the action preconditions and
effects are the commonly used ones, namely: drive(T, x, y) has precondition {T = x}

10.1. BACKGROUND 135

and effect {T = y}; load(T, pi, x) has precondition {pi = x, T = x} and effect {pi =
T}; and unload(T, pi, x) has precondition {pi = T, T = x} and effect {pi = x}.

In what we will call the NoEmpty variant of this example, the actions are the same
except that driving the truck now takes the form drive(T, x, y, pi), with precondition
{T = x, pi = T} and effect {T = y}. That is, here the truck cannot drive without
having a package inside.

Unless stated otherwise, we will consider the default factoring F setting {T} as
the center, and setting each {pi} as a leaf. For the Vanilla example, this is a fork
factoring. For the NoEmpty example, where the dependencies between T and pi go in
both directions, this is (not a fork but) a star factoring.

We will sometimes consider the inverted-fork factoring, setting {p1, . . . , pn} as the
center and {T} as the (single) leaf. Observe that, for the Vanilla example, this is an
inverted-fork factoring.

Strong stubborn set pruning is a form of partial-order reduction in state-space search,
exploiting action commutativity to safely prune a subset of the applicable actions in a
state. As previously outlined, the method analyses, given a state s, how actions enable
each other to achieve some open part of the goal when starting from s, and how these
actions may interfere with other actions. We briefly spell this out in what follows, in a
form connecting directly to our later extensions for decoupled search.

We use a syntactic characterization of stubborn sets, based directly on the syntactic
specifications of actions in the input task, as opposed to a semantic characterization rely-
ing on properties of action executions in particular states. The syntactic characterization
is coarser, but is simpler and is what we use in practice.

Let s be a solvable non-goal state, s 6|= G, and let As ⊆ A be a set of actions. We
say that As is safe for s if there exists a strongly optimal plan π = 〈a1, . . . , an〉 for s
such that a1 ∈ As. We need π to be strongly optimal, because otherwise the search can
become incomplete in the presence of 0-cost actions.1 Note that we need to take care
only of solvable states here as, on unsolvable states, any pruning method (any subset of
applicable actions) is optimality-preserving.

Strong stubborn sets are a means to derive safe sets As. Towards this, two basic
notions are employed:

• Given a partial assignment p where s 6|= p, an action set A ⊆ A is a necessary
enabling set for p in s if there exists v ∈ vars(p) such that s[v] 6= p[v] and
A = {a′ ∈ A | eff(a′)[v] = p[v]}.

• Given a, a′ ∈ A, we say that a and a′ interfere if eff(a) ∦ pre(a′) or eff(a′) ∦
pre(a) or eff(a) ∦ eff(a′).

1This happens in the following example: Let s, s′ be two solvable non-goal states such that s[[a1]] = s′,
and s′[[a2]] = s, where cost(a1) = cost(a2) = 0. Then a1 starts an optimal plan in s and a2 in s′, but the
action sets As = {a1} and As′ = {a2} prune all solutions for s and s′.

136 CHAPTER 10. PARTIAL-ORDER REDUCTION

In other words, a necessary enabling set for p is the set of achievers of one part of p
that is still open; a and a′ interfere if one disables the other’s precondition, or they have
conflicting effects.

These two notions can be combined in a simple recursive way to derive a safe action
set for any non-goal state s. Namely, an action set As is a strong stubborn set (SSS) for
s if the following conditions hold:

(i) As contains a necessary enabling set for G in s.

(ii) For all actions a ∈ As not applicable to s, As contains a necessary enabling set for
pre(a) in s.

(iii) For all actions a ∈ As applicable to s, As contains all actions a′ interfering with a
and where pre(a) ‖ pre(a′).

The proof that such As is safe was originally given in planning by Alkhazraji et al.
[2012], and was later enhanced by Wehrle and Helmert [2014] allowing (amongst other
things) reachability information, captured above in the requirement pre(a) ‖ pre(a′) in
(iii). We include the proof here as our later proofs for decoupled strong stubborn sets
will be extensions thereof.

Consider some plan π = 〈a1, . . . , an〉 for s. Then the following properties hold:

(a) There exists an action shared between As and π, i. e., As ∩ {a1, . . . , an} 6= ∅.
This is because by (i) As contains a necessary enabling set for G in s.

Given (a), let ak be the shared action with smallest index, i. e., say that ak ∈ As and
{a1, . . . , ak−1} ∩ As = ∅.

(b) ak is applicable to s.

This is because, otherwise, by (ii)As contains a necessary enabling setA for pre(ak)
in s, and one a ∈ A must precede ak on π, in contradiction to ak being the first
shared action.

(c) ak does not interfere with any of the preceding actions ai, 1 ≤ i ≤ k − 1, where
pre(a) ‖ pre(ai).

This is because, if it did, then by (iii) we would have ai ∈ As, again in contradiction
to ak being the first shared action.

(d) ak can be moved to the front of π, i. e., π′ := 〈ak, a1, . . . , ak−1, ak+1, . . . , an〉 is a
plan for s.

To see this, consider that, by (b), ak is applicable in s. As a1 is applicable in s as
well, we must have pre(ak) ‖ pre(a1), so by (c) a1 does not interfere with ak, and

10.2. DECOUPLED STRONG STUBBORN SETS 137

hence ak is still applicable in s[[a1]]. But then, the same argument applies to a2 and
s[[a1]], so iterating the argument we obtain that, for 1 ≤ i ≤ k− 1, pre(ak) ‖ pre(ai)
and ai does not interfere with ak.

The claim follows directly from (d).

10.2 Decoupled Strong Stubborn Sets
We now show how to apply the idea of strong stubborn set construction to decoupled
search, for arbitrary star topologies. Chapter 10.2.1 introduces basic concepts used in
all our constructions, lifting, amongst others, the notions of safety and necessary en-
abling sets to decoupled search. To guarantee optimality, decoupled search must con-
tinue the search on goal decoupled states. For our purposes here, the main implication
is that trying to reach the goal (non-goal decoupled state) is different from trying to
decrease the prices of compliant goal leaf paths (goal decoupled state). Our stubborn
set constructions will distinguish these two cases. Chapter 10.2.2 introduces decoupled
strong stubborn sets for non-goal decoupled states sF , where G has yet to be reached;
and Chapter 10.2.3 shows how to handle goal decoupled states sFG, where G is already
reached yet may be reached with cheaper compliant leaf paths below sFG. In each of
these two sections, we prove the safety of our constructions.

Throughout, we assume a planning task Π = 〈V ,A, cost, I,G〉 and a factoring F
with center C and leaves L ∈ L.

10.2.1 Basic Concepts
In the standard setting, i. e., in explicit state-space search, safety of an action set As for
a non-goal state s means that there exists a strongly optimal plan for s starting with an
action from As. For decoupled search, i. e., decoupled states sF , this definition changes
in two ways. First, instead of plans for s we need to talk about decoupled plans for sF .
Second, as decoupled search has to continue below sF even if sF is a goal decoupled
state, instead of “non-goal” we need to say that the empty decoupled plan is not optimal
for sF . We hence define:

Definition 27 (Safety). Let Π = 〈V ,A, cost, I,G〉 be a planning task andF a factoring.
Let sF be a solvable decoupled state for which 〈〉 is not an optimal decoupled plan, and
let AFs ⊆ AC be a set of center actions.

We say that AFs is safe for sF if there exists a strongly optimal decoupled plan πF

for sF such that πC(πF) = 〈aC1 , . . . , aCn 〉 where aC1 ∈ AFs .

Clearly, a safe AFs for sF plays the same role in search as a safe As for s: pruning
outgoing transitions from sF induced by actions outside AFs preserves optimality and

138 CHAPTER 10. PARTIAL-ORDER REDUCTION

completeness of the search. Note that, if 〈〉 is an optimal decoupled plan for sF , then
any pruning method preserves optimality and completeness on sF , so such sF can be
disconsidered in the analysis of safety (though not in the generation of stubborn sets, as
we cannot recognize such states up front).

To identify safe AFs , we will rely on commutativity, i. e., on plan permutations.
Whereas previously this simply referred to plans for s, the notion of permutations now
becomes significantly more complicated, as we have to consider both, decoupled plans
and their associated global plans.

Recall that, given a decoupled state sF , a decoupled plan πF for sF merely is a
path in a reformulated search space (the decoupled state space). The meaning of πF for
the actual input task is defined in terms of the global plans π given πF . These consist
of the center action sequence πC(sF) ◦ πC(πF), augmented with a cheapest compliant
goal leaf path πL for each leaf factor L. We define permutations over both, πF and π
simultaneously:

Definition 28 (Plan Permutation). Let Π = 〈V ,A, cost, I,G〉 be a planning task and
F a factoring. Let sF be a solvable decoupled state, and let πF and πF ′ be decoupled
plans for sF .

We say that πF and πF ′ are permutations if (i) πC(πF) is a permutation of πC(πF
′
),

and (ii) there exist global plans π and π′ for πF , respectively πF ′, such that π is a
permutation of π′.

Here (ii) essentially says that, on top of the center paths being commutative, the
corresponding cheapest compliant goal leaf paths need to be commutative as well. For
safety, (i) would be enough in principle, i. e., it would be enough to identify a center
action starting a permutation of a strongly optimal decoupled plan. Our construction
of strong stubborn sets however, i. e., our sufficient criterion for permutability, relies on
both (i) and (ii).

A second major implication of the interplay between decoupled plans and their
global plans is that we have to think carefully about what is the “future” for a decoupled
state sF . Stubborn set construction reasons about the future, which in the standard set-
ting simply are the possible plans π for the state s in question. But what is the future for
sF? A priori, of course the possible decoupled plans πF for sF . Yet, πF merely is a path
in a reformulated search space. An associated global plan π is not an action sequence
“starting in sF”: π starts in the initial state of the input planning task. In particular,
the goal leaf paths πL in π schedule actions along both, the center action subsequence
πC(sF) up to sF , and the center action subsequence πC(πF) behind sF .

Our natural solution to this issue is to consider the “past” as everything scheduled
along πC(sF), and the “future” as everything scheduled along πC(πF). Precisely, say
that π is a global plan given πF , and π = 〈a1, . . . , an〉. Consider the center action
subsequence πC(sF) ◦ πC(πF) in π, and consider, within that subsequence, the starting
action of πC(πF). Denote by t the index of that action occurence in π, i. e., at is the

10.2. DECOUPLED STRONG STUBBORN SETS 139

start of πC(πF) within π. We capture the “past” as πpast := 〈a1, . . . , at−1〉, and the
“future” as πfuture := 〈at, . . . , an〉. In other words, we consider the first center action
behind sF—the center action decoupled search applies in sF to find πF—and we use
that action as the pivot separating the past from the future. We will be using the notations
at, πpast , and πfuture throughout.

While this definition of the future is reasonably simple, it leaves us with another
subtlety, namely that “the same” π may be scheduled in different ways, leaving us with
undesirable ambiguity regarding the difference between past and future. To see this,
consider any goal leaf path πL. Observe that the part of πL contained within πpast—the
leaf path’s prefix scheduled in the past—must comply with πC(sF). Yet nothing forces
this prefix to be maximal: we are free to schedule parts of πL in the future, even if
they comply with πC(sF) so could be scheduled in the past. For illustration, say the
center (e. g., a truck) has already done up to sF what it needs to do in order to support
a leaf (e. g., providing transport for a package). But now the leaf needs to do additional
tasks independently from the center (e. g., unpacking, assembling package content, . . .).
Then π can schedule these additional tasks in πpast , but may just as well schedule them
in πfuture .

In other words, πfuture may contain actions that have nothing to do with “the re-
maining task starting from sF”. It will be of service to our analyses to avoid this kind
of behavior. We will restrict focus to global plans π that are past-maximal, where, intu-
itively, the leaves do nothing in πfuture that they could do in πpast .

The precise form of past-maximality we will need differs depending on the context:
we introduce one notion for star topologies, and another different one for our analysis
of fork topologies below. In our notion for star topologies, past-maximality means that
no leaf action scheduled in the future can be moved in front of the pivot action at:

Definition 29 (Past-Maximality). Let Π = 〈V ,A, cost, I,G〉 be a planning task and F
a factoring. Let sF be a solvable decoupled state, let πF be a decoupled plan for sF ,
and let π be a global plan given πF .

Define at, πpast , and πfuture as above. We say that π is past-maximal if, for every leaf
factor L and every k > t where ak ∈ AL6C , if we change π by moving ak to any position
in front of at, then π is not a plan anymore.

It is easy to see that a focus on past-maximal global plans is not restricting, in the
sense that every global plan can be rescheduled to be past-maximal:

Lemma 8. Let Π = 〈V ,A, cost, I,G〉 be a planning task and F a factoring. Let sF be
a decoupled state, let πF be a decoupled plan for sF , and let π be a global plan given
πF .

Then there exists a permutation of π that is a global plan given πF , and that is
past-maximal.

140 CHAPTER 10. PARTIAL-ORDER REDUCTION

Proof. Obtain such a permutation π′ as follows. Start with π′ := π. If π′ is past-
maximizing, stop. Else, select a counter-example L and k, move ak in front of at in
π′, and iterate. This algorithm terminates as, after each step, there is one action less
behind at. The outcome π′ satisfies the claim as we have not changed the center-action
subsequence, and the permuted leaf paths are still compliant with that sequence.

We are now ready to introduce the ingredients underlying our stubborn set construc-
tions. As before, we will need to reason about how actions interfere with each other,
and how they enable each other. The former remains exactly the same as before. The
latter, however, needs to be adapted substantially given the more complex structure of
the search space. We need to distinguish between enabling (a) conditions p not reached
in a decoupled state, vs. (b) conditions p reached in a decoupled state. For (b), our
constructions will depend on the specific context (stars vs. forks/inverted forks, goal vs.
non-goal decoupled states), so we will introduce these in the respective context. For (a),
the same construction works in all contexts. Namely, we employ the following extended
definition of necessary enabling sets:

Definition 30 (Decoupled Necessary Enabling Set). Let Π = 〈V ,A, cost, I,G〉 be a
planning task and F a factoring. Let sF be a decoupled state, and let p be a partial
variable assignment not reached in sF .

An action set A is a decoupled necessary enabling set for p in sF if one of the
following conditions holds:

(i) There exists v ∈ vars(p)\C such that p[v] is not reached in sF , and A = {a ∈ A |
eff(a)[v] = p[v]}.

(ii) Condition (i) does not apply, and there exists L such that p[L] is not reached in sF ,
and A =

⋃
v∈vars(p)∩L{a ∈ A | eff(a)[v] = p[v]}.

(iii) Neither (i) nor (ii) apply, and there exists v ∈ vars(p)∩C such that center(sF)[v] 6=
p[v], and A = {a ∈ A | eff(a)[v] = p[v]}.

In other words, a decoupled necessary enabling set first checks whether (i) some
leaf-variable value is not reached in sF , then checks whether (ii) some leaf-factor state
is not reached in sF , then checks whether (iii) some center-variable value is not reached
in sF . In each case, the set of all achieving actions is selected.

As p is not reached in sF , one of (i) – (iii) must necessarily be true. Observe that this
is not so for just (i) and (iii) alone, as every single leaf-variable value in p may already
be reached in some leaf state of L, yet that may not be so for their combination. In other
words, necessary enabling sets become more complicated, relative to standard search,
due to the difference between leaf states being true in a unique state s, vs. leaf states
being true in one out of the set of states represented by a decoupled state sF .

10.2. DECOUPLED STRONG STUBBORN SETS 141

We remark that the ordering of conditions (i) – (iii) in Definition 30 is arbitrary in
the sense that any ordering is possible in principle. The stated ordering encapsulates a
preference to regress over open leaf conditions first, the aim being to extract open center
conditions (which the decoupled strong stubborn set will be chosen to support) “as close
as possible” to the current decoupled state sF . The intuition is to first move the leaves
towards their goals—by enabling the required center preconditions—and to care for the
center goals only once the leaf goals are achieved.

10.2.2 Non-Goal Decoupled States
Towards our constructions for non-goal decoupled states sF , we next specify how to
enable a condition p reached in sF .

To understand why this is needed, consider the role of reached leaf states sL in sF ,
where for each L one such sL will be used, and that commitment will be made at plan
extraction time. This implies that, just because some condition p on L is reached in
sF , it does not have to be true at the corresponding point in the global plan π we will
finally commit to. Namely, defining “the corresponding point” in π as the state I[[πpast]]
before application of the pivot action at, p will have to be false at this point if at has
a precondition contradicting p. Nevertheless, p may have to be true at some later point
along π, to enable some other action or part of the goal.

For illustration, consider the decoupled state sF := IF in our NoEmpty example,
consider L := {p1}, and consider p := {p1 = A}. Condition p is reached in sF . Yet, say
our decoupled plan πF decides to use at := drive(A,B, p1) in sF . Then p must be false
prior to the application of at in the corresponding global plan π, due to the incompatible
precondition {p1 = T}. If p is required later on, e. g., if G[p1] = A, then p will need to
be enabled in the future, behind the application of at in π. We need to reason about how
to do that.

So, how do we find a set of actions that will necessarily be used to enable a reached
L condition p in the future? A simple possibility would be to follow Definition 30 (ii)
and just select all actions supporting any variable value in p. Done recursively though,
this is likely to collect a very large set of reached actions that affect L. We hence design
a definition more tailored to the specific situation: a reached L condition p, false in
some reached L state sL (namely I[[πpast]][L]), yet true in some L state rL (namely one
rL visited along πfuture), where rL is achieved on a path πLs→r starting from sL (namely
the respective leaf path segment within πfuture). It suffices to ensure that we collect at
least one action along every such path πLs→r:

Definition 31 (Reached-Enabling Set). Let Π = 〈V ,A, cost, I,G〉 be a planning task
and F a factoring. Let sF be a decoupled state, let L be a leaf factor, and let p be a
partial assignment to L reached in sF .

We say that an L-state sL is a reached-enabling state for p in sF if

142 CHAPTER 10. PARTIAL-ORDER REDUCTION

(i) sL is reached in sF , and sL 6|= p; and

(ii) there is an L path πLs→r from sL to an L state rL where rL |= p.

An action set A is a reached-enabling set for p in sF if every path πLs→r as in (ii)
contains at least one action from A.

For illustration, in our above example where p = {p1 = A}, the only reached sL

where sL 6|= p is sL = {p1 = T}. That sL has two outgoing transitions, labeled
by unload(T, p1, A) respectively unload(T, p1, B). Intuitively, only unload(T, p1, A)
makes sense as an enabler for p. And indeed, that action is a reached-enabling set on its
own, because every path πLs→r achieving p must use it eventually.

It is easy to see that our construction is correct, in the sense that a reached p not true
at the end of πpast , yet true somewhere on πfuture , must be enabled on πfuture with an
action from a reached-enabling set:

Lemma 9. Let Π = 〈V ,A, cost, I,G〉 be a planning task and F a factoring. Let sF be
a solvable decoupled state, let L be a leaf factor, and let p be a partial assignment to L
reached in sF . Let πF be a decoupled plan for sF , and let π = 〈a1, . . . , an〉 be a global
plan given πF . Let A be a reached-enabling set for p in sF .

Define at, πpast , and πfuture as before. Denote the states traversed by π as s0, . . . , sn.
If st−1 6|= p but there exists k > t such that sk−1 |= p, then {at, . . . , ak−1} ∩ A 6= ∅.
Proof. Denote by πL = 〈aL1 , . . . , aLm〉 the leaf path ofL in π preceding ak, i. e., theL leaf
path induced by 〈a1, . . . , ak−1〉. Say that πL traverses the L-states sL0 , . . . , s

L
m. Denote

by l the index of the L state at the end of πpast . Denote by πLl→m := 〈aLl+1, . . . , a
L
m〉 the

segment of πL within πfuture .
By construction, sLl is reached in sF . By prerequisite, sLl 6|= p. Furthermore, sLm |= p

because, by construction, aLm is the last action preceding ak that affects L, so sLm agrees
with sk−1 on L, and by prerequisite sk−1 |= p. Finally, the segment πLl→m of πL is an
L-path from sLl to sLm. So sLl is a reached-enabling state for p in sF . By Definition 31,
A contains at least one action aLi from πLl→m, which shows the claim.

Observe that a reached-enabling set A is essentially a cut between the node sets
{sL} and {rL} in L’s state space. One could, hence, consider to compute reached-
enabling sets via minimum cuts. Observe though that this would be optimizing the
wrong objective—we want to minimize, not the number of cut-set transitions, but the
number of actions |A| these are labeled with. It is easy to see that optimizing that objec-
tive is NP-complete.2 More importantly, reached-enabling sets will need to be computed
very frequently—potentially many times on every search state—so their computation
must be extremely cheap.

2The proof uses a reduction from Hitting Set, where each label subset {l1, . . . , ln} is represented
through a separate path πL

s→r carrying these labels.

10.2. DECOUPLED STRONG STUBBORN SETS 143

An alternative could be a greedy procedure considering only the actions a labeling
an outgoing transition sL a−→ tL of a reached-enabling state sL, iteratively collecting and
removing one such a until the node sets {sL} and {rL} are disconnected. But this also
would be too expensive, requiring repeated reachability checks on the leaf state space.
We therefore settle for a trivial approximation, simply collecting all actions a from the
transitions sL a−→ tL. This makes the construction rather inclusive of course, that is, the
constructed reached-enabling sets may be large (e. g., we fail to discard unload(T, p1, B)
in the example above). We will show below how more targeted (yet sufficiently cheap)
constructions can be designed for goal decoupled states and for fork structures, where
enabling p is only relevant if its price decreases strictly.

We are now ready to put the pieces together, and define strong stubborn sets for
non-goal decoupled states:

Definition 32 (DSSS: Stars, Non-Goal). Let Π = 〈V ,A, cost, I,G〉 be a planning task
and F a factoring. Let sF be a non-goal decoupled state.

An action set AFs is a decoupled strong stubborn set (DSSS) for sF if all of the
following conditions hold:

(i) AFs contains a decoupled necessary enabling set for G in sF .

(ii) For all actions a ∈ AFs not reached in sF , AFs contains a decoupled necessary
enabling set for pre(a) in sF .

(iii) For all actions a ∈ AFs reached in sF , AFs contains all actions a′ interfering with
a and where pre(a) ‖ pre(a′).

(iv) For all actions a ∈ AFs reached in sF , and for all L where pre(a)[L] 6= ∅, AFs
contains a reached-enabling set for pre(a)[L] in sF .

Items (i) – (iii) of this definition are in obvious correspondence to that for strong
stubborn sets in standard search (cf. Chapter 10.1), replacing necessary enabling sets
with decoupled necessary enabling sets in (i) and (ii), and replacing applicability with
being reached in (ii) and (iii). The new item (iv) is needed to cover enablers for leaf
preconditions already reached in sF , as discussed above.

Clearly, the construction of DSSS as per Definition 32 is operational. Viewing the
definition as a recursive fixed-point algorithm, all the required constructs—decoupled
necessary enabling sets, interfering actions, reached-enabling sets—can be computed in
time low-order polynomial in the size of the input task and its leaf state spaces, i. e., in
the same size parameters as the computation of the decoupled states themselves.

It remains to prove that Definition 32 is actually correct, i. e., that a DSSS AFs for
sF is safe for sF . We do so via extending the proof for strong stubborn sets as given
in Chapter 10.1. In particular, we show that for every decoupled plan πF in sF , AFs

144 CHAPTER 10. PARTIAL-ORDER REDUCTION

contains a center action starting a permutation of πF (which by Definition 28 is also a
decoupled plan). Note that we actually prove the stronger result that the two decoupled
plans induce global plans leading to the same goal state, which implies the claim. We
include the full proof here, as the underlying analysis is key to understanding why our
techniques work.

The proof consists of six successive observations (a) – (e), and a final concluding
argument. Observations (a) – (c) correspond to those for the standard setting, namely
that (a) there exists a shared action, (b) the first shared action ak is applicable, (c) ak does
not interfere with the preceding actions. The only major difference here is that, in (b),
we can only conclude that ak is reached in the decoupled state sF , as opposed to being
applicable in a state s. Observation (e), moving ak up front, mirrors observation (d) for
the standard setting. Observations (c) and (f), as well as the concluding argument, are
new. They are required to: (c) deal with the difference between being reached vs. being
applicable; (f) prove that ak is a center action so we’re actually permuting the center
path and hence the decoupled plan; (concluding argument) deal with the more complex
structure of permutations, i. e., the interplay between decoupled plans and global plans.

Theorem 23. Let Π = 〈V ,A, cost, I,G〉 be a planning task and F a factoring. Let sF

be a solvable non-goal decoupled state, and let πF be a decoupled plan for sF . Let AFs
be a DSSS for sF . Then AFs contains a center action starting a permutation of πF .

Proof. Let π be a global plan for πF , and assume, without loss of generality by Lemma 8,
that π is past-maximal. Denote π = 〈a1, . . . , an〉. As above, let at be the starting action
of πC(πF) in π, and denote πpast := 〈a1, . . . , at−1〉 and πfuture := 〈at, . . . , an〉. Then
the following properties hold:

(a) There must be an action a shared betweenAFs and πfuture , i. e., a ∈ AFs ∩{at, . . . , an}.
First, G is not reached in sF , as sF is a non-goal decoupled state. By Definition 32
(i), AFs contains a decoupled necessary enabling set A for G in sF . At least one
a ∈ A must achieve some sub-assignment p of G that is not reached in sF . Observe
that this action a cannot be scheduled on πpast , and hence must be on πfuture : if p
pertains to the center, this is trivial; if p pertains to a leaf, this is so because otherwise
p would be reached in sF .

Given (a), let ak be the first shared action, i. e., say that ak ∈ AFs and {at, . . . ,
ak−1} ∩ AFs = ∅.

(b) ak is reached in sF .

This is because, otherwise, by Definition 32 (ii) AFs contains a decoupled necessary
enabling set A for pre(ak) in sF . With the same argument as in (a), applied to
pre(ak) instead of G, this yields a shared action between AFs and πfuture . That action
must precede ak on πfuture , in contradiction to ak being the first shared action.

10.2. DECOUPLED STRONG STUBBORN SETS 145

(c) ak does not interfere with any of the actions ai, t ≤ i ≤ k − 1, where pre(ak) ‖
pre(ai).

This is because, if it did, then by Definition 32 (iii) we would have ai ∈ AFs , again
in contradiction to ak being the first shared action.

(d) The leaf precondition of ak is true at the end of πpast , i. e., in I[[πpast]].

Assume to the contrary that, for some L, p := pre(ak)[L] is not true at the end
of πpast , i. e., prior to the application of ak in π. As π is a plan, p is true prior
to the application of ak however. In particular, k > t. Furthermore, by (b) and
Definition 32 (iv), AFs contains a reached-enabling set A for p in sF . We can apply
Lemma 9, and get that there exists an action ai ∈ A ⊆ AFs preceding ak on πfuture ,
again in contradiction.

(e) ak can be moved to the start of πfuture . Precisely, π′ := πpast ◦ 〈ak, at, . . . , ak−1,
ak+1, . . . , an〉 is a plan for Π.

To see this, consider that, first, ak is applicable after πpast , i. e., ak is applicable
to I[[πpast]]: by (b) ak is reached in sF , in particular its center precondition is true
at that point; by (d), its leaf precondition is true as well. Second, as both ak and
at are applicable in I[[πpast]], we must have pre(ak) ‖ pre(at), so by (c) at does
not interfere with ak, and hence ak is still applicable in s[[πpast ◦ 〈at〉]]. But then,
the same argument applies to at+1 and s[[πpast ◦ 〈at〉]], so iterating the argument we
obtain that, for t ≤ i ≤ k − 1, pre(ak) ‖ pre(ai) and ai does not interfere with ak.
The claim follows directly from this.

(f) ak is a center action.

Assume for contradiction that ak does not affect the center, ak ∈ AL6C for some L.
As π is past-maximal, ak cannot be moved in front of at in π without violating
the plan property. However, the plan π′ constructed as per (e) does exactly that, in
contradiction.

We can now easily construct the desired permutation πF ′ of πF . We construct the
underlying center-action sequence πC ′ to be like πC(πF), but moving the action ak,
which by (f) is a center action so is part of πC(πF), to the front. Consider the plan
π′ constructed as per (e). The center-action subsequence of π′ is πC(sF) ◦ πC ′. So π′

consists of that center path, augmented with cheapest goal leaf paths compliant with that
center path and ending in cheapest goal leaf states. Therefore, πC ′ induces a decoupled
plan πF ′ for sF , and the permutation π′ of π is a global plan for πF ′. This concludes the
argument.

Corollary 2. Let Π be a planning task and F a factoring for Π. Let sF be a solvable
non-goal decoupled state. Let AFs be a DSSS in sF . Then AFs is safe for sF .

146 CHAPTER 10. PARTIAL-ORDER REDUCTION

10.2.3 Goal Decoupled States
Let us now consider goal decoupled states sFG ∈ SFG . The only thing that needs to
change, relative to the definition of DSSS for non-goal decoupled states, is item (i):
How to ensure that there is a shared action, i. e., that at least one action from πfuture is
contained in AFs ?

For non-goal decoupled states, this question was easily answered in terms of a de-
coupled necessary enabling set, supporting some part p of G not reached in sF . In a goal
decoupled state G, however, such p does not exist. We instead need to capture all ways
in which the goal price of some leaf may still be improved. We do so in terms of what
we call goal-price frontier action sets:

Definition 33 (Goal-Price Frontier Set). Let Π = 〈V ,A, cost, I,G〉 be a planning task
and F a factoring. Let sFG be a goal decoupled state, and let L be a leaf factor where
G[L] 6= ∅.

We say that an L-transition sL a−→ tL is a goal-price frontier transition for L in sFG if

(i) sL is reached in sFG and prices(sFG)[sL] + cost(a) < prices(sFG)[tL]; and

(ii) sL a−→ tL is part of an L path πL from I[L] to an L-state rL where rL |= G[L] and
cost(πL) < gprice(sFG)[L].

An action set A is a goal-price frontier set for L in sFG if, for every path πL as in (ii),
the segment πLs→r of πL starting with sL a−→ tL contains at least one action from A.

Here, by gprice(sFG)[L] we denote the goal price of leaf L, so, extending the defini-
tion in Chapter 3.2.2: gprice(sFG)[L] := min{prices(sFG)[sL] | sL ∈ SL, sL |= G[L]}.

Example 11. Figure 10.1 shows the leaf state space of an example task with a car and a
manager, where V = {job, have-car, location}, with D(job) = {worker,manager},
D(have-car) = {T, F}, and D(location) = {A,B}. The actions are as follows:
A = {get-manager-job, walk, drive, get-company-car, buy-car}, where the action
get-manager-job changes the value of the variable job from worker to manager for
cost 1, walk and drive set position from A to B at a cost of 100, respectively 1,
where drive has the additional precondition {have-car=T}. The actions buy-car and
get-company-car set have-car from F to T at a cost of 20000, respectively 0, where
get-company-car has the additional precondition {job=manager}. The initial state is
I = {job=worker, have-car=F, location=A}, the goal is G = {location=B}.

We set the factoringF with a single leaf toC = {job} andL = {have-car, location}.
The pricing function of the initial decoupled state IF is shown in the red numbers next to
the states in Figure 10.1, where we abbreviate, e. g., state {have-car = F, location =
A} by FA. Observe that IF is a goal decoupled state, where the extracted global plan is
〈walk〉with a cost of 100. The goal-price frontier set for IF isA = {get-company-car},

10.2. DECOUPLED STRONG STUBBORN SETS 147

FA TA

FB TB

0 20000

100 20001

c=100walk

buy-car, c=20000

get-company-car, c=0

buy-car, c=20000

get-company-car, c=0

c=1drive

Figure 10.1: Illustration of the leaf state space of the task in Example 11. The actions
in the goal-price frontier set are highlighted in blue.

which captures the only way to reduce the goal price. In terms of the definition, both
FA and FB qualify as sL, where the respective tL are TA and TB.

We use the goal-price frontier sets for all leaf factors that have a goal to ensure
progress towards a cheaper goal decoupled state (replacing the decoupled necessary
enabling set for the goal). In our example, the action get-company-car in the goal-price
frontier set is not applicable because of the unsatisfied center precondition {have-car =
T}. This leads to the center action get-manager-job being added to AFs . Applying
it to IF results in the state sF := IF [[get-manager-job]] which has a global plan
〈get-manager-job, get-company-car, drive〉 with cost 2.

Similarly as for reached-enabling sets above, we prove that this construction indeed
captures all potential enabling actions. From this property, the proof of safety will
follow immediately. As the construction of a frontier is more selective than that of
reached-enabling sets—targeted at price-improving transitions—its correctness proof is
more complicated though.

Lemma 10. Let Π = 〈V ,A, cost, I,G〉 be a planning task and F a factoring. Let sFG
be a goal decoupled state, and let L be a leaf factor where G[L] 6= ∅. Let πF be a
decoupled plan for sFG, and let π be a global plan given πF . Let A be a goal-price
frontier set for L in sFG.

Define at, πpast , and πfuture as before, and denote the L-path within π by πL. If
cost(πL) < gprice(sFG)[L], then πfuture contains an action from A.

Proof. Denote by sL0 , . . . , s
L
m the leaf states traversed by πL. As πL strictly decreases

the goal price for L, πL cannot be fully contained in πpast . Denote by l the index of the
first action on πL where aLl is on πfuture .

By construction, sLm is a goal leaf state for L, and cost(πL) < gprice(sFG)[L]. In
particular, cost(πL) = cost(〈aL1 , . . . , aLm〉) < prices(sFG)[sLm], and hence there exists an
index i ≥ l where cost(〈aL1 , . . . , aLi 〉) < prices(sFG)[sLi]. Let i be the smallest such index.

Consider the transition sLi−1

aLi−→ sLi on πL. As i ≥ l, this transition is part of πfuture .

148 CHAPTER 10. PARTIAL-ORDER REDUCTION

Because i is the smallest index where cost(〈aL1 , . . . , aLi 〉) < prices(sFG)[sLi], it fol-
lows that prices(sFG)[sLi−1] ≤ cost(〈aL1 , . . . , aLi−1〉). Observe that, hence, sLi−1 is reached
in sFG, as its price is upper-bounded by a finite value. Further, observe that, adding
the cost of aLi on both sides of the inequality prices(sFG)[sLi−1] ≤ cost(〈aL1 , . . . , aLi−1〉),
we get prices(sFG)[sLi−1] + cost(aLi) ≤ cost(〈aL1 , . . . , aLi 〉). As, by construction, we
have cost(〈aL1 , . . . , aLi 〉) < prices(sFG)[sLi], we obtain that prices(sFG)[sLi−1] + cost(aLi) <

prices(sFG)[sLi]. Furthermore, sLi−1

aLi−→ sLi lies on the L path πL from I[L] to sLm where,
as already observed, sLm |= G[L] and cost(πL) < gprice(sFG)[L]. Putting these observa-

tions together, sLi−1

aLi−→ sLi is a goal-price frontier transition for L in sFG.
Therefore, as A is a goal-price frontier set for L in sFG, we know that the segment

〈aLi , . . . , aLm〉 of πL between sLi−1 and sLm must contain an action aLj ∈ A. The claim
follows as 〈aLi , . . . , aLm〉 is fully contained in πfuture .

How to compute a goal-price frontier set? Like for reached-enabling sets, this com-
putation is highly time-critical, so we settle for a similar very simple solution: We
collect all actions a labeling the goal-price frontier transitions sL a−→ tL. Note that this is
more targeted still than our solution for reached-enabling sets, as the definition of goal-
price frontier transitions is more restrictive. For effective implementation, we precom-
pute, within every leaf state space and for every leaf state sL, the minimum cost g∗(sL)
to reach sL from I[L], and the minimum cost h∗(sL) to reach G[L] from sL. Given sFG,
the goal-price frontier transitions then are exactly those sL a−→ tL that qualify for Defini-
tion 33 (i) which is cheap to test, and where g∗(sL) + cost(a) +h∗(tL) < gprice(sFG)[L].

We can now state the definition of DSSS for goal decoupled states very easily:

Definition 34 (DSSS: Stars, Goal). Let Π = 〈V ,A, cost, I,G〉 be a planning task and
F a factoring. Let sFG be a goal decoupled state.

An action set AFs is a decoupled strong stubborn set (DSSS) for sFG if all of the
following conditions hold:

(i) For every L where G[L] 6= ∅, AFs contains a goal-price frontier set for L in sFG.

(ii) – (iv) as for non-goal decoupled states, Definition 32, replacing sF with sFG.

The proof of safety also is very similar to that for non-goal decoupled states, i. e.,
that of Theorem 23:

Theorem 24. Let Π = 〈V ,A, cost, I,G〉 be a planning task and F a factoring. Let sFG
be a goal decoupled state for which 〈〉 is not an optimal decoupled plan, and let πF be
a strongly optimal decoupled plan for sFG. Let AFs be a DSSS for sFG. Then AFs contains
a center action starting a permutation of πF .

10.3. SPECIAL CASES FACILITATING MORE EFFECTIVE HANDLING 149

Proof. The only difference to the proof of Theorem 23 is in argument (a), showing that
there is a shared action a contained in both πfuture and AFs .

Observe that, with 〈〉 not being an optimal decoupled plan, πF must strictly decrease
the price of the goal for at least one leaf factor L. That is, there must exist L where
G[L] 6= ∅ and, denoting the L-path within π by πL, cost(πL) < gprice(sFG)[L]. By
Definition 34 (i) AFs contains a goal-price frontier set A for L in sFG. We can apply
Lemma 10, and get that πfuture contains an action from A, proving the claim.

Corollary 3. Let Π = 〈V ,A, cost, I,G〉 be a planning task and F a factoring. Let sFG
be a goal decoupled state for which 〈〉 is not an optimal decoupled plan. Let AFs be a
DSSS for sFG. Then AFs is safe for sFG.

Note that, if there is no goal-price frontier transition for L in sFG, then ∅ is a goal-
price frontier set for L in sFG. If this is so for all L on which a goal is defined, then,
consequently, ∅ is a DSSS for sFG. This is safe, i. e., we can prune all outgoing transitions
of sFG, because in this situation the goal price cannot be improved. In other words, goal-
price frontier sets encompass a sufficient criterion for safely stopping the search at sFG.

10.3 Special Cases Facilitating More Effective Handling
As we have seen, the construction of safe action sets in general star topologies requires
to be rather inclusive, collecting potentially many actions which is detrimental to prun-
ing power. This is specifically so for non-goal decoupled states (and hence most of the
search). The main difficulty is the handling of reached leaf conditions p, i. e., reached-
enabling sets. As p is already fully reached, in contrast to necessary enabling sets we
cannot focus on some small part of p that is still open.

A major remedy is the consideration of more restricted topologies, namely fork
and inverted-fork topologies. These are practically relevant, since they can be easily
identified and occur regularly in planning domains. The key property of these topologies
is monotonicity of the pricing function:

• Positive monotonicity: In a fork topology, the price of any one leaf state sL can
only decrease along a search path.

This is because the center has no precondition or effect on the leaves, so when-
ever a leaf path becomes center-compliant (all its preconditions on C have been
provided), it remains so forever after.

• Negative monotonicity: In an inverted-fork topology, the price of any one leaf
state sL can only increase along a search path.

This is because the only cross-factor interaction consists in preconditions of the
center on the leaves. So anything the center does can only pose more requirements

150 CHAPTER 10. PARTIAL-ORDER REDUCTION

on the leaves, and whenever a leaf path becomes non-center-compliant, it remains
so forever after.

Positive monotonicity is useful because, for reached leaf conditions p, the only fu-
ture event of interest is one that strictly decreases the price of some leaf state that sat-
isfies p. Hence necessary enablers for such p can now be identified in a more targeted
manner, similar to the goal-price frontier sets above. Negative monotonicity is use-
ful because, if a leaf condition p is not reached, then this will remain so and anything
requiring p can be pruned.

For the sake of conciseness, we give summary presentations only, deferring some
details, in particular the full proofs, to Appendix B.1. We consider fork topologies in
Chapter 10.3.1 and inverted-fork topologies in Chapter 10.3.2. In Chapter 10.3.3, we
show how to combine the respective techniques, as special-case treatments for individ-
ual fork/inverted-fork leaves as part of general star topologies.

10.3.1 Forks
As previously hinted, the major ingredient of our treatment for fork topologies is a
concept capturing how the price of a reached leaf condition p may be improved. This
being the key construction here, we introduce and discuss it in detail. The concept is
similar, but not identical to, the definition of goal-price frontier sets:

Definition 35 (Fork-Price Frontier Set). Let Π = 〈V ,A, cost, I,G〉 be a planning task
and F a fork factoring. Let sF be a decoupled state, let L be a leaf factor, and let p be
a partial assignment to L reached in sF .

We say that an L-transition sL a−→ tL is a fork-price frontier transition for p in sF if

(i) sL is reached in sF , prices(sF)[sL] + cost(a) < prices(sF)[tL], and center(sF) 6|=
pre(a)[C]; and

(ii) sL a−→ tL is part of a simple L path πL from I[L] to an L state rL where rL |= p
and cost(πL) < prices(sF)[rL].

An action set A is a fork-price frontier set for p in sF if, for every path πL as in (ii),
the segment πLs→r of πL starting with sL a−→ tL contains at least one action from A.

There are three differences to goal-price frontier sets (Definition 33): (a) the ad-
ditional requirement in (i) that center(sF) 6|= pre(a)[C]; (b) that πL is required to be
simple in (ii), i. e., visit each L-state at most once; (c) the weaker condition cost(πL) <
prices(sF)[rL] in (ii). Differences (a) and (b) are sound in fork topologies but not in
general, so are benefits of the focus on forks. Difference (c) is due to the difference
between non-goal vs. goal decoupled states: whereas on the latter the goal price must

10.3. SPECIAL CASES FACILITATING MORE EFFECTIVE HANDLING 151

be reduced globally, on non-goal decoupled states the price reduction will pertain only
to individual leaf states rL. On goal decoupled states sFG in fork topologies, we can get
rid of difference (c), i. e., instead of cost(πL) < prices(sF)[rL] we can use cost(πL) <
gprice(sFG)[L] as in Definition 33. We refer to the variant as fork-goal-price frontier sets.

As before, we show the correctness of our construction, i. e., that it indeed captures
all potential enabling actions. The proof is similar to that for goal-price frontier sets in
Lemma 10, with simple additions tackling the differences (a) – (c):

Lemma 11. Let Π = 〈V ,A, cost, I,G〉 be a planning task and F a fork factoring. Let
sF be a solvable decoupled state, let L be a leaf factor, and let p be a partial assignment
to L reached in sF . Let πF be a decoupled plan for sF , and let π be a global plan given
πF . Let A be a fork-price frontier set for p in sF .

Define at, πpast , and πfuture as before. If there exists k > t such that, denoting by
〈aL1 , . . . , aLi 〉 and sL0 , . . . , s

L
i the L-actions, respectively states, in π prior to ak, we have

cost(〈aL1 , . . . , aLi 〉) < prices(sF)[sLi] and sLi |= p, then {at, . . . , ak−1} ∩ A 6= ∅.
Proof (sketch). Similarly to the proof of Lemma 10, we consider the smallest index
j such that aLj is on πfuture and cost(〈aL1 , . . . , aLj 〉 < prices(sF)[sLj], and we prove that

sLj−1

aLj−→ sLj is a fork-price frontier transition for p in sF , from which the claim follows
directly.

Difference (c) does not change anything as it is merely a different condition on the
L-path end state, sLi in our case here, provided by prerequisite. It remains to prove that
(a) center(sF) 6|= pre(aLj)[C] and (b) πL is simple.

Regarding (a), as aLj affects L, in a fork topology aLj cannot affect the center. Further
more, from prices(sF)[sLj−1] + cost(aLj) < prices(sF)[sLj] which is proved exactly as in
Lemma 10, we can therefore conclude that aLj cannot be reached in sF . We do know,
however, that sLj−1 is reached in sF . As the only non-L precondition of aLj must be on
C, (a) follows.

Regarding (b), in a fork topology, any cheapest compliant leaf path is simple, be-
cause without center preconditions nor effect on the leaf there is no reason to visit the
same leaf state twice.

A similar claim holds for fork-goal-price frontier setsA, so if it holds that cost(πL)<
gprice(sFG)[L], then πfuture contains an action from A. The proof is a straightforward
combination of those for Lemmas 10 and 11, essentially applying arguments (a) and (b)
from the latter as an extension of the former to tackle the definition differences (a) and
(b) explained above.

From a practical perspective, in difference to goal-price frontier sets, item (ii) in
Definition 35 is moot. First, we cannot exploit (b) that πL must be simple, as the
question whether there exist vertex-disjoint paths from I[L] to sL and from tL to rL

is the 2-vertex-disjoint paths problem for directed graphs, which is known to be NP-
complete [Fortune et al., 1980]. Second, in the weaker condition in (c), cost(πL) <

152 CHAPTER 10. PARTIAL-ORDER REDUCTION

prices(sF)[rL], the value prices(sF)[rL] we are comparing the cost of πL to is not a
constant, i. e., depends on πL. One could check the condition through a search below
tL, or through precomputing all-pairs shortest paths on the leaf state spaces, but given
the associated overhead neither is promising. So we settle for the naïve approximation
collecting all actions a labeling the fork-price frontier transitions sL a−→ tL. For fork-
goal-price frontier sets, of course, we can apply the same filter as before, i. e., collect a
only where g∗(sL) + cost(a) + h∗(tL) < gprice(sFG)[L].

We are now ready to define decoupled strong stubborn sets for fork topologies. For
conciseness, we subsume both, the non-goal and goal cases, into a single definition:

Definition 36 (DSSS: Forks). Let Π = 〈V ,A, cost, I,G〉 be a planning task and F a
fork factoring. Let sF be a decoupled state.

An action set AFs is a fork-decoupled strong stubborn set (FDSSS) for sF if all of
the following conditions hold:

(i) If G is not reached in sF , then AFs contains a decoupled necessary enabling set
for G in sF .

If G is reached in sF , then, for every L where G[L] 6= ∅, AFs contains a fork-goal-
price frontier set for L in sFG.

(ii) For all actions a ∈ AFs not reached in sF , AFs contains a decoupled necessary
enabling set for pre(a) in sF .

(iii) For all center actions aC ∈ AFs ∩ AC reached in sF , AFs contains all actions a′

interfering with aC and where pre(aC) ‖ pre(a′).

(iv) For all leaf actions aL ∈ AFs ∩AL reached in sF ,AFs contains a fork-price frontier
set for pre(aL)[L] in sF .

Recall here that, for fork and inverted-fork topologies, the center actionsAC and the
leaf actionsAL are disjoint,AC ∩AL = ∅. Item (i) is an obvious combination handling
non-goal sF like Definition 32, and handling goal sF like Definition 34 but with fork-
goal-price frontier sets. Item (ii) is as before, item (iii) as well except that, as it turns
out, we need to select interfering actions only for center actions aC ∈ AFs ∩ AC . Item
(iv) replaces reached-enabling sets with fork-price frontier sets as advertised, doing so
only for leaf actions as center actions do not have leaf preconditions in a fork.3

3We remark that, in the latter, a fork-price frontier set needs to be collected even if pre(aL)[L] = ∅.
This is because aL may need to be on πfuture to correct a detrimental effect of some other, not-yet-
reached, leaf action on πfuture . In the special case where L consists of a single variable though, the latter
cannot happen, so in that special case a fork-price frontier set is not required for pre(aL)[L] = ∅. We
exploit that special case in our implementation.

10.3. SPECIAL CASES FACILITATING MORE EFFECTIVE HANDLING 153

As mentioned before, our safety proof makes use of a notion of past-maximality
different from that used for star topologies (Definition 29). We defer the details to Ap-
pendix B.1. Essentially, π is fork-past-maximal if, whenever on πfuture we apply a leaf
action ak to a leaf state sLi already reached in sF , then we do so on a leaf path achieving
sLi at a price cheaper than that in sF . Intuitively, this makes sense as, otherwise, we
could have as well used a compliant path for sLi in πpast already. Formally, every global
plan can be transformed into a fork-past-maximal global plan of equal or cheaper cost.

Theorem 25. Let Π = 〈V ,A, cost, I,G〉 be a planning task and F a fork factoring. Let
sF be a solvable decoupled state for which 〈〉 is not an optimal decoupled plan, and let
πF be a strongly optimal decoupled plan for sF . Let AFs be an FDSSS for sF . Then AFs
contains a center action starting a permutation of πF .

Proof (sketch). The proof is similar to that of Theorems 23 and 24. There is one major
difference.

As before, we consider a global plan π for πF . We assume without loss of generality
that π is fork-past-maximal. We denote at, πpast , and πfuture as before.

The argument (a) that there must be an action a shared between AFs and πfuture is
the same as in the proof of Theorem 23 in the case of non-goal sF . For goal sF , it is the
same as in the proof of Theorem 24, replacing Lemma 10 with the variant of Lemma 11
for fork-goal-price frontier sets.

Denoting by ak the first shared action, that (b) ak is reached in sF follows with the
same argument as in the proof of Theorem 23.

The one major difference is that we have to prove next that (c) ak is a center action,
because Definition 36 (iii) includes interfering actions for center actions aC ∈ AFs ∩AC
only.

Once (c) is shown, the same argument as in Theorem 23 (c) shows that ak does not
interfere with any of the actions ai, t ≤ i ≤ k−1. The same argument as in Theorem 23
(e) shows that ak can be moved to the start of πfuture . The same concluding argument as
in Theorem 23 shows the claim.

So, how do we show (c)? If ak is a leaf action, ak ∈ AL, then by Definition 36
(iv) AFs contains a fork-price frontier set A for p := pre(ak)[L] in sF . As at is a cen-
ter action, given the fork topology we know that ak 6= at and hence k > t. Hence
fork-past-maximality applies, showing that cost(〈aL1 , . . . , aLi 〉) < prices(sF)[sLi] where
〈aL1 , . . . , aLi 〉 and sL0 , . . . , s

L
i denote the L actions, respectively states, in π prior to ak.

Applying Lemma 11 yields that {at, . . . , ak−1} ∩ A 6= ∅, in contradiction to ak being
the first shared action, concluding the proof.

Corollary 4. Let Π = 〈V ,A, cost, I,G〉 be a planning task and F a fork factoring. Let
sF be a solvable decoupled state for which 〈〉 is not an optimal decoupled plan. Let AFs
be an FDSSS in sF . Then AFs is safe for sF .

154 CHAPTER 10. PARTIAL-ORDER REDUCTION

10.3.2 Inverted Forks
Our modifications for inverted-fork topologies are much simpler than those for forks.
This has two main reasons:

• On goal decoupled state sFG, we do not need to do anything at all. This is because,
with negative monotonicity—pricing functions increasing monotonically along
search paths—the prices below sFG can never improve. So there is no need to
search below sFG, and we do not need to define any pruning techniques for that
case (in other words: just set AFs := ∅).

• On non-goal decoupled states, the intricacies of enabling reached leaf conditions
p remain essentially the same as in general star toplogies—all we know is that p
is false after πpast but may need to be made true in the future. Hence we need to
include reached-enabling sets just like for general star topologies.

Given this, our modifications are confined to discarding any actions a from AFs
whose leaf preconditions aren’t reached in sF—which preserves safety simply because
such a can never occur on πfuture . For the sake of completeness, let us state the latter
formally:

Proposition 9. Let Π = 〈V ,A, cost, I,G〉 be a planning task and F an inverted-fork
factoring. Let sF be a solvable decoupled state. Let πF be a decoupled plan for sF , and
let π be a global plan given πF . Let a be an action where pre(a)[V \ C] is not reached
in sF . Define at, πpast , and πfuture as before. Then a does not occur on πfuture .

Proof. Assume to the contrary that a does occur on πfuture . There must be at least one
leaf factor where the precondition of a on that factor is not reached in sF . Let L be such
a leaf factor. Then pre(a)[L] must be supported, in π, by a πC(sF) ◦ πC(πF)-compliant
L path πL, ending in sL where sL |= pre(a)[L]. Given the inverted-fork structure, the
actions in πL have preconditions on L only. Therefore, πL also is πC(sF)-compliant.
But then, prices(sF)[sL] <∞ in contradiction.

The simplified definitions are as follows. First, necessary enabling sets need to
worry about the center only, as an unreached leaf condition is unsolvable; and actions
whose leaf preconditions are not reached can be discarded:

Definition 37 (Center-Necessary Enabling Set). Let Π = 〈V ,A, cost, I,G〉 be a plan-
ning task and F an inverted-fork factoring. Let sF be a decoupled state, and let p be a
partial variable assignment to C not reached in sF .

An action set A is a center-necessary enabling set for p in sF if there exists v ∈
vars(p) such that center(sF)[v] 6= p[v], and A = {a ∈ A | eff(a)[v] = p[v], pre(a)[V \
C] is reached in sF}.

10.3. SPECIAL CASES FACILITATING MORE EFFECTIVE HANDLING 155

For reached-enabling sets, nothing changes. This is because, cf. Definition 31, these
catch actions from leaf paths πL starting in reached-enabling states sL, one of whose
properties is that sL is reached in sF . But then, as an L leaf path has preconditions
only on L itself, all actions on πL are already reached, and there are no unreached leaf
preconditions to prune.

The definition of DSSS now mirrors that of DSSS for general star topologies:

Definition 38 (DSSS: Inverted Forks). Let Π = 〈V ,A, cost, I,G〉 be a planning task
and F an inverted-fork factoring. Let sF be a non-goal decoupled state where G[V \C]
is reached in sF .

An action set AFs is an inverted-fork decoupled strong stubborn set (IFDSSS) for sF

if all of the following conditions hold:

(i) AFs contains a center-necessary enabling set for G[C] in sF .

(ii) For all center actions a ∈ AFs not reached in sF , AFs contains a center-necessary
enabling set for pre(a)[C] in sF .

(iii) For all actions a ∈ AFs reached in sF , AFs contains all actions a′ interfering with
a where pre(a) ‖ pre(a′) and pre(a′)[V \ C] is reached in sF .

(iv) For all actions a ∈ AFs reached in sF , and for all L where pre(a)[L] 6= ∅, AFs
contains a reached-enabling set for pre(a)[L] in sF .

Compared to DSSS for general star topologies (Definition 32), we can restrict focus
to decoupled states sF where the leaf goal is reached, because otherwise sF is unsolv-
able. We use center-necessary enabling sets instead of decoupled necessary enabling
sets. We discard actions whose leaf preconditions are not reached, and given this, un-
reached leaf actions are never included, so only unreached center actions need to be
supported.

Safety of this construction follows immediately from safety of DSSS for general star
topologies, together with Proposition 9:

Corollary 5. Let Π = 〈V ,A, cost, I,G〉 be a planning task and F an inverted-fork
factoring. Let sF be a solvable non-goal decoupled state. Let AFs be an IFDSSS in sF .
Then AFs is safe for sF .

Proof. The proof of Theorem 23 remains intact almost exactly as stated. The only
addition we need to make is in arguments (a) – (c), where we invoke Proposition 9 to
show that the shared action identified on πfuture (a,b), respectively the actions preceding
ak on πfuture (c), do not have unreached leaf preconditions.

156 CHAPTER 10. PARTIAL-ORDER REDUCTION

We remark that, in the special case of inverted-fork topologies where all leaf factors
consist of a single state variable only, one can modify Definition 38, using only center
actions in item (iii), and replacing item (iv) with a rule that includes center actions
a′ whose leaf preconditions compete with those of a center action a already included
into AFs . We use this more targeted definition as an optimization in our implementation.
Formal details are provided in Definition 69 in Appendix B.1. Although this special case
is interesting from a theoretical point of view, we did not observe a major impact in most
of the planning domains that we ran our analysis on, as we shall see in Chapter 10.5.

10.3.3 Fork/Inverted-Fork Leaves in General Star Topologies
One can also combine the observations just made for fork and inverted-fork topologies,
to obtain an enhanced variant of DSSS for general star topologies, exploiting the prop-
erties of individual fork/inverted-fork leaves. This is important as, in practice, it often
happens that even in general star topologies there are (inverted-)fork leaves that can be
treated more efficiently by the special-case algorithms.

Recall that fork/inverted-fork leaves behave like the leaves in the respective struc-
ture. That is, a fork leaf is one on which the center has neither precondition nor effect;
and an inverted-fork leaf is one on which the center has no effect, and that has no pre-
condition on the center. If such leaves occur in a general star topology, then we do not
get positive/negative monotonicity at the global level, but we do get it for each of these
individual leaves. This can be exploited in the same manner as specified above.

We define enhanced decoupled strong stubborn sets (EDSSS) towards this end. As
the details are simple yet cumbersome to spell out formally, we defer them to Ap-
pendix B.1. Here is a summary:

(i) Goal enablers: For non-goal sF , use decoupled necessary enabling sets. For goal
sF , use goal-price frontier sets for non-fork leaves, and use fork-goal-price frontier
sets for fork leaves. Discard actions with unreached inverted-fork preconditions.

(ii) Unreached action enablers: Use decoupled necessary enabling sets. Discard ac-
tions with unreached inverted-fork preconditions.

(iii) Reached action interference: As before, but only for non-fork-leaf actions, and
discarding actions with unreached inverted-fork preconditions.

(iv) Reached action enablers: For non-fork-leaf actions, use reached-enabling sets.
For fork-leaf actions, use fork-price frontier sets.

The proof of safety mirrors that of Theorem 23, the only major addition being a
new proof item showing that ak must be a non-fork action. The argument used for that
purpose is the same one used in Theorem 25 to prove that ak must be a center action. The

10.4. EXPONENTIAL SEPARATION FROM BASE METHODS 157

notions of past-maximality and fork-past-maximality are combined in these arguments,
in the sense of assuming these properties for the individual leaves L as appropriate.

10.4 Exponential Separation from Base Methods

Before proceeding to the empirical part of our research, we look into the theoretical
properties of the power of DSSS. We only give the proof sketch in this section, the full
proof is given in Appendix B.1.2.

We have already seen that decoupled search and SSS are complementary in that
each is exponentially separated from the other, see Chapter 6.2. Trivially, DSSS is
exponentially separated from each of decoupled search and SSS, simply because DSSS
naturally generalizes each of these components, so we can use the same task families to
show this. As a much stronger testimony to the power of DSSS, there are cases where
it is exponentially separated from both its components:

Theorem 26. DSSS is exponentially separated from both, decoupled search and SSS.

Two suitable families {Πn} arise from simple modifications of our logistics exam-
ple. First, say we have M trucks and N ∗M packages, where each truck Ti is associated
with a group of N packages that only Ti can transport. The number of reachable de-
coupled states is exponential in M because all trucks must be in the center factor. The
SSS-pruned reachable standard state space has size exponential in N because including
an (un)load action into As necessitates, due to interference via the truck move as above,
to include all applicable (un)load actions for the respective package group. However,
in decoupled search with DSSS pruning, there are only M + 1 reachable states. This
is because the two sources of pruning power combine gracefully. Decoupling gets rid
of the blow-up in N (the packages within a group become independent leaves), while
DSSS gets rid of the blow-up in M (only a single truck is committed to at a time).

In our second example, DSSS even is exponentially more than the sum of its com-
ponents: stubborn sets have exponentially more impact on the decoupled search space
than on the standard one. Say we have N packages and M trucks (where every truck
may transport every package). Then decoupled search blows up inM , and SSS does not
do anything because any package may require any truck. Applying DSSS to decoupled
search, no truck move is pruned in IF . However, after applying any one drive(Ti, A,B)
action, all package prices are the cheapest possible ones, the goal-price frontier is empty,
and DSSS stops the search. So, again, there are only M + 1 reachable states. As we
shall see next, similar phenomena seem to occur in the standard Logistics benchmarks.

158 CHAPTER 10. PARTIAL-ORDER REDUCTION

10.5 Experimental Evaluation
We implemented all variants of decoupled strong stubborn sets in our decoupled search
planner based on Fast Downward [Helmert, 2006b]. The general settings, benchmarks,
algorithms, and heuristics used in the evaluation are as described in Chapter 7.2. We
focus on optimal planning, where stubborn-sets pruning has been most commonly em-
ployed. For satisficing planning, the pruning does just not make sense, since typical
approaches here never generate all successors of an expanded state, anyway. The over-
head of the optimality-preserving stubborn-set computation then does not pay off. For
proving unsolvability, we did not observe any interesting results, since on the subset
of domains where a star factoring can be computed stubborn sets yield only very little
pruning. We use the IA factoring strategy throughout. The source code and evaluation
data are publicly available [Gnad, 2021a].

The definitions in Chapter 10.2 do not fully specify how to compute decoupled
strong stubborn sets, but rather state the properties such sets need to have. In par-
ticular, there are several ways to compute (1) decoupled necessary enabling sets, (2)
reached-enabling sets, and (3) goal-price frontier sets. For (1), we stick to the ordering
given in Definition 30, namely we first choose unreached leaf variable assignments, then
unreached center assignments. If this still does not result in a unique choice, we stick
to the variable-ordering of Fast Downward, which has also been used in prior work on
strong stubborn sets [Wehrle and Helmert, 2014]. In combination with our use of action
interference, where only interfering actions with agreeing preconditions are added to the
DSSS, our selection strategy corresponds to the “full/mutex + FD” strategy of Wehrle
and Helmert [2014]. For the standard search variant of strong stubborn sets pruning that
we compare to (S3), we use the strategy “full-syntactic-SSS-EC”, which is the strongest
variant of SSS pruning that is based on the same approach of computing stubborn sets.
Recently, a computation of stubborn sets based on atoms, instead of actions, has been
proposed [Röger et al., 2020]. We do not include that in the comparison, since it could
potentially be adapted to decoupled search, too. Regarding (2) and (3), we use the
approximations as described in Chapter 10.2.2 and Chapter 10.2.3, respectively.

The special case definitions from Chapter 10.3 also leave some freedom, namely in
how to compute fork(-goal)-price frontier sets and center-necessary enabling sets. For
the latter, we stick to the aforementioned static selection of yet unreached assignments.
Regarding the former, we implemented the algorithms outlined in Chapter 10.3.1.

We show results for two different configurations of decoupled strong stubborn sets,
the plain variant implementing the definitions from Chapter 10.2 (DS3), and a variant
that uses all optimizations from Chapter 10.3 whenever they are applicable (DS3o).

As a preview on the empirical results, it turns out that just like in standard search [Alk-
hazraji et al., 2012; Wehrle et al., 2013; Wehrle and Helmert, 2014], there exist domains
where stubborn sets pruning does not result in any reduction of the search space size.
Yet, computing a (decoupled) strong stubborn set for every state expanded in the search

10.5. EXPERIMENTAL EVALUATION 159

incurs a significant runtime overhead. Therefore, we implement a simple safety belt
mechanism to disable the pruning in planning instances where stubborn sets are not ef-
fective. To do so, we switch the stubborn sets off if after the first 1000 expanded states
less than 1% of the transitions have been pruned (a similar mechanism has been used
in Torralba and Hoffmann [2015]). We keep the safety belt rather permissive to only
disable the pruning in instances where effectively no transitions are being pruned. This
allows for a detailed analysis on how much pruning is needed to make up for the compu-
tational overhead of computing a (decoupled) strong stubborn set in every search state.
Expanding 1000 states usually takes only little time, so we expect the total overhead to
be small if the pruning does not pay off. On the other hand, if only a small fraction of
the transitions could be pruned during the first 1000 expansions, chances are high that it
remains like this throughout the entire search. We shall see in the next two sections that
both conjectures are valid in almost all domains.

In Figure 10.2 we report coverage results (number of instances solved). For blind
search, DS3 mostly inherits the highest coverage of its two components. Out of the 28
domains listed in the table, there are only 7 in which the combination is worse than DS,
and only 4 where coverage is lower than for S3. While this sounds like a negative result,
observe that also S3 drops in coverage compared to Base in 11 domains. On the positive
side, DS3 performs better than both baselines in Logistics, Rovers, and Woodworking.

Enabling the optimizations (DS3o) increases coverage over DS3 in Elevators, Lo-
gistics, and Openstacks by up to 2 instances. This somewhat disappointing result is not
mainly due to using the IA factoring strategy, which often produces fork or inverted-fork
factorings, as we observed in Figure 7.2 in Chapter 7.3. Even when using the factorings
obtained by Fork or IFork the results are the same.

Like in explicit-state blind search, where stubborn sets pruning only improves in
total coverage when enabling the safety-belt mechanism, decoupled strong stubborn
sets pruning has a significant per-state overhead that does not pay off if there is little
pruning.

When using A∗ with hLM-cut, the overall picture is similar. In this setting, we also
compare to the state-of-the-art planners symbolic bidirectional search (SBD) and Com-
plementary (C2). In general, the results look better for stubborn sets pruning in both
settings. We conjecture that the reason for this is the non-trivial per-state runtime of the
hLM-cut heuristic, so the relative overhead to compute the strong stubborn set is lower
per state. Still, even the best decoupled strong stubborn sets configuration with the op-
timizations and the safety belt only improves over both baselines in a single domain
(Tetris) by one instance. However, it quite reliably performs as good as its best compo-
nent, similar to the blind search setting.

In the scatter plots in Figure 10.3, we see that enabling strong stubborn sets pruning
leads to very similar behaviour in explicit-state search and decoupled search. In both
blind search and A∗ with hLM-cut, for both state representations the pruning is able to re-

160 CHAPTER 10. PARTIAL-ORDER REDUCTION

Blind Search A∗ with hLM-cut

Domain # #F B S3 S3s DSDS3DS3oDS3os B S3 S3s DSDS3DS3oDS3os SB C2

Agricola 20 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0
Childsnack 20 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0
DataNet 20 20 7 5 7 9 9 9 9 12 12 12 14 14 13 14 13 13
Depots 22 22 4 4 4 4 4 4 4 7 7 7 7 7 7 7 5 7
Driverlog 20 20 7 7 7 11 11 11 11 13 13 13 13 13 13 13 12 15
Elevators 30 30 13 12 12 16 14 15 16 22 22 22 23 23 23 23 25 25
Floortile 40 40 2 2 2 2 2 2 2 13 13 13 9 9 9 9 34 28
Freecell 80 42 3 0 2 0 0 0 0 2 1 2 2 0 0 2 2 3
GED 20 20 15 15 15 15 15 15 15 15 15 15 15 15 15 15 19 20
Grid 5 5 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3
Logistics 63 63 12 12 12 25 26 28 28 26 27 27 36 35 35 36 24 28
Miconic 150145 45 40 45 46 46 46 46 136136136135 135 135 135107 98
Mprime 35 6 6 6 6 4 4 4 4 6 6 6 4 4 4 4 6 6
NoMystery 20 20 8 8 8 20 14 14 19 14 14 14 20 18 18 20 14 20
Openstacks 80 50 25 22 22 20 19 20 20 24 22 22 20 20 20 20 50 40
Org-Split 20 16 6 4 5 3 2 2 2 11 9 9 9 7 7 7 5 5
ParcPrinter 20 13 1 13 13 3 6 6 6 4 13 13 7 13 13 13 2 4
PSR 50 48 47 47 47 48 48 48 48 47 47 47 48 48 48 48 48 48
Rovers 40 40 5 7 7 7 9 9 9 7 9 9 8 9 9 9 14 13
Satellite 36 36 5 6 6 5 6 6 6 7 11 11 9 12 11 11 8 9
Scanalyzer 30 9 6 3 4 3 3 3 3 5 3 3 5 4 4 5 6 6
Tetris 17 13 4 4 6 5 4 3 5 5 4 4 4 4 4 5 2 10
Tidybot 30 30 14 5 8 16 5 5 16 18 17 18 17 17 17 18 7 18
TPP 30 29 5 5 5 5 5 5 5 5 5 5 5 5 5 5 7 14
Transport 59 30 15 13 14 15 13 13 15 14 14 14 14 14 14 14 16 16
Trucks 30 27 5 4 5 4 4 4 4 9 9 9 10 10 10 10 10 12
Woodwork 30 26 6 10 10 7 11 11 11 14 23 23 17 20 20 20 19 17
Zenotravel 20 20 8 7 7 9 9 9 9 13 13 13 13 13 13 12 10 13
Other 593 36 10 10 10 10 10 10 10 11 11 11 11 11 11 11 11 11
Total 1630896 285272290313 300 303 324 462478480477 482 480 488487502

Figure 10.2: Coverage data (number of solved tasks) in optimal planning, on instances
where IA does not abstain. #F denotes the number of such instances per domain. Do-
mains with the same coverage for all planners are summarized in “Other”. We highlight
the best coverage (separately for blind search and A∗ with hLM-cut) in bold face.

duce search space size by several orders of magnitude. Where this happens, there is also
a significant reduction in runtime. In general, there is a significant runtime overhead,
though. This, however, can effectively be tackled with the safety-belt mechanism.

In Figure 10.4, in the two left-most columns we see that for both blind search and

10.5. EXPERIMENTAL EVALUATION 161

100 101 102 103 104 105 106 107 108
100
101
102
103
104
105
106
107
108

Base (lower for 8 tasks)

S
3

(l
ow

er
fo

r2
62

ta
sk

s)
Blind Search – Expansions

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

Base (lower for 401 tasks)

S
3

(l
ow

er
fo

r5
9

ta
sk

s)

Blind Search – Runtime

100 101 102 103 104 105 106 107
100
101
102
103
104
105
106
107

DS (lower for 9 tasks)

D
S
3o

(l
ow

er
fo

r7
5

ta
sk

s)

Blind Search – Expansions

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

DS (lower for 191 tasks)

D
S
3o

(l
ow

er
fo

r6
8

ta
sk

s)

Blind Search – Runtime

100 101 102 103 104 105 106 107 108
100
101
102
103
104
105
106
107
108

Base (lower for 14 tasks)

S
3

(l
ow

er
fo

r2
15

ta
sk

s)

A∗ + hLM-cut – Expansions

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

Base (lower for 566 tasks)

S
3

(l
ow

er
fo

r1
60

ta
sk

s)

A∗ + hLM-cut – Runtime

100 101 102 103 104 105 106 107
100
101
102
103
104
105
106
107

DS (lower for 12 tasks)

D
S
3o

(l
ow

er
fo

r7
4

ta
sk

s)

A∗ + hLM-cut – Expansions

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

DS (lower for 334 tasks)

D
S
3o

(l
ow

er
fo

r9
5

ta
sk

s)

A∗ + hLM-cut – Runtime

Figure 10.3: Scatter plots comparing the number of expanded states until the last f -
layer in A∗ (top), and runtime (bottom) of (from left to right) Base to S3 and DS to DS3o

in blind search (the two left-most columns) and in A∗ with hLM-cut (the two right-most
columns). In all plots we use factorings obtained by IA.

A∗ with hLM-cut decoupled strong stubborn sets generally outperform the pruning in
explicit-state search. There are still few instances, though, where the search spaces are
larger for decoupled search. We conjecture that decoupled stubborn sets lose pruning
power in these cases, since due to the more complex state structure more actions need
to be included. In comparison to Figure 7.25 in Chapter 7.6, where we compared basic
decoupled search to the same strong stubborn sets pruning (POR), we see a clear im-
provement in that DS3o seems to catch up on instances where previously POR had an
advantage.

In the right of Figure 10.4, we compare DS3 to the DS3o variant with the optimiza-
tions from Chapter 10.3. There is no significant difference between the versions, with
only few instances where the pruning is stronger or the runtime improves.

162 CHAPTER 10. PARTIAL-ORDER REDUCTION

100 101 102 103 104 105 106 107 108
100
101
102
103
104
105
106
107
108

S3 (lower for 6 tasks)

D
S
3o

(l
ow

er
fo

r2
41

ta
sk

s)

Blind Search – Expansions

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

S3 (lower for 51 tasks)

D
S
3o

(l
ow

er
fo

r1
82

ta
sk

s)

Blind Search – Runtime

100 101 102 103 104 105 106 107
100
101
102
103
104
105
106
107

S3 (lower for 36 tasks)

D
S
3o

(l
ow

er
fo

r2
76

ta
sk

s)

A∗ + hLM-cut – Expansions

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

S3 (lower for 149 tasks)

D
S
3o

(l
ow

er
fo

r2
83

ta
sk

s)

A∗ + hLM-cut – Runtime

100 101 102 103 104 105 106 107
100
101
102
103
104
105
106
107

DS3 (lower for 1 tasks)

D
S
3o

(l
ow

er
fo

r2
4

ta
sk

s)

Blind Search – Expansions

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

DS3 (lower for 172 tasks)

D
S
3o

(l
ow

er
fo

r1
01

ta
sk

s)

Blind Search – Runtime

Figure 10.4: Scatter plots comparing the number of expanded states until the last f -
layer in A∗ (top), and runtime (bottom) of S3 to DS3o in blind search (left), in A∗ with
hLM-cut (middle), and DS3 to DS3o in blind search (right). In all plots we use factorings
obtained by IA.

Chapter 11

Symmetry Breaking

Symmetry breaking is well-established and well-explored across several sub-areas of
computer science, including AI planning (e. g. Starke, 1991; Emerson and Sistla, 1996;
Fox and Long, 1999; Rintanen, 2003; Pochter et al., 2011; Domshlak et al., 2012). It
allows to prune (parts of) the exponential search resulting from, e. g., the presence of
objects with symmetric behavior. Variants of symmetry breaking have been proposed
by Fox and Long [1999] in the context of Graphplan [Blum and Furst, 1997; Long
and Fox, 1999], for SAT-based planning [Rintanen, 2003] and, most recently, for state-
space search [Pochter et al., 2011; Domshlak et al., 2012, 2013; Wehrle et al., 2015;
Sievers et al., 2015; Shleyfman et al., 2015]. In the latter setting, the symmetries take the
form of symmetry groups across states, called orbits. If several states from an orbit are
encountered, only one of these is explored. Upon finding a goal state, a reconstruction
procedure takes care of any discontinued paths in the solution. Symmetric states may
cause blow-ups in decoupled search as well, so the question is whether the two methods
can be integrated. We devise such an integration in this chapter, and demonstrate the
theoretical and practical benefits.

We start by introducing the required background and notation for symmetry break-
ing in classical planning, in particular structural symmetries [Shleyfman et al., 2015],
which capture previously proposed concepts of symmetry. These can be derived from
an input task’s syntax in a simple declarative manner. Based on this, we extend the
notion of symmetry relations to decoupled states and show how to compute decoupled
structural symmetries. We then introduce decoupled orbit space search, which exploits
symmetries in the decoupled state space, and prove its correctness. Finally, we show that
decoupled orbit space search is exponentially separated from its baseline components,
and evaluate our algorithm empirically.

This chapter is based on Gnad et al. [2017c]. The author of this work, Álvaro
Torralba, and Alexander Shleyfman contributed equally to that publication. All three
collaborated on developing the basic algorithm and showing its correctness. The im-
plementation was done by the author of this work, who contributed the application of

163

164 CHAPTER 11. SYMMETRY BREAKING

symmetries to decoupled states and the solution reconstruction; and Álvaro Torralba,
who was responsible for the lexicographic orderings and adapting the existing code of
symmetry breaking in explicit-state search to provide an interface for decoupled search.

11.1 Background
Symmetry breaking considers equivalence classes of symmetric states in the search
space, and allows for using representative states of each equivalence class. Shleyfman
et al. [2015] introduced the notion of structural symmetries, which are a relabeling of
the factored representation of a given planning task Π. Actions are mapped to actions,
variables to variables, and values to values (preserving the variable/value pairs struc-
ture). This relabeling induces an automorphism of the state space ΘΠ. We follow the
definition of structural symmetries for planning tasks as defined by Wehrle et al. [2015].

Given a directed graph G = 〈N,E〉, a permutation σ on the verticesN , s. t. (n, n′) ∈
E iff (σ(n), σ(n′)) ∈ E, is called an automorphism. The automorphisms of a graph G
form a group under composition. We call this group an automorphism group, and denote
it by Aut(G). For every permutation σ ∈ Aut(G) there exists an inverse permutation
σ−1 ∈ Aut(G) s.t. σ ◦ σ−1 is the identity permutation.

Definition 39 (Structural Symmetry). For a planning task Π = 〈V ,A, cost, I,G〉, let P
be the set of Π’s facts, i. e., pairs 〈v, d〉 with v ∈ V and d ∈ D(v). A structural symmetry
for Π is a permutation σ : P ∪ A→ P ∪ A such that:

(1) σ(Q) = Q, where Q := {{〈v, d〉 | d ∈ D(v)} | v ∈ V}.

(2) σ(A) = A, and, for all a ∈ A, pre(σ(a)) = σ(pre(a)), eff(σ(a)) = σ(eff(a)), and
cost(σ(a)) = cost(a),

(3) σ(G) = G.

where, for a set X , we define σ(X) := {σ(x) | x ∈ X}.

Condition (1) ensures that states are mapped to proper states, in particular that a
variable is mapped to a variable with same domain size, facts of a variable are not
mapped to multiple variables, and that the fact mapping is a bijection. For example, for
a (partial) state s, s′ = σ(s) is the (partial) state obtained from s such that for all 〈v, d〉
with v ∈ vars(s) and s[v] = d, we have σ(〈v, d〉) = 〈v′, d′〉 and s′[v′] = d′. These
properties are enforced by condition (2), which allows action permutation only when
condition (1) is satisfied for the permuted preconditions and effects, and if the action
costs are identical. Condition (3) stabilizes the goal, i. e., maps G to itself.

A set of structural symmetries Σ for a planning task Π induces a subgroup Γ of the
automorphism group Aut(ΘΠ), which in turn defines an equivalence relation over the

11.2. SYMMETRY RELATIONS OVER DECOUPLED STATES 165

states S of Π. Namely, we say that a state s is symmetric to a state s′ iff there exists an
automorphism σ ∈ Γ such that σ(s) = s′.

State-space search algorithms with symmetry elimination do not consider all states
s ∈ S, but only a single representative element of the equivalence class of s. These
equivalence classes are called orbits and are usually represented by one of its member
states that is called the canonical state. The search then explores all applicable actions,
and prunes the resulting successor states if another representative of their orbit has al-
ready been encountered during search. Due to the properties of structural symmetries,
this reduced state transition graph is guaranteed to still contain an optimal plan for every
state. However, determining if two states are symmetric is NP-hard [Luks, 1993]. To
overcome this, one can perform symmetry elimination by computing an approximated
canonical representative with an incomplete ad-hoc procedure that is not guaranteed
to detect all symmetries [Pochter et al., 2011]. We use the orbit space search (OSS)
algorithm introduced by Domshlak et al. [2015b]. OSS replaces each state by its ap-
proximated canonical representative, resulting in a search over the state transition graph
induced by the (approximated) canonical states.

11.2 Symmetry Relations over Decoupled States
To define symmetries in the decoupled state space, we restrict the allowed class of struc-
tural symmetries by imposing additional requirements on their properties. Similar to be-
fore, this is required to ensure that a decoupled state sF of a task Π decomposed viaF is
again mapped a proper decoupled state that can be represented with the same factoring.

Definition 40 (Decoupled Structural Symmetry). Let Π be a planning task, and let F
be a factoring for Π. Then σ is a decoupled structural symmetry if and only if σ is a
structural symmetry and in addition it holds that:

(i) σ(C) = C, and

(ii) ∀L ∈ L : σ(L) ∈ L.

In words, decoupled structural symmetries are the subset of structural symmetries
that (i) stabilize the center (center facts are only mapped to center facts), and (ii) stabilize
the leaves (when permuting a fact of a leaf L1 to a fact of L2, all facts of L1 must be
permuted to facts of L2). Note that property (i) follows from property (ii) and the fact
that σ is a structural symmetry. Nevertheless, we include property (i) into the definition
for better readability. These properties are not tautological, i. e., there exist structural
symmetries that do not satisfy them:

Proposition 10. Not every structural symmetry is a decoupled structural symmetry.

166 CHAPTER 11. SYMMETRY BREAKING

v2

v3

v1
C

L
v2

v3

v1
C

Lσ

Figure 11.1: A structural symmetry σ that is not a decoupled structural symmetry for
the depicted factoring. Solid edges between variables are causal-graph connections.

Proof. Let Π be a planning task, s.t. V = {v1, v2, v3} is a set of binary variables,
A = {a1, a2} is a set of unit-cost actions, where pre(a1) = {〈v1, 0〉}, eff(a1) =
{〈v2, 1〉}, pre(a2) = {〈v3, 0〉}, eff(a2) = {〈v2, 1〉}, I = {〈v1, 0〉, 〈v2, 0〉〈v3, 0〉}, and
G = {〈v2, 1〉}. There is only one structural symmetry σ, where σ(a1) = a2, σ(v1) = v3,
and σ(v2) = v2. Let C = {v1} and L = {{v2, v3}} be a factoring with a single leaf L.
Figure 11.1 illustrates that σ is not a decoupled structural symmetry, because property
(i) of Definition 40 is violated. Namely σ(C) 6= C.

The example in Figure 11.1 shows that such symmetries cannot be exploited in
decoupled search.1

Applying a decoupled permutation to a decoupled state requires permuting its center
state and pricing function. We obtain the permuted pricing function by assigning the
price of each leaf state sL to σ(sL):

Definition 41 (Permuted Decoupled States). Let Π be a planning task, and let F be a
factoring for Π. Let sF be a decoupled state, and let σ be a decoupled structural symme-
try. We define σ(sF) as a decoupled state with center center(σ(sF)) := σ(center(sF)),
and prices prices(σ(sF)), where for each leaf state sL ∈ SL : prices(σ(sF))[σ(sL)] :=
prices(sF)[sL].

Note that σ(sF) is a valid decoupled state thanks to the properties of decoupled
structural symmetries: Property (i) ensures that σ(center(sF)) is indeed a center state,
because center variables are only mapped to center variables. Property (ii) ensures that
leaf states are always mapped to leaf states, and the price of a leaf state is mapped to the
price of its permuted counterpart. Additionally, (ii) ensures that all states in a leaf L1

are permuted into states of the same target leaf L2, so the permuted decoupled state can
be represented with F .

1We remark that, in practice as far as reflected by the IPC benchmarks and our factoring strategies,
this is typically not a serious limitation.

11.2. SYMMETRY RELATIONS OVER DECOUPLED STATES 167

Next, we show that decoupled structural symmetries induce an automorphism group
in the decoupled state space. We start by showing that decoupled structural symmetries
are a relabeling of the decoupled-state transitions.

Lemma 12. Let Π be an planning task, F a factoring for Π, sF a decoupled state,
and let σ be a decoupled structural symmetry. Then, sF a−→ tF is a transition in the

decoupled state space ΘFΠ if and only if σ(sF)
σ(a)−−→ σ(tF) is a transition in ΘFΠ .

Proof. First, observe that by Definition 41 both σ(sF) and σ(tF) are decoupled states
in ΘFΠ . Further, because σ stabilizes the center, σ(a) has a center effect, so is a center

action. It remains to show that σ(sF)
σ(a)−−→ σ(tF) is a transition in ΘFΠ .

We first show that σ(a) is applicable in σ(sF). For the center preconditions, because
σ is a decoupled structural symmetry, we get that center(σ(sF)) = σ(center(sF)) |=
σ(pre(a))[C] = pre(σ(a))[C]. For the leaves, there must be a leaf state sL for every
leaf L ∈ L such that prices(sF)[sL] < ∞ and sL |= pre(a)[L]. Thus, again because
of the properties of decoupled structural symmetries, and Definition 41, for every L
there exists a leaf state σ(sL) =: tσ(L) ∈ Sσ(L) such that prices(σ(sF))[tσ(L)] < ∞ and
tσ(L) |= pre(σ(a))[σ(L)].

It remains to show that σ(sF)[[σ(a)]] = σ(tF). For the center state, this is obvious,
center(σ(sF))[[σ(a)]] = center(σ(tF)) because σ is a decoupled structural symmetry.

For the pricing function, by Definition 41, it holds that prices(σ(sF))[σ(sL)] =
prices(sF)[sL] for all sL ∈ SL. Because σ is a decoupled structural symmetry, it holds
that sL |= pre(a)[L] iff σ(sL) |= pre(σ(a))[σ(L)]. Thus, the set of leaf states Sσ(L)

c that
complies with σ(a) is a permutation via σ of the set of leaf states SLc that complies with
a. What is left to show is that, behind a, respectively σ(a), the set of leaf paths that
are enabled by center(tF), respectively center(σ(sF))[[σ(a)]], are permutations of each
other and are in one-to-one correspondence. This holds by the same arguments why
σ(a) is applicable in σ(sF) and by induction over the length of the compliant leaf paths.

The other direction follows by the same arguments because σ−1 is also a decoupled
structural symmetry.

This result extends to sequences of actions as follows:

Proposition 11. Let Π be a planning task, and F a factoring for Π. Let sF be a de-
coupled state reachable from IF , and let σ be a decoupled structural symmetry. Then
σ(sF) is a decoupled state reachable from σ(IF) s.t. for each leaf state sL ∈ SL,
prices(σ(sF))[σ(sL)] = prices(sF)[sL].

Proof. By induction on the path length. The base case, for IF , directly follows from the
definition of permuted decoupled states. The inductive case follows from Lemma 12.

168 CHAPTER 11. SYMMETRY BREAKING

s ∈ [sF] σ(s) ∈ [σ(sF)]

sF σ(sF)

σ

σ

Figure 11.2: Illustration of how the applications of a permutation to a decoupled state
corresponds to applying it on its hypercube.

We now prove one of our main results, namely that decoupled structural symmetries
induce an automorphism group over the decoupled state space:

Theorem 27. Let Π be a planning task, and F a factoring for Π. If σ is a decoupled
structural symmetry of Π and F , then σ is an automorphism of ΘFΠ .

Proof. Let Σ be the set of all decoupled structural symmetries over Π using the factoring
F . First, we show that Σ is a group. By Lemma 1 in Shleyfman et al. [2015] structural
symmetries form a finite group. By definition, Σ is a subset of this group, so it is enough
to show that Σ is closed under composition, i. e., if σ1, σ2 ∈ Σ then σ1 ◦ σ2 ∈ Σ. Let C
be the center variables of the factoring F , then σ1 ◦ σ2(C) = σ1(σ2(C)) = σ1(C) = C.
By the same argument, the leaves of the factoring are preserved under the composition.
Second, to prove that a decoupled structural symmetry σ induces a graph symmetry of
the decoupled state space ΘFΠ , we need to show that:

(i) σ(SF) = SF ,

(ii) σ(AC) = AC ,

(iii) sF a−→ tF with a ∈ AC iff σ(sF)
σ(a)−−→ σ(tF) with σ(a) ∈ AC

(iv) σ(SFG) = SFG .

Property (i) holds by Definitions 40 and 41, since σ is a relabeling of the vari-
able/value pairs that preserves the factoring. For property (ii), suppose that a ∈ AC ,
then a affects at least one variable in C. Thus, as σ(C) = C, σ(a) also affects at least
one variable in C and σ(a) ∈ AC . Property (iii) holds by Lemma 12, and property (ii).

Regarding property (iv), suppose that sFG ∈ SFG , then as center(sFG) is a goal center
state, this is also true for center(σ(sFG)) since σ stabilizes the center and the goal. For
every L ∈ L, there exists a goal leaf state sL ∈ SL s. t. prices(sFG)[sL] = cL <∞. Then,
σ(L) ∈ L and there exists a goal leaf state σ(sL) ∈ Sσ(L) s. t. prices(σ(sFG))[σ(sL)] =
cL, again because σ is a decoupled structural symmetry.

11.3. FINDING DECOUPLED-STATE SYMMETRIES 169

Applying a permutation to a decoupled state is equivalent to applying that permuta-
tion to each of the member states of its hypercube, as illustrated in Figure 11.2:

Theorem 28. Let Π be a planning task, and F a factoring for Π. Let sF be a decoupled
state, and let σ be a decoupled structural symmetry. Then σ(s) ∈ [σ(sF)] if and only if
s ∈ [sF], and price(σ(sF), σ(s)) = price(sF , s).

Proof. Let s be a state in [sF] with price p = price(sF , s). Then s = center(sF) ∪⋃
L∈L s[L]. If we apply the permutation σ to s, we obtain σ(s) = σ(center(sF)) ∪⋃
L∈L σ(s[L]). By Definition 41, we have center(σ(sF)) = σ(center(sF)), and for

every leaf state sL ∈ SL : prices(σ(sF))[σ(sL)] = prices(sF)[sL]. Hence, we get∑
L∈L prices(σ(sF))[σ(s[L])] =

∑
L∈L prices(sF)[s[L]] = p, and therefore σ(s) ∈

[σ(sF)] with price p.
The other direction follows by the same arguments because σ−1 is also a decoupled

structural symmetry.

11.3 Finding Decoupled-State Symmetries
It is obviously infeasible to compute the automorphism group of the state space ΘΠ

of a planning task Π directly on the state space. The state space symmetries need to
be inferred from the compact representation. Prior work introduced the problem de-
scription graph (PDG) of a task Π, and showed that the automorphism group of this
graph induces a subgroup of Aut(ΘΠ) [Pochter et al., 2011]. Later, Domshlak et al.
[2012] made some modifications to the definition of the PDG, mainly to allow support
of general-cost actions. Considering that the number of PDG vertices is linear in the
size of Π, its automorphism group can be found efficiently using off-the-shelf tools.
Our definition loosely follows that by Domshlak et al. [2012]:

Definition 42 (Problem Description Graph). Let Π be a planning task. The problem
description graph of Π, PDG(Π), is the colored digraph 〈N,E〉 with nodes N , node
colors col(n) for n ∈ N , and edges E:

N = {nv | v ∈ V} ∪
⋃
v∈V
{n〈v,d〉 | d ∈ D(v)} ∪ {na | a ∈ A},

col(n) =

1 if n = n〈v,d〉 and 〈v, d〉 ∈ G
2 + cost(a) if n = na and a ∈ A
0 otherwise

E =
⋃
v∈V
{〈nv, n〈v,d〉〉 | d ∈ D(v)} ∪

⋃
a∈A

(
Epre()
a ∪ Eeff()

a

)

170 CHAPTER 11. SYMMETRY BREAKING

Where Epre()
a and Eeff()

a are defined as follows:

Epre()
a = {〈n〈v,d〉, na〉 | 〈v, d〉 ∈ pre(a)},
Eeff()
a = {〈na, n〈v,d〉〉 | 〈v, d〉 ∈ eff(a)}.

The automorphism group of PDG(Π) induces a set of structural symmetries of Π.
By the same recipe we create a slightly modified version of the PDG, which induces the
decoupled structural symmetries of Π:

Definition 43 (Factored Problem Description Graph). Let Π be a planning task, F a
factoring for Π, and 〈N,E〉 the PDG of Π. The factored problem description graph of
Π given F , PDG(Π,F), is the colored digraph 〈N ′, E ′〉 with: N ′ = N ∪{nL | L ∈ L},
node colors extending those of PDG by col(nL) = −1 for all L ∈ L, and edges E ′ =
E ∪⋃L∈L{〈nL, nv〉 | v ∈ L}.

We ensure the properties required to only obtain decoupled structural symmetries
by adding the nL nodes. By attaching each nL node to the variables in L, leaf variables
can only be mapped to leaf variables (so center variables can only be mapped to center
variables). By coloring all nL nodes in the same color, we allow permutations across
leaf factors. Thus, because all variables of a particular leaf L are connected to exactly
one nL, we guarantee that if there exist symmetries that permute a variable of L1 to
one of L2, then all variables of L1 must be mapped into variables of L2. The structural
symmetries obtained from a factored PDG are obviously a subset of those that can be
obtained from the PDG of the same planning task.

Proposition 12. Let Π be a planning task, and F a factoring for Π. Every automor-
phism of PDG(Π,F) corresponds to a decoupled structural symmetry of Π and F .

Proof. PDG symmetries are structural symmetries of Π. The two additional properties
of decoupled structural symmetries are ensured by the new nodes nL for each leaf L.
These nodes ensure that center variables v ∈ C can only be mapped to center variables.
Further more, they ensure that if cross-leaf permutations exist, then the entire leaves
have to be permuted. Alternatively, leaf states sL ∈ SL are permuted within the same
leaf L.

11.4 Symmetry Breaking in Decoupled Search
Exploiting the symmetries of a planning task by pruning states has proved to be highly
beneficial in explicit-state search. We propose decoupled orbit space search (DOSS),
that applies symmetry pruning in the decoupled state space. Like orbit space search,
DOSS replaces each new decoupled state by its canonical representative. We next pro-
vide further details about how exactly a canonical decoupled state is computed and,
once the search is completed, how a valid (optimal) plan can be reconstructed from the
decoupled orbit state space.

11.4. SYMMETRY BREAKING IN DECOUPLED SEARCH 171

11.4.1 Mapping to Canonical Representatives

In orbit space search, every state is replaced by its canonical representative. The perfect
canonical state is defined as the one with minimal lexicographic ordering, given an
arbitrary total order on variable/value pairs. Because finding the coarsest relation is NP-
hard [Luks, 1993], OSS approximates canonical representatives through a local search
procedure, where search nodes correspond to states and search transitions correspond to
the application of one of the generators of the structural symmetry group. Search states
are ranked based on the lexicographical order. The search stops at a local minimum.

We adapt this idea to handle decoupled states. We define the perfect canonical de-
coupled state to be one with a lexicographically minimal center state given an arbitrary
total order on the values of center variables, and among these center-minimal decou-
pled states, one whose pricing function is lexicographically minimal according to an
arbitrary total order on the set SL of leaf states.2

Like in OSS, we approximate canonical representatives via a local search proce-
dure. For efficiency reasons, we divide this local search into two phases. A permutation
σ is called center-affecting for a decoupled state sF , if σ(center(sF)) 6= center(sF).
Otherwise, we say that σ is center-stable for sF . We first perform a local search only
considering center-affecting permutations, in order to obtain a decoupled state that is a
local minimum with respect to the center state. Note that these center-affecting permuta-
tions may also affect the leaves, but are only applied if they “improve” the current center
state. We then perform a second local search from that state, using only center-stable
permutations. Dividing the search into two phases reduces the computational overhead
to obtain the canonical decoupled state, since the more expensive checks of whether a
permutation produces a lexicographically smaller pricing function are only performed
for center-stable permutations.

11.4.2 Solution Reconstruction

When the search stops once a decoupled goal state sFG is found, the sequence of center
actions leading to sFG is not guaranteed to be valid, because a permutation can have been
applied in every step. Let σ0(sF0)

a1−→ σ1(sF1 [[a1]]) . . .
ak−→ σk(s

F
k [[ak]]) be a sequence

of decoupled transitions, where sFi = σi−1(sFi−1), sF0 = IF , and σk(s
F
k [[ak]]) |= G.

To obtain a plan for the given planning task, we need to compute a valid center path,
reconstruct the compliant leaf paths, and embed them into the center path.

We obtain a valid center path similarly to standard plan reconstruction in OSS
[Domshlak et al., 2012]. This procedure retrieves all permutations (σ0, . . . , σk) applied
during the search and then reconstructs a plan from the (real) initial decoupled state to

2Preferring center-minimality reduces the number of different center states among canonical decou-
pled states, which tends to be beneficial given the focus of decoupled search on the center.

172 CHAPTER 11. SYMMETRY BREAKING

a goal state by finding the applicable actions a′i that produce the unpermuted state in
every step. More formally, the reconstruction retrieves the following path:

sF0
a′1−→ σ−1

0 (sF1 [[a1]]) . . .
a′k−→ (σ−1

0 ◦ σ−1
1 ◦ · · · ◦ σ−1

k−1)(sFk [[ak]])

With a valid center path πC = 〈a′1, . . . , a′k〉, we apply the standard solution construc-
tion process of decoupled search. This is guaranteed to return the optimal global plan
that extends πC .

11.4.3 Completeness and Optimality
Herein, we prove that DOSS preserves the completeness and optimality of the underly-
ing search algorithm.

Lemma 13. Let Π be a planning task,F a factoring for Π, and σ a decoupled structural
symmetry. Let sF be a decoupled state. Then h∗F(σ(sF)) = h∗F(sF).

Proof. By Theorem 28, for every s ∈ [sF] with price p we have σ(s) ∈ [σ(sF)] with
the same price. By the properties of structural symmetries, h∗(s) = h∗(σ(s)) for all s ∈
[sF]. Therefore, h∗F(sF) = mins∈[sF] price(sF , s)+h∗(s) = mins∈[σ(sF)] price(σ(sF), s)+
h∗(s) = h∗F(σ(sF)).

Completeness and optimality now follow by an argument similar to that for OSS
[Domshlak et al., 2015b]:

Theorem 29. DOSS preserves completeness and optimality of the search algorithm
employed.

Proof. Let Π be a planning task, and let F be a factoring for Π. DOSS performs de-
coupled search by replacing each decoupled state sF with its canonical representative
σ(sF), where σ is a decoupled structural symmetry. By Lemma 13, the goal distance of
σ(sF) and sF is the same (recall that h∗F(sF) takes into account both the center and leaf
cost). Thus, an optimal plan for sF has the same cost as an optimal plan for σ(sF) and
we can safely replace sF by σ(sF). Since structural symmetries preserve action costs,
we furthermore get that for each step taking a transition in the decoupled state space
cost(ai) = cost(σ(ai)). The claim follows as decoupled search preserves completeness
and optimality.

11.5 Exponential Separation from Base Methods
We analyze the theoretical differences between DOSS and its two base components,
orbit-space search (OSS) and decoupled search (DS). This extends the results from

11.5. EXPONENTIAL SEPARATION FROM BASE METHODS 173

Chapter 6. Herein, we show that DOSS can be exponentially more efficient than both
of its components on the same family of planning tasks, so the combination is actually
more than the sum of its components.

Theorem 30. There exist families of planning tasks {Πn} with factoringsFn, structural
symmetries Γn, and decoupled structural symmetries Γnd ⊆ Γn such that the reachable
decoupled search space under DOSS has size polynomial in n, while both the reach-
able state space under OSS and the reachable decoupled state space ΘRFΠ have size
exponential in n.

Proof. Let Πn be a planning task s.t. V = {vC0 , . . . , vCn , vL1 , . . . , vLn}. Fn is a factoring
with n leaves L = {L1, . . . , Ln}. The n + 1 center variables vC0 , . . . , v

C
n are binary.

Each leaf variable vLi has domain D(vLi) = {0, . . . , i}, and is assigned to a leaf factor
Li = {vLi }. The initial state I assigns 0 to all variables, the goal is G = {〈vCi , 1〉 | 0 ≤
i ≤ n} ∪ {〈vLj , j〉 | 0 ≤ j ≤ n}. There are three types of (unit-cost) actions:

1. aC0 , where pre(aC0) = {〈vC0 , 1〉}, and eff(aC0) = {〈vC0 , 0〉},

2. aCi,1, where pre(aCi,1) = {〈vC0 , 0〉, 〈vCi , 0〉}, and eff(aCi,1) = {〈vC0 , 1〉, 〈vCi , 1〉}, for
i ∈ {1, . . . , n},

3. aLi,j , where pre(aLi,j) = {〈vLi , j〉} ∪ {〈vCk , 0〉 | 1 ≤ k ≤ n}, and eff(aLi,j) =
{〈vLi , j + 1〉}, for i ∈ {1, . . . , n}, j ∈ {0, . . . , i− 1}.

The structural symmetries Γn in this domain are such that all center variables except
vC0 are symmetric to one another, so vCi is symmetric to vCj for any i, j ∈ {1, . . . , n}.
There are no structural symmetries among the leaves because they have a different num-
ber of facts. Since there are n! combinations of leaf states that are reachable from the
initial state, the number of states considered by OSS is exponential in n.

Since the center precondition of all leaf actions aLi,j holds in the initial center state,
all decoupled states have the same pricing function in all leaves. The minimum possible
prices are obtained in the initial decoupled state and do not change later on. Decoupled
search still has to explore all different center states, of which there are 2n+1.

Finally, consider the search space of DOSS. The structural symmetries Γn only
affect center variables in Fn. Hence, Γnd = Γn are decoupled structural symmetries
under factoring Fn. As before, all decoupled states have the same pricing function, so
the state space explored by DOSS is isomorphic to the one explored by OSS projected
on the center variables, which has 2n different states. Therefore, the search space of
DOSS has polynomial size in n.

Note that the exponential separation does not imply that the search space under
DOSS will always be smaller than that of its components. While this is true for OSS
compared to standard search, decoupled search does not dominate Base, as we have seen

174 CHAPTER 11. SYMMETRY BREAKING

in Chapter 3.4.2. This of course also applies to the comparison to OSS, which is hence
exponentially separated from DOSS. However, as we shall see in the next section, in
practice the search space under DOSS tends to be smaller than that of decoupled search
and OSS.

11.6 Experimental Evaluation
We implemented DOSS in our decoupled search planner based on Fast Downward
[Helmert, 2006b]. The general settings, benchmarks, algorithms, and heuristics used
in the evaluation are as described in Chapter 7.2. We evaluate DOSS in satisficing
planning, optimal planning, and proving unsolvability. To obtain the decoupled struc-
tural symmetries of a planning task Π and factoring F , we use the BLISS tool [Junttila
and Kaski, 2007] on the factored problem description graph. We use the IA factoring
strategy throughout, since it is a simple strategy that returns good factorings in many
instances. The source code and evaluation data are publicly available [Gnad, 2021a].

We start by showing the results in satisficing planning, where we run explicit-state
search without pruning (Base), orbit-space search (OSS), and decoupled orbit-space
search (DOSS), with greedy best-first search and the hFF heuristic. We include cover-
age data (number of solved instances) in Figure 11.3 for search with and without the
use of preferred-operator pruning (PO). For the latter, we also compare to the LAMA
and BFWS planners. In this setting, we only apply the center-affecting symmetries,
because the use of all symmetries to compute the canonical representative incurs too
much overhead.

Without preferred-operator pruning (left part of the table), DOSS outperforms all
other methods overall. Looking at individual domains, there is no clear picture. DOSS
often inherits the strength of one of its base methods, but often performs worse than
both, too. There are, however, domains where DOSS in fact solves more instances than
both baselines, most remarkably in Childsnack, and in Depots. With PO, the results are
similar, in general, although there is no more domain where DOSS beats both baselines.
In contrast, there are more domains where the combination performs worse, most visibly
in TPP. As a result, total coverage is even lower than for Base. We conjecture that even
only applying the center-affecting symmetries incurs too much overhead.

In the scatter plots in Figure 11.4, we compare the search space size (number of
state evaluations) and runtime. On the left, we show the differences between OSS and
Base as a basis for the comparison of DOSS to DS (middle). In general, the results are
similar for decoupled search, although in contrast to explicit-state search all differences
are less pronounced. In terms of state evaluations, the use of symmetries in decoupled
search seems to be consistently better, compared to explicit-state search. For runtime,
however, we see that the overhead is apparently higher in decoupled search. For the
comparison between OSS and DOSS, the decoupled search variant is clearly ahead in

11.6. EXPERIMENTAL EVALUATION 175

GBFS with hFF + PO Pruning
Domain # #F Base OSS DS DOSS Base OSS DS DOSS LAMA BFWS

Agricola 20 20 10 8 10 8 12 10 12 8 12 10
Barman 40 2 0 1 0 0 0 2 0 0 2 2
Childsnack 20 20 0 7 2 20 6 17 20 20 6 8
DataNetwork 20 20 7 7 6 6 10 10 7 7 13 9
Depots 22 22 15 18 19 21 19 22 21 22 20 22
Driverlog 20 20 18 19 19 19 20 20 20 20 20 20
Floortile 40 40 8 8 5 6 8 9 6 6 8 5
Freecell 80 42 42 42 41 36 42 42 42 37 42 42
Grid 5 5 4 4 3 4 4 4 5 5 5 5
Logistics 63 63 51 57 63 63 61 60 63 63 63 62
Maintenance 20 9 1 1 1 0 2 2 2 2 3 8
Mprime 35 6 6 6 6 4 6 6 6 4 6 6
NoMystery 20 20 8 9 19 19 9 9 19 19 11 17
Organic-Split 20 19 12 12 11 10 11 12 11 9 12 12
ParcPrinter 30 20 20 20 20 20 20 20 20 20 20 19
Pathways 30 30 11 11 14 14 21 21 21 21 23 30
Rovers 40 40 22 23 21 21 40 40 40 38 40 40
Satellite 36 36 25 32 26 28 36 36 33 31 36 31
Tetris 20 17 4 5 4 5 9 10 11 10 14 13
Thoughtful 20 13 5 5 5 5 7 7 6 5 11 12
Tidybot 20 20 16 16 15 15 16 16 15 15 17 18
TPP 30 29 22 24 26 19 29 29 25 16 29 28
Trucks 30 27 13 15 13 13 16 17 15 15 16 14
Woodworking 40 37 31 31 33 33 37 37 37 37 37 21
Other 965 322 322 322 322 322 322 322 322 322 322 322
Total 1686 899 673 703 704 711 763 780 779 752 788 776

Figure 11.3: Coverage data, i. e., the number of solved tasks, in satisficing planning,
on instances where IA does not abstain. #F denotes the number of such instances per
domain. Domains with the same coverage for all planners are summarized in “Other”.
We highlight the best coverage (separately for search with vs. without preferred-operator
pruning) in bold face.

terms of state evaluations. For runtime, there is no advantage for either method, similar
advantages exist in both directions.

Next, we look into optimal planning. Here, we distinguish two DOSS configura-
tions: DOSS uses all symmetries, while DOSSC only uses the center-affecting symme-
tries to compute the canonical. We show results for blind search and A∗ with hLM-cut.
Coverage is shown in Figure 11.5. DOSS clearly outperforms all baseline planners and
even beats the state-of-the art planners SBD and C2 when used with hLM-cut. It often

176 CHAPTER 11. SYMMETRY BREAKING

100 101 102 103 104 105 106 107 108
100
101
102
103
104
105
106
107
108

Base (lower for 106 tasks)

O
S
S

(l
ow

er
fo

r7
45

ta
sk

s)

GBFS + hFF – Evaluations

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

Base (lower for 502 tasks)

O
S
S

(l
ow

er
fo

r5
97

ta
sk

s)

GBFS + hFF – Runtime

100 101 102 103 104 105 106 107 108
100
101
102
103
104
105
106
107
108

DS (lower for 36 tasks)

D
O
S
S

(l
ow

er
fo

r4
25

ta
sk

s) GBFS + hFF – Evaluations

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

DS (lower for 358 tasks)

D
O
S
S

(l
ow

er
fo

r2
70

ta
sk

s) GBFS + hFF – Runtime

100 101 102 103 104 105 106 107 108
100
101
102
103
104
105
106
107
108

OSS (lower for 51 tasks)

D
O
S
S

(l
ow

er
fo

r6
14

ta
sk

s) GBFS + hFF – Evaluations

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

OSS (lower for 247 tasks)

D
O
S
S

(l
ow

er
fo

r3
60

ta
sk

s) GBFS + hFF – Runtime

Figure 11.4: Scatter plots comparing the number of evaluated states (top), and runtime
(bottom) of OSS to Base (left), and DOSS to decoupled search (middle), and OSS
(right). In all plots we use factorings obtained by IA and run GBFS with hFF.

inherits the best coverage of OSS or DS, though sometimes performs worse. With blind
search, there are again two domains (Elevators and Logistics) where DOSS improves
over both base methods. When using A∗ with hLM-cut, there are even six domains where
this is the case, most notably in Childsnack. Comparing DOSS to DOSSC , in most
domains there is no big difference in coverage. The exception is Openstacks, where the
advantage of four/five instances leads to an overall win of DOSS.

In the four leftmost plots in Figure 11.6 we see that, where OSS almost always im-
proves search space size (top) and runtime (bottom) over Base, and does often do so by
a large margin, this effect is significantly less visible when enabling symmetry pruning
in decoupled search. Still, the additional pruning almost always pays off. Comparing
OSS to DOSS (third column), we see that DOSS consistently explores a smaller search
space. There are also often big advantages in terms of runtime, although there are also
some exceptions. Comparing the use of different symmetries to compute canonical de-
coupled states, we see only a minor difference. There is a minor positive trend for DOSS
in terms of search space size. This typically also translates to a runtime advantage.

We conclude our evaluation by showing results for proving unsolvability. We com-
pare the baselines to DOSS, using blind search and A∗ with hmax for deadend detection.
With hmax, we also include Sympa in the comparison. Looking at coverage (number of
instances proved unsolvable) in Figure 11.7, the picture is similar to optimal planning.
Good performance of the base methods is often inherited by DOSS, though not always.
Again, there are domains where DOSS improves over both DS and OSS, namely Doc-
Transfer and Rovers. Although DOSS can outperform Sympa in some domains with

11.6. EXPERIMENTAL EVALUATION 177

Blind Search A∗ with hLM-cut

Domain # #F Base OSS DS DOSSC DOSS Base OSS DS DOSSC DOSS SBD C2
Agricola 20 20 0 7 0 4 4 0 0 0 0 0 5 0
Childsnack 20 20 0 6 0 6 6 0 6 0 8 8 4 0
DataNet 20 20 7 7 9 9 9 12 12 14 14 14 13 13
Depots 22 22 4 6 4 5 6 7 8 7 9 9 5 7
Driverlog 20 20 7 7 11 11 11 13 13 13 13 13 12 15
Elevators 30 30 13 15 16 18 18 22 22 23 23 23 25 25
Floortile 40 40 2 2 2 2 2 13 16 9 11 11 34 28
Freecell 80 42 3 3 0 0 0 2 2 2 2 2 2 3
GED 20 20 15 15 15 15 15 15 15 15 15 15 19 20
Grid 5 5 1 1 1 1 1 2 2 2 2 2 2 3
Logistics 63 63 12 14 25 28 27 26 26 36 36 37 24 28
Miconic 150 145 45 51 46 47 47 136 137 135 135 135 107 98
Mprime 35 6 6 6 4 4 4 6 6 4 4 4 6 6
NoMystery 20 20 8 8 20 19 19 14 15 20 20 20 14 20
Openstacks 80 50 25 30 20 21 25 24 29 20 20 25 50 40
Org-Split 20 16 6 7 3 3 4 11 15 9 11 11 5 5
ParcPrinter 20 13 1 1 3 3 3 4 4 7 7 7 2 4
PSR 50 48 47 48 48 48 48 47 48 48 48 48 48 48
Rovers 40 40 5 5 7 7 7 7 7 8 9 9 14 13
Satellite 36 36 5 6 5 5 5 7 13 9 13 13 8 9
Scanalyzer 30 9 6 6 3 3 3 5 5 5 5 5 6 6
Tetris 17 13 4 7 5 7 7 5 7 4 5 5 2 10
Tidybot 30 30 14 14 16 16 16 18 19 17 18 17 7 18
TPP 30 29 5 6 5 5 5 5 7 5 6 6 7 14
Transport 59 30 15 15 15 15 15 14 14 14 15 15 16 16
Trucks 30 27 5 7 4 4 5 9 11 10 12 12 10 12
Woodwork 30 26 6 7 7 7 7 14 16 17 17 17 19 17
Zenotravel 20 20 8 8 9 8 8 13 13 13 11 11 10 13
Other 593 36 10 10 10 10 10 11 11 11 11 11 11 11
Total 1630 896 285 325 313 331 337 462 499 477 500 505 487 502

Figure 11.5: Same setup as in Figure 11.3 for optimal planning. We highlight the best
coverage (separately for blind search and A∗ with hLM-cut) in bold face.

hmax, it is not competitive overall; Sympa is too strong in Rovers and TPP.
In the scatter plots in Figure 11.8, observe that symmetry pruning almost always

pays off in proving unsolvability for both explicit-state and decoupled search. DOSS
also cleary outperforms OSS in terms of search space size and runtime.

178 CHAPTER 11. SYMMETRY BREAKING

100 101 102 103 104 105 106 107 108
100
101
102
103
104
105
106
107
108

Base (lower for 25 tasks)

O
S
S

(l
ow

er
fo

r3
51

ta
sk

s)

Blind Search – Expansions

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

Base (lower for 257 tasks)

O
S
S

(l
ow

er
fo

r2
72

ta
sk

s)

Blind Search – Runtime

100 101 102 103 104 105 106 107
100
101
102
103
104
105
106
107

DS (lower for 44 tasks)

D
O
S
S

(l
ow

er
fo

r1
51

ta
sk

s) Blind Search – Expansions

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

DS (lower for 123 tasks)

D
O
S
S

(l
ow

er
fo

r1
60

ta
sk

s) Blind Search – Runtime

100 101 102 103 104 105 106 107 108
100
101
102
103
104
105
106
107
108

OSS (lower for 4 tasks)

D
O
S
S

(l
ow

er
fo

r2
85

ta
sk

s) Blind Search – Expansions

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

OSS (lower for 124 tasks)
D
O
S
S

(l
ow

er
fo

r1
55

ta
sk

s) Blind Search – Runtime

100 101 102 103 104 105 106 107
100
101
102
103
104
105
106
107

DOSSC (lower for 33 tasks)

D
O
S
S

(l
ow

er
fo

r1
06

ta
sk

s) Blind Search – Expansions

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

DOSSC (lower for 138 tasks)

D
O
S
S

(l
ow

er
fo

r1
64

ta
sk

s) Blind Search – Runtime

Figure 11.6: Scatter plots comparing the number of expanded states until the last f -
layer in A∗ (top), and runtime (bottom) of OSS to Base (left), and DOSS to decoupled
search (second column) and OSS (third column). In the rightmost column, we compare
the use of difference lexicographic orderings. In all plots we use factorings obtained by
IA and run blind search.

Blind Search A∗ with hmax

Domain # #F Base OSS DS DOSS Base OSS DS DOSS Sympa

BagBarman 20 16 12 12 12 12 8 8 8 8 11
Cavediving 25 21 3 7 4 4 3 7 4 4 3
DocTransfer 20 20 5 5 5 8 7 12 13 14 10
NoMystery 23 23 2 2 12 12 2 3 12 12 12
Rovers 19 19 6 6 9 9 6 6 9 10 16
Tetris 20 20 5 10 5 10 5 10 5 5 5
TPP 30 30 17 17 12 12 16 16 15 15 24
Other 161 46 26 26 26 26 26 26 26 26 26∑

318 195 76 85 85 93 73 88 92 94 107
Unsolvable Benchmarks from Hoffmann et al. [2014]

3-SAT 30 1 1 1 1 1 1 1 1 1 0
NoMystery 25 25 0 0 24 24 0 0 25 25 24
Rovers 25 25 0 0 0 1 1 2 2 2 18
TPP 25 25 6 6 0 0 6 6 1 1 18
Other 11 0 0 0 0 0 0 0 0 0 0∑

116 76 7 7 25 26 8 9 29 29 60
Total 434 271 83 92 110 119 81 97 121 123 167

Figure 11.7: Same setup as in Figure 11.3 for proving unsolvability. We highlight the
best coverage (separately for blind search and A∗ with hmax) in bold face.

11.6. EXPERIMENTAL EVALUATION 179

100 101 102 103 104 105 106 107 108
100
101
102
103
104
105
106
107
108

Base (lower for 12 tasks)

O
S
S

(l
ow

er
fo

r6
2

ta
sk

s)

A∗ + hmax – Expansions

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

Base (lower for 62 tasks)

O
S
S

(l
ow

er
fo

r7
7

ta
sk

s)

A∗ + hmax – Runtime

100 101 102 103 104 105 106 107
100
101
102
103
104
105
106
107

DS (lower for 28 tasks)

D
O
S
S

(l
ow

er
fo

r6
3

ta
sk

s)
A∗ + hmax – Expansions

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

DS (lower for 56 tasks)

D
O
S
S

(l
ow

er
fo

r6
4

ta
sk

s)

A∗ + hmax – Runtime

100 101 102 103 104 105 106 107 108
100
101
102
103
104
105
106
107
108

OSS (lower for 1 tasks)
D
O
S
S

(l
ow

er
fo

r7
0

ta
sk

s)

A∗ + hmax – Expansions

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

OSS (lower for 47 tasks)

D
O
S
S

(l
ow

er
fo

r3
2

ta
sk

s)
A∗ + hmax – Runtime

Figure 11.8: Scatter plots comparing the number of expanded states (top), and run-
time (bottom) of OSS to Base (left), and DOSS to decoupled search (middle) and OSS
(right). In all plots we use factorings obtained by IA and run A∗ with hmax.

180 CHAPTER 11. SYMMETRY BREAKING

Chapter 12

Symbolic Leaf Representation

In this chapter we address a weakness of decoupled search: large leaf components
whose state space needs to be enumerated explicitly. We develop a symbolic represen-
tation of the leaf state spaces via decision diagrams, which can be significantly smaller
than the explicit enumeration of all reachable leaf states, and also more runtime efficient.

The pricing function for a leaf factor can be maintained in time low-order polyno-
mial in the size of the leaf factor’s state space. While this works well for small leaf
factors, it can be prohibitive for large leaves that contain many state variables. We ad-
dress this through symbolic leaf-state-space representation, resulting in a new hybrid of
explicit and symbolic search, performing explicit search on the center component and
symbolic search on the leaf state spaces.

Binary decision diagrams (BDDs) have been used in the past as an alternative to
explicit search, as they allow to represent large state spaces compactly [Bryant, 1986;
McMillan, 1993; Edelkamp and Helmert, 1999]. We build on prior work in planning that
has derived efficient techniques to run symbolic search [Jensen et al., 2008; Kissmann
and Edelkamp, 2011; Torralba et al., 2017].

Heuristic search is essential for the performance of planning as explicit-state search.
The compilation introduced in Chapter 4.1 that allows to plug any planning heuristic into
decoupled search, however, does not suit our symbolic leaves, as it requires to enumerate
all leaf states. We overcome this here, by an alternative compilation to leaf facts, which
avoids the explicit enumeration and benefits our compact symbolic leaf representation.
We showcase this with the hmax [Bonet and Geffner, 2001], hFF [Hoffmann and Nebel,
2001], and hLM-cut heuristic [Helmert and Domshlak, 2009].

This chapter is based on Gnad et al. [2017b]. The author of this work and Álvaro
Torralba contributed equally to the conceptual development of the symbolic leaf repre-
sentation and connection to heuristics. Álvaro Torralba implemented support for partial
states in the existing symbolic-search extension of a version of the Fast Downward
planner. The author of this work implemented the interface to decoupled states and the
heuristics that utilize the symbolic representation.

181

182 CHAPTER 12. SYMBOLIC LEAF REPRESENTATION

T = l1

p1 = T p1 = l2

p2 = T p2 = l2

> ⊥

T = l1

p1 = T p1 = l1

p2 = T p2 = l2

∞210

Figure 12.1: Illustration of two decision diagrams, a BDD (left) and an ADD (right)
representing sets of states in our running example. Solid edges correspond to “true”
assignments, dashed edges to “false” ones.

12.1 Background

Symbolic search is a state-space exploration technique that uses efficient data structures
to represent and manipulate sets of states [McMillan, 1993]. Binary Decision Dia-
grams (BDDs), in particular, often yield exponential gains compared to explicit enu-
meration [Bryant, 1986]. BDDs can be manipulated efficiently to maintain and process
sets of states, which is necessary to run the search. Algebraic Decision Diagrams [Bahar
et al., 1997] are an extension of BDDs that represent functions mapping each state to
a finite set of values, e. g., integers representing costs. In the context of planning, they
have been used to represent heuristic functions and to perform A∗ search [Hansen et al.,
2002]. We will use ADDs to represent the pricing function and to manipulate the prices
when computing heuristics.

Figure 12.1 shows illustrations of a BDD and an ADD that represent a set of states
in our logistics example. Nodes in the decision diagram correspond to variable assign-
ments, the edges indicate if the respective fact is satisfied (solid) or not (dashed). The
leaf nodes specify the set of reached states. All assignments along paths in the decision
diagram from the root to a leaf represent the states that are described by the BDD (paths
ending in >), respectively the cost of these states for the ADD.

To perform search, actions are represented via transition relations (TRs). A transi-
tion relation T represents a set of actions A′ ⊆ A of the same cost, through a BDD that
contains the set of all pairs of states (s, s′) such that s′ is reachable from s by applying
an action a ∈ A′. Given a set of states S and a transition relation T , the image operation
computes the set of successor states of S through T , i. e., the set of all states reachable
from a state in S by an action represented in T . The image operation has worst-case
complexity exponential in the number of state variables, but is usually more efficient
than expanding the states in S one by one. The symbolic variant of standard search

12.2. SYMBOLIC LEAF REPRESENTATION 183

algorithms is implemented by starting from the BDD representation of the initial state,
and iteratively computing the image. Once the set of reached states intersects with a
BDD that represents the set of goal states, the search stops and a plan can be extracted.

For further details regarding the use of BDDs and ADDs for symbolic search in
classical planning tasks, we refer to [Torralba et al., 2017].

12.2 Symbolic Leaf Representation
When dealing with leaves that have a small state space, the pricing function can be
kept explicitly. This requires a single entry per reachable leaf state that stores its price.
Caching transitions between leaf states then allows to efficiently update the pricing func-
tion. This becomes prohibitive, however, both memory and runtime wise, for large leaf
state spaces. We next introduce a symbolic representation of the pricing function using
decision diagrams.

We use different types of decision diagrams to address the different requirements of
the operations working on the pricing function. For each leaf L and price p, we keep
a BDD BL

p that represents all leaf states of L with price p.1 Additionally, we compute
a BDD BL

R that represents all leaf states of L reached with finite price, as well as an
ADD PL that represents all BL

p in a single data structure. As we will describe next,
different data structures ease the computation of certain operations required to perform
decoupled search. We next describe these operations and then explain how we use the
decision diagrams to implement these efficiently.

(1) CheckPre(sF , aC): check if a center action aC is applicable in a decoupled state sF .

(2) Apply(sF , aC): apply center action aC to sF , in particular, computing the set of leaf
states that satisfy the leaf preconditions of aC , and apply aC’s leaf effects.

(3) UpdatePrices(sF): update the pricing function for the newly generated decoupled
state sF , i. e., run a fixed-point computation with the leaf-only actions AL6C until no
new leaf states are reached and the pricing function is stable.

(4) CheckDominance(sF , tF): check if a new state is dominated by, or dominates an
existing state.

These operations must be performed directly on the symbolic representation, with-
out enumerating all leaf states at any point, so that the complexity of each operation de-
pends on the size of the decision diagram, not on the number of represented leaf states.

1We remark that the action costs are always natural numbers, and usually not very diverse, in all
standard classical planning benchmarks, so having a separate BDD per price p is not an issue. For more
general cost functions, it might make sense to switch to more suitable decision diagrams, like edge-valued
multi-valued decision diagrams (EVMDDs) [Ciardo and Siminiceanu, 2002; Speck et al., 2018].

184 CHAPTER 12. SYMBOLIC LEAF REPRESENTATION

Given leaf independence, the operations are always performed for each leaf separately.
We next describe how to do so using standard BDD and ADD operations.

To compute CheckPre(sF , aC) of a center action aC , we encode the leaf precondi-
tions of aC on a leaf L as a BDD BL

pre(aC) that describes the set of leaf states that satisfy
such preconditions. Then, aC is applicable if the intersection of BL

pre(aC) and the set of
reached leaf states BL

R is non-empty.
Apply(sF , aC) applies aC to the pricing function of a decoupled state sF . If aC

has preconditions on a leaf, we compute the intersection of the BL
p BDDs representing

prices(sF) with BL
pre(aC). If aC has an effect on a leaf, this can be applied to each BL

p

using the image operation with respect to the transition relation of aC projected to L.
UpdatePrices(sF) is a fundamental operation in decoupled search. The price up-

dates correspond to performing a symbolic uniform-cost search for every leaf factor
L ∈ L, using only those transition relations that correspond to leaf-only actions with an
effect on L whose center preconditions are satisfied by center(sF). The open list of this
search is initialized with the previous pricing function, i. e. the BL

p , inserting a leaf state
sL with a g-value of p. The search is run until the open list is empty, exhausting the leaf
state space reachable with the center preconditions provided by center(sF). After the
search, the closed list represents the desired pricing function, with a new BDD BL

p for
each cost layer containing the set of leaf states with this price.

The computation of CheckDominance(sF , tF) makes use of the ADD representation
of pricing functions. Dominance corresponds to the standard “lower or equal” operation
on ADDs, which checks whether one ADD has lower or equal value than the other for
every possible assignment. Observe that this is only efficiently doable for the basic dom-
inance pruning �. For augmented-cost dominance, �aug, we would need to compare
the price of individual leaf states, defeating the purpose of the compact representation.

The described implementation is suitable for optimal planning, where we need to
keep the price of each leaf state. If cost is not of interest, e. g., for satisficing planning or
proving unsolvability, there is no need to keep the actual price of every leaf state. In that
setting, it suffices to keep a single BDD BL

R to represent the reached leaf states of each
leaf L ∈ L. The operations are similar, except that updates can be done with the simpler
symbolic breadth first search, and dominance is performed by checking whether the set
of states represented by one BDD is a subset of another.

12.3 Connecting Symbolic Leaves to Heuristics

The buy-leaves compilation introduced in Chapter 4.1 in principle allows the usage of
any planning heuristic in decoupled search. This compilation depends on the decoupled
state sF for which the heuristic is computed, where a new auxiliary action a[sL] for each
reached leaf state sL is introduced, with effect sL and cost prices(sF)[sL]. Thereby, the

12.3. CONNECTING SYMBOLIC LEAVES TO HEURISTICS 185

heuristic has to “buy” a leaf state before being able to perform any other operation on
the variables of the corresponding leaf. This compilation does not easily extend to the
symbolic leaf representation, since we need to avoid the explicit enumeration of leaf
states. Instead, we compute the heuristic based on reached leaf facts, and use the ADD
representation of the pricing function to compute the heuristic.

A rather straightforward case are delete-relaxation heuristics, like hmax and hFF,
where it suffices to add an auxiliary action for each leaf fact. We set the cost of these
actions to the minimum price of any leaf state containing that fact. This can be com-
puted easily for each leaf by a single traversal over the ADD that represents its pricing
function. The auxiliary actions are formally defined in lines 5–8 in the algorithm in
Figure 12.2. Note that the adapted task (specified in line 10) is like the buy-leaves com-
pilation, except that the leaf-state actions a[sL] are split into leaf-fact actions av,d for
each fact 〈v, d〉 ∈ sL. For delete-relaxation heuristics, the splitting does not incur any
information loss. This is because the bought[L] facts remain true even after a a[sL]
action is applied, so the heuristic can simply combine the cheapest required leaf facts
across leaf states, anyway.

The case of hLM-cut is more complicated. The heuristic iteratively runs hmax, and
computes a disjunctive action landmark [Zhu and Givan, 2003; Hoffmann et al., 2004;
Richter et al., 2008; Richter and Westphal, 2010] after each iteration. This landmark is
called the cut, a set of non-zero cost actions at least one of which must be applied in any
plan. The cost of the actions in the cut is decreased by the minimum cmin of their costs.
This process is repeated until the value of hmax is 0. The final hLM-cut value is the sum of
all cmin. We provide the full details of our symbolic hLM-cut variant in Figure 12.2.

The computation of hmax within hLM-cut can be performed as described above, by
adding an auxiliary action per leaf fact. The difficulty is to determine for which of
the auxiliary actions we have to reduce the cost in each iteration. For single-variable
leaves, this is just the set of actions in the cut, as usual. For multi-variable leaves,
however, there is no mapping from auxiliary-fact actions to leaf states, and it can be
necessary to reduce the cost of several auxiliary actions that are not in the cut. For
example, consider a planning task with a single leaf of two variables, where D(v1) =
{q1, q

′
1}, D(v2) = {q2, q

′
2}. Let sF be a decoupled state with two finite-price leaf states,

prices(sF)[{v1 = q1, v2 = q2}] = 0, prices(sF)[{v1 = q′1, v2 = q′2}] = 1. The goal is
{v1 = q′1, v2 = q′2}, so the second leaf state needs to be bought for a price of 1. Say the
first iteration of hLM-cut finds the cut {av1,q′1} with a single auxiliary action, so cmin = 1.
In this case, the cost of the auxiliary action av2,q′2 must be reduced as well, because
otherwise the cost of buying the leaf state {v1 = q′1, v2 = q′2} would be counted more
than once, resulting in an inadmissible heuristic. This is because the cost of both av1,q′1 ,
and av2,q′2 is due to the same leaf state. Thus, decreasing the cost of one auxiliary-fact
action may cause a reduced cost of other auxiliary actions.

Instead of directly reducing the cost of the auxiliary actions involved in the cut,

186 CHAPTER 12. SYMBOLIC LEAF REPRESENTATION

1 Decoupled symbolic-leaf LM-cut(Π = 〈V ,A, cost, I,G〉, sF)
2 h← 0
3 P ← ADD(prices(sF))
4 Aaux ← {av,d | d ∈ D(v), v 6∈ C}
5 ∀d ∈ D(v), v ∈ L,L ∈ L :
6 pre(av,d)← {bought[L] = ⊥}
7 eff(av,d)← {v = d, bought[L] = >}
8 cost(av,d)← minsL∈SL,sL[v]=d P [sL]
9 I ′ ← I[C] ∪ {v = none | v 6∈ C} ∪ {bought[L] = ⊥ | L ∈ L}

10 Π′ ← 〈V∪{bought[L] | L ∈ L},A∪Aaux, I ′,G∪{bought[L]=> | L ∈ L}〉
11 while hmax(Π′, center(sF)) > 0 do
12 cut ← Compute disjunctive action landmark
13 cmin ← mina∈cut cost(a)
14 h← h+ cmin

// Decrease cost of actions in the cut

15 foreach a ∈ cut , a 6∈ Aaux do
16 cost(a)← cost(a)− cmin
17 end

// Decrease cost of auxiliary actions

18 foreach L ∈ L do
19 BDDcut ← ∨

av,d∈cut ,v∈L BDD(v, d)

20 ADDcut ← cmin · ADD(BDDcut)
21 P [L]← P [L]− ADDcut
22 ∀d ∈ D(v), v ∈ L : cost(av,d)← minsL∈SL,sL[v]=d P [sL]

23 end
24 end
25 return h

Figure 12.2: A variant of hLM-cut for decoupled search with symbolic leaves.

we reduce the prices of the corresponding states in the symbolic pricing function, and
recompute the cost of the auxiliary actions with respect to the new pricing function.
Given a cut, we construct an ADD that assigns a value of cmin to all leaf states containing
a fact whose corresponding auxiliary action is in the cut and 0 elsewhere. We subtract
this ADD from the pricing function and recompute the cost of each auxiliary action by a
new traversal over the resulting ADD. So whenever the cost of an auxiliary action aq for
a leaf fact q is decreased by cmin, we subtract cmin from every leaf state that satisfies q.
This results in a non-negative price, i. e., P [L](sL) − cmin ≥ 0 for all sL, because cmin
is the minimum action cost of all actions in the cut so cmin ≤ cost(aq) ≤ P [L](sL).

Furthermore, this procedure will reduce the price of exactly those leaf states contain-

12.4. EXPERIMENTAL EVALUATION 187

ing a fact whose corresponding auxiliary leaf actions would be in the cut when using
the explicit hLM-cut implementation (modulo different tie-breaking). This is due to the
fact that each leaf fact q in the initial layer of hLM-cut’s landmark graph can only result
from the application of an auxiliary leaf action. So, if the auxiliary achiever of q is in
the cut in the symbolic version, so are all auxiliary leaf actions whose effect contains q
in the explicit variant, and vice versa.

12.4 Experimental Evaluation
We implemented the symbolic leaf representation in our decoupled search planner based
on Fast Downward [Helmert, 2006b]. To do so, we integrated the symbolic search code
from the Symba planner [Torralba et al., 2014], and adopt the usage of the CUDD li-
brary to store and manage the symbolic leaf representations [Somenzi, 2021], as done
in Symba. We reuse the standard configuration, in particular the variable ordering, of
the existing symbolic search planner. The general settings, benchmarks, algorithms, and
heuristics used in the evaluation are as described in Chapter 7.2. We evaluate in opti-
mal planning, satisficing planning, and proving unsolvability. We use the IA factoring
strategy throughout, since it is a simple strategy that returns good factorings in many
instances. The source code and evaluation data are publicly available [Gnad, 2021a].

We start our evaluation by looking into optimal planning. We compare our new
symbolic-leaf representation (sl) to explicit-state search (Base) as a reference, to our
standard decoupled search configuration (DS), and a variant thereof (DS�) that em-
ploys basic dominance pruning � instead of augmented-cost dominance �aug, which,
as mentioned before, is not supported for the symbolic leaves. We run these planners
with blind search and A∗ with hLM-cut. In the latter setting, we include symbolic bidirec-
tional search (SBD) and the Complementary planner (C2) in the comparison.

Figure 12.3 shows coverage data (number of instances solved) on all planning tasks
where the IA factoring strategy is successful. Observe that the symbolic leaves con-
figuration consistently outperforms the base variant with explicit-state leaves. It only
solves one instance less than that baseline DS� with hLM-cut in Logistics. Otherwise,
it improves coverage by 1 to 2 instances across several domains, leading to an overall
superior coverage. Coverage increases mostly on instances where the leaves are too
big, i. e., where the construction of the leaf state spaces prior to the search runs out of
memory with the explicit representation. Compared to our standard decoupled search
configuration (DS), the picture is mixed. sl does still improve by up to 2 instances in
several domains, but also loses coverage in five domains—most notably in DataNetwork
and Elevators with blind search, and in Logistics with hLM-cut.

In the scatter plots in Figure 12.4, we see the initialization phase of the CUDD
library again, that we already observed in the evaluation in Chapter 7. CUDD preallo-
cates a lot of memory and the initialization takes a while to complete. For non-trivial

188 CHAPTER 12. SYMBOLIC LEAF REPRESENTATION

Blind Search A∗ with hLM-cut

Domain # #F Base DS DS� sl Base DS DS� sl SBD C2

Agricola 20 20 0 0 0 0 0 0 0 0 5 0
Childsnack 20 20 0 0 0 0 0 0 0 0 4 0
DataNetwork 20 20 7 9 5 5 12 14 12 12 13 13
Depots 22 22 4 4 4 4 7 7 7 7 5 7
Driverlog 20 20 7 11 11 11 13 13 13 13 12 15
Elevators 30 30 13 16 9 9 22 23 22 22 25 25
Floortile 40 40 2 2 2 2 13 9 9 9 34 28
Freecell 80 42 3 0 0 2 2 2 2 2 2 3
GED 20 20 15 15 15 15 15 15 15 15 19 20
Grid 5 5 1 1 1 1 2 2 2 2 2 3
Logistics 63 63 12 25 25 25 26 36 35 34 24 28
Miconic 150 145 45 46 47 47 136 135 135 135 107 98
Mprime 35 6 6 4 4 6 6 4 4 6 6 6
NoMystery 20 20 8 20 20 20 14 20 20 20 14 20
Openstacks 80 50 25 20 21 21 24 20 20 20 50 40
Organic-Split 20 16 6 3 3 5 11 9 9 11 5 5
ParcPrinter 20 13 1 3 3 4 4 7 7 7 2 4
PSR 50 48 47 48 46 46 47 48 47 47 48 48
Rovers 40 40 5 7 7 7 7 8 8 9 14 13
Satellite 36 36 5 5 5 5 7 9 9 9 8 9
Scanalyzer 30 9 6 3 3 3 5 5 5 5 6 6
Tetris 17 13 4 5 5 5 5 4 4 4 2 10
Tidybot 30 30 14 16 16 16 18 17 18 18 7 18
TPP 30 29 5 5 5 5 5 5 5 5 7 14
Transport 59 30 15 15 13 13 14 14 14 14 16 16
Trucks 30 27 5 4 4 4 9 10 10 10 10 12
Woodworking 30 26 6 7 7 8 14 17 16 17 19 17
Zenotravel 20 20 8 9 8 8 13 13 12 12 10 13
Other 593 36 10 10 10 10 11 11 11 11 11 11
Total 1630 896 285 313 299 307 462 477 471 476 487 502

Figure 12.3: Coverage data (number of solved tasks) in optimal planning, on instances
where IA does not abstain. #F denotes the number of such instances per domain. Do-
mains with the same coverage for all planners are summarized in “Other”. We highlight
the best coverage (separately for blind search and A∗ with hLM-cut) in bold face.

instances we see that the symbolic representation eventually always pays off in terms
of memory usage. Concerning runtime, there is still a clear trend that favors the sym-
bolic leaves with blind search. For A∗ with hLM-cut, though, there is no clear picture,
and the differences are small in general. This might be due to the repeated creation and

12.4. EXPERIMENTAL EVALUATION 189

104 105 106 107
104

105

106

107

DS� (lower for 260 tasks)

sl
(l

ow
er

fo
r3

8
ta

sk
s)

Blind Search – Memory

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

DS� (lower for 223 tasks)

sl
(l

ow
er

fo
r7

5
ta

sk
s)

Blind Search – Runtime

104 105 106 107
104

105

106

107

DS� (lower for 439 tasks)

sl
(l

ow
er

fo
r2

9
ta

sk
s)

A∗ + hLM-cut – Memory

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

DS� (lower for 425 tasks)

sl
(l

ow
er

fo
r4

3
ta

sk
s)

A∗ + hLM-cut – Runtime

Figure 12.4: Scatter plots comparing the memory usage (top), and runtime (bottom)
of sl to DS� with blind search (left), and A∗ with hLM-cut (right). In all plots we use
factorings obtained by IA.

manipulation of the ADDs that are used within the heuristic.
In satisficing planning we run greedy best-first search with the hFF heuristic, both

with and without preferred-operator pruning (PO). We compare to LAMA and BFWS
when PO pruning is enabled. Coverage data is shown in Figure 12.5. We observe sim-
ilar results as in optimal planning: sl improves over the explicit-leaf decoupled search
baseline in several domains, by up to 3 instances. Without preferred-operator pruning,
it loses 1 instance in coverage only in two domains, leading to an overall advantage.
With PO, overall it solves 6 more instances, loses 1 in Tetris and 2 in Trucks, but gains
9 instances across five domains. We conclude that the symbolic representation pays off
nicely in satisficing planning, where we only need to keep a single BDD per leaf.

This is confirmed by the scatter plots in Figure 12.6, where there is a clear runtime
advantage of the symbolic representation starting from around 10s search time. In terms
of memory, the advantage is rather small overall, although there are several instances
that show a clear memory reduction.

Finally, we look into proving unsolvability. We compare in blind search and A∗

with hmax, including SBD and the Sympa planner in the comparison for the latter. For
coverage, Figure 12.7, there is almost no difference. The main exception being the
Tetris domain when running blind search. Here, the symbolic leaf representation clearly
outperforms its explicit counterpart, solving 5 additional instances. Here, blind search
with explicit leaves runs out of memory. With hmax, both variants run out of time, so the
deadend pruning of the heuristic does not seem to be very effective, causing a significant
overhead without adequately reducing the size of the search space.

190 CHAPTER 12. SYMBOLIC LEAF REPRESENTATION

GBFS with hFF + PO Pruning
Domain # #F Base DS sl Base DS sl LAMA BFWS

Agricola 20 20 10 10 10 12 12 12 12 10
Barman 40 2 0 0 0 0 0 0 2 2
Childsnack 20 20 0 2 2 6 20 20 6 8
DataNetwork 20 20 7 6 6 10 7 9 13 9
Depots 22 22 15 19 19 19 21 21 20 22
Driverlog 20 20 18 19 19 20 20 20 20 20
Floortile 40 40 8 5 6 8 6 8 8 5
Freecell 80 42 42 41 41 42 42 42 42 42
Grid 5 5 4 3 3 4 5 5 5 5
Logistics 63 63 51 63 63 61 63 63 63 62
Maintenance 20 9 1 1 1 2 2 2 3 8
NoMystery 20 20 8 19 20 9 19 20 11 17
Organic-Split 20 19 12 11 10 11 11 11 12 12
ParcPrinter 30 20 20 20 20 20 20 20 20 19
Pathways 30 30 11 14 15 21 21 21 23 30
Rovers 40 40 22 21 22 40 40 40 40 40
Satellite 36 36 25 26 29 36 33 36 36 31
Tetris 20 17 4 4 3 9 11 10 14 13
Thoughtful 20 13 5 5 5 7 6 6 11 12
Tidybot 20 20 16 15 15 16 15 15 17 18
TPP 30 29 22 26 26 29 25 26 29 28
Trucks 30 27 13 13 13 16 15 13 16 14
Woodworking 40 37 31 33 33 37 37 37 37 21
Other 1000 328 328 328 328 328 328 328 328 328
Total 1686 899 673 704 709 763 779 785 788 776

Figure 12.5: Same setup as in Figure 12.3 for satisficing planning. We highlight the best
coverage (separately for search with vs. without the use of preferred-operator pruning,
PO) in bold face.

The scatter plots in Figure 12.8 also indicate that in general there is little difference
between the explicit and symbolic leaf representation in this setting.

12.4. EXPERIMENTAL EVALUATION 191

104 105 106 107
104

105

106

107

DS (lower for 659 tasks)

sl
(l

ow
er

fo
r4

3
ta

sk
s)

GBFS + hFF – Memory

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

DS (lower for 637 tasks)

sl
(l

ow
er

fo
r6

5
ta

sk
s)

GBFS + hFF – Runtime

104 105 106 107
104

105

106

107

DS (lower for 739 tasks)

sl
(l

ow
er

fo
r3

5
ta

sk
s)

GBFS + hFF + PO – Memory

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

DS (lower for 704 tasks)

sl
(l

ow
er

fo
r7

2
ta

sk
s)

GBFS + hFF + PO – Runtime

Figure 12.6: Scatter plots comparing the memory usage (top), and runtime (bottom) of
sl to DS with (left), vs. without the use of preferred-operator pruning (right). In all plots
we use factorings obtained by IA.

Blind Search A∗ with hmax Sym.
Domain # #F Base DS sl Base DS sl SBD Sympa

BagBarman 20 16 12 12 12 8 8 8 14 11
Cavediving 25 21 3 4 4 3 4 4 6 3
DocTransfer 20 20 5 5 5 7 13 13 5 10
NoMystery 23 23 2 12 12 2 12 12 5 12
Rovers 19 19 6 9 9 6 9 9 12 16
Tetris 20 20 5 5 10 5 5 5 5 5
TPP 30 30 17 12 12 16 15 14 21 24
Other 161 46 26 26 26 26 26 26 26 26∑

318 195 76 85 90 73 92 91 94 107
Unsolvable Benchmarks from Hoffmann et al. [2014]

3-SAT 30 1 1 1 1 1 1 1 0 0
NoMystery 25 25 0 24 24 0 25 25 5 24
Rovers 25 25 0 0 1 1 2 3 5 18
TPP 25 25 6 0 0 6 1 0 7 18
Other 11 0 0 0 0 0 0 0 0 0∑

116 76 7 25 26 8 29 29 17 60
Total 434 271 83 110 116 81 121 120 111 167

Figure 12.7: Same setup as in Figure 12.3 for proving unsolvability. We highlight the
best coverage (separately for blind search and A∗ with hmax) in bold face.

192 CHAPTER 12. SYMBOLIC LEAF REPRESENTATION

104 105 106 107
104

105

106

107

DS (lower for 102 tasks)

sl
(l

ow
er

fo
r8

ta
sk

s)

Blind Search – Memory

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

DS (lower for 91 tasks)

sl
(l

ow
er

fo
r1

9
ta

sk
s)

Blind Search – Runtime

104 105 106 107
104

105

106

107

DS (lower for 114 tasks)

sl
(l

ow
er

fo
r5

ta
sk

s)
A∗ + hmax – Memory

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

DS (lower for 104 tasks)

sl
(l

ow
er

fo
r1

5
ta

sk
s)

A∗ + hmax – Runtime

Figure 12.8: Scatter plots comparing the memory usage (top), and runtime (bottom) of
sl to DS with blind search (left), and A∗ with hmax (right). In all plots we use factorings
obtained by IA.

Chapter 13

Dominance Pruning for Fork
Topologies

In Part II of this work, we observed that the reachable decoupled state space can be
exponentially larger than the explicit state space, even on simple toy benchmarks.1 In
this chapter, we tackle this issue by extending the concept of decoupled-state dominance
relations, introducing new variants that are exponentially separated from the previous
notions of dominance. We devise several more powerful criteria to identify dominated
decoupled states, show that they preserve optimality, and establish their interrelations.

The worst-case exponential blow-ups often result from irrelevant distinctions in pric-
ing functions. One means to combat this, and more generally to improve search, is dom-
inance pruning, pruning a state sF if a better state tF has already been seen. But, given
the complex structure of decoupled states, when is one “better” than another? For the
basic criterion presented in Chapter 3.4.1, sFand tFmust have the same center state and
tF needs to have cheaper prices than sF for all leaf states. Here, we introduce advanced
methods, analyzing the structure of decoupled states to identify (and then, disregard)
irrelevant distinctions. We devise several such methods, using different sources of in-
formation. We characterize their relative pruning power, and show that they can yield
exponential search reductions. Experiments on standard planning benchmarks attest to
the possible practical benefits. The main text only outlines our proof arguments, full
proofs are provided in Appendix B.2.

This chapter is based on Torralba et al. [2016]. The author of this work and Álvaro
Torralba contributed equally to the adaptation of the notions of simulation relations to
decoupled states and the correctness proofs of the new relations. The implementation
of the novel dominance relations was done with equal contributions by both, where
Álvaro Torralba focused on providing an interface to connect leaf state spaces to the
existing code that identified dominance relations in explicit-state search. The author of

1See Chapter 3.4.2, in particular Example 5 for details.

193

194 CHAPTER 13. DOMINANCE PRUNING FOR FORK TOPOLOGIES

this work took care of the implementation details for decoupled states. An early version
of the implementation that is no longer utilized is due to Patrick Dubbert.

13.1 Decoupled State Dominance

In this chapter, we adopt the notion of dominance based on simulation relations from
prior work [Milner, 1971; Gentilini et al., 2003; Torralba and Hoffmann, 2015], where
a state s dominates a state t if s is at least as close to the goal as t. Before we introduce
the new dominance relations, we extend this concept to decoupled states.

Let PF(sF) the set of all augmented-optimal decoupled plans πF for a decoupled
state sF . By dF(sF) := minπF∈PF (sF) |πF |, we denote the minimum number of center
actions in any augmented-optimal plan for sF .

Definition 44 (Decoupled Dominance Relation). Let Π be a planning task, F a factor-
ing for Π, and sF , tF two decoupled states. A binary relation�⊆ SF ×SF over decou-
pled states is a decoupled dominance relation if sF � tF implies that h∗F(sF) ≥ h∗F(tF)
and dF(sF) ≥ dF(tF).

Intuitively, tF dominates sF if it has an at least equally good global plan and a
decoupled plan that is at most as long. The decoupled plan condition is needed only
in the presence of 0-cost actions, and ensures that the global plan for tF does not have
to traverse sF . In dominance pruning, given such a relation �, we prune a state sF at
generation time if we have already seen another state tF (i. e., tF is in the open or closed
list) such that sF � tF and g(sF) ≥ g(tF). If tF can be reached with equal or better
g-cost, pruning sF preserves completeness and optimality of the search algorithm.

We remark that the notion of decoupled dominance relations can be generalized
to augmented-cost dominance pruning against all visited states. This is easy to see
since the dominance relations we introduce here only consider the remaining cost and
distance of the respective decoupled states to the goal, not the cost of the paths these
were reached on. Thus, cheaper-visited pruning with any relation �X introduced in this
chapter can be replaced by all-visited pruning with the augmented-cost variant �Xaug of
such �X without sacrificing completeness or optimality. In our definitions and proofs
in this chapter, we stick to � for simplicity.

We derive practical decoupled dominance relations by efficiently testable sufficient
criteria. The relations differ in terms of their pruning power. We capture their relative
power with two simple notions. First, we say that �′ subsumes � if �′⊇�, i. e., if
�′ recognizes every occurrence of dominance recognized by �. We will also show
exponential separation between dominance relations, i. e., families of planning tasks
in which the decoupled state space is exponential in the size of the input task under
dominance pruning using � and polynomial when using �′. We will devise several

13.2. FRONTIER-BASED DOMINANCE 195

decoupled dominance relations, weaker and stronger ones. Weaker relations are useful
in practice (only) when they cause less computational overhead.

Recall the definition of dominance pruning from Chapter 3.4: Let sF and tF be two
decoupled states. We say that tF dominates sF , denoted sF � tF , iff center(tF) =
center(sF) and, for every leaf state sL ∈ SL, prices(tF)[sL] ≤ prices(sF)[sL].

This method simply does a point-wise comparison between prices(sF) and prices(tF),
whenever both have the same center state. Basic dominance pruning often helps to re-
duce search effort, but is unnecessarily restrictive in its insistence on all leaf prices being
cheaper. This is inappropriate in cases where sF has some irrelevant cheaper prices. It
may, indeed, cause exponential blow-ups.

Note that � is obviously a decoupled dominance relation. Since it requires that the
set of member states of sF is a subset of the member states of tF , all plans are trivially
preserved and the price of the member states is cheaper in tF .

The blow-up observed in Example 5 arises because through the leaf state prices, the
decoupled states “remember” the locations visited by the truck in the past. Recall that
in that variant of our logistics example, the truck can drive between any pair of loca-
tions. Say there only exists a single package with goal location l2. Then, for example
the decoupled state reached through the decoupled path 〈drive(T, l1, l3), drive(T, l3, l4)〉
has finite prices for (p, l1), (p, T), (p, l3), and (p, l4), and price∞ elsewhere; while the
decoupled state reached through the decoupled path 〈drive(T, l1, l4)〉 has finite prices for
(p, l1), (p, T), and (p, l4). Intuitively, the difference between the two pricing functions
does not matter, because, with initial location l1, the prices for (p, li), i > 2 are irrele-
vant. But without recognizing this fact, the decoupled state space enumerates (pricing
functions corresponding to) every combination of visited locations. We next devise
several new dominance relations that tackle this shortcoming.

Throughout the remainder of this chapter, for simplicity, and without loss of gener-
ality, we will assume that every leaf L ∈ L has a single goal leaf state, denoted sLG. We
will use sLI := I[L] to denote the initial leaf state for each leaf L ∈ L.

13.2 Frontier-Based Dominance
Our first dominance relation is based on the idea that differing prices on a leaf state
sL do not matter if “sL has no purpose”. In our example, say that we are checking
whether sF � tF and prices(sF)[{(p, l3)}] = 2 while prices(tF)[{(p, l3)}] = ∞, and
thus sF 6� tF . However, say that prices(sF)[{(p, T)}] = 1. Then the cheaper price for
(p, l3) in sF does not matter, because the only purpose of having the package at l3 is to
load it into the truck. Indeed, the only outgoing transition of the leaf state (p, l3) leads
to (p, T).

We capture the relevant leaf states in a decoupled state sF in terms of its frontier:
those leaf states that are either themselves relevant (this applies only to the goal leaf

196 CHAPTER 13. DOMINANCE PRUNING FOR FORK TOPOLOGIES

state), or that can still contribute to achieving cheaper prices somewhere.

Definition 45 (Frontier). We define the frontier of a decoupled state sF , F (sF) ⊆ SL

as F (sF) := {sLG} ∪ {sL | ∃sL
a−→ tL : prices(sF)[sL] + cost(a) < prices(sF)[tL]}.

From the set of frontier leaf states, we obtain a decoupled dominance relation by
comparing prices only on the frontier of sF :

Definition 46 (�F Dominance Relation). �F is a relation over decoupled states where
sF �F tF iff center(sF) = center(tF) and for all sL ∈ F (sF) : prices(sF)[sL] ≥
prices(tF)[sL].

Theorem 31. �F is a decoupled dominance relation.

Comparing the prices on the frontier is enough because, in any global plan for sF , if
a compliant leaf path πL decreases the price of the goal leaf state (e. g., from∞ to some
finite value), then πL must pass through a frontier state sL. Hence, in a global plan for
tF , we can use the postfix behind sL. This global plan can only be better than that for
sF because prices(sF)[sL] ≥ prices(tF)[sL].

It is easy to see that �F is strictly better than �:

Theorem 32. �F subsumes � and is exponentially separated from it.

The first part of this claim is trivial as both relations are based on comparing prices,
but �F does so on a subset of leaf states. A task family demonstrating the second
part of the claim is our logistics example. The only leaf action applicable in any leaf
state (p, li) is load(T, p, li), leading to (p, T). However, for any reachable sF , we have
prices(sF)[{(p, T)}] = 1 because this price is already achieved in the initial state, and
prices can only decrease. So the only possible frontier state, apart from (p, T), is the
goal (p, l2). But only two different prices are reachable for (p, l2), namely∞ and 2.

13.3 Effective-Price Dominance
Our next method is based on replacing the prices in tF , i. e., the dominating state in
the comparison sF � tF , with smaller effective prices, denoted Eprices(tF). We then
simply compare all such prices. First, we define how to compute the effective prices,
then we define the dominance relation based on this.

Definition 47 (Effective Prices). The effective pricing function Eprices(tF) := p of a
decoupled state tF is defined by the point-wise minimum function p that satisfies:

p[sL] =

prices(tF)[sL] if sL = sLG
min{prices(tF)[sL], max

sL
a−→tL

(
p[tL]− cost(a)

)
} otherwise

13.3. EFFECTIVE-PRICE DOMINANCE 197

Definition 48 (�E Dominance Relation). �E is a relation over decoupled states where
sF �E tF if and only if center(sF) = center(tF) and, for all sL ∈ SL, prices(sF)[sL] ≥
Eprices(tF)[sL].

The modified relation based on effective prices is sound because these are designed
to preserve h∗F(tF). In particular, (*) for any center path πC starting in tF , and for
any leaf state sL of leaf L, if πLs is a πC-compliant leaf path from sL to sLG, then there
exists a path πL from sLI to sLG that complies with πC(tF) ◦ πC such that cost(πL) ≤
Eprices(tF)[sL] + cost(πLs). In other words, if prices(tF)[sL] > Eprices(tF)[sL], then
any global plan can be modified to use some other leaf state which does provide a total
price of Eprices(tF)[sL] + cost(πLs) or less.

For each leaf, the effective prices can be computed by a simple backwards algorithm
starting at the goal leaf state sLG. To illustrate the concept, consider any decoupled state
tF in our logistics example. The price of (p, T) is always 1, and its effective price is 1,
too, because its successor leaf state sLG = {(p, l2)} always has an effective price≥ 2. For
any irrelevant location li, i > 2, however, due to the transition to (p, T) whose effective
price is 1, we get Eprices(tF)[{(p, li)}] = 0 regardless of what the actual price of (p, li)
in tF is. Intuitively, the effective price of 0 is sound for these leaf states, because there
is no global plan for tF that uses an load(T, p, li) action. The cheapest compliant path
will always be 〈load(T, p, l1), unload(T, p, l2)〉, since it is never required to unload the
package somewhere other than the goal location, as it would need to be loaded again.
So these locations have “no purpose”.

Theorem 33. �E is a decoupled dominance relation.

To prove Theorem 33, observe that, whenever sF �E tF , given a global plan for
sF , we can construct an equally good global plan for tF by using the same center
path πC , and, with (*) above, constructing equally good or cheaper compliant goal
leaf paths. To see that (*) holds, consider any tF , center path πC , leaf state sL, and
πC-compliant goal leaf path πLs starting in sL. In our example, e. g., say tF is reached
from IF by applying drive(T, l1, l3); that πC = 〈drive(T, l3, l2)〉; that sL = {(p, l3)};
and that πLs = 〈load(T, p, l3), unload(T, p, l2)〉. Then, there exists a leaf path πL =
〈load(T, p, l1), unload(T, p, l2)〉 that is compliant with πC(tF) ◦ πC .

Formally, denote πLs = 〈a1, . . . , an〉 and denote the leaf states it traverses by sL =
sL0 , . . . , s

L
n = sLG. Observe that, as Eprices(tF)[sLn] = prices(tF)[sLn], πLs necessarily

passes through a leaf state sLi whose effective and actual prices in tF are identical.
Let i be the smallest index for which that is so. Then, for all j < i, it holds that
Eprices(tF)[sLj] 6= prices(tF)[sLj], and thus by the definition of effective prices we have
that Eprices(tF)[sLj] ≥ Eprices(tF)[sLj+1]−cost(aj+1). Accumulating these inequalities,
we get that (**) Eprices(tF)[sL0] ≥ Eprices(tF)[sLi]−∑i

j=1 cost(aj). Consider now the
path πL from sLI to sLG constructed as the concatenation of: a cheapest πC(tF)-compliant
path to sLi (in our example, 〈load(T, p, l1)〉); with the postfix of πLs behind sLi (in our

198 CHAPTER 13. DOMINANCE PRUNING FOR FORK TOPOLOGIES

example, 〈unload(T, p, l2)〉). Then cost(πL) = prices(tF)[sLi] +
∑n

j=i+1 cost(aj). As
Eprices(tF)[sLi] = prices(tF)[sLi], we get cost(πL) = Eprices(tF)[sLi]+

∑n
j=i+1 cost(aj).

With (**), we get the desired property that cost(πL) ≤ Eprices(tF)[sL0]+
∑i

j=1 cost(aj)+∑n
j=i+1 cost(aj) = Eprices(tF)[sL] + cost(πLs).
While this method appears orthogonal to frontier-based dominance at first sight, it

turns out to subsume it:

Theorem 34. �E subsumes �F and is exponentially separated from it.

To prove the exponential separation, we extend our running example with a new
teleport(li, lj) action, for i, j > 2, that moves the package between irrelevant locations
if the truck is at l2. Then, as long as l2 and at least one such li have not been visited yet,
all leaf states (p, li) for i > 2 with finite price are in the frontier, and �F suffers from
the same blow-up as �. The effective prices of (p, li), however, remain 0 as before.

To see that �E subsumes �F , observe that the former can be viewed as a recursive
version of the latter, when reformulating the frontier condition to “∃sL a−→ tL : p[sL] <
p[tL]− cost(a)”. Formally, one can show that, if Eprices(tF)[sL] ≤ prices(sF)[sL] holds
for all frontier states sL ∈ F (sF), then it also holds for all non-frontier states sL 6∈
F (sF). This shows the claim as, for sF �F tF , we have prices(sF)[sL] ≥ prices(tF)[sL]
on sL ∈ F (sF), and thus prices(sF)[sL] ≥ Eprices(tF)[sL] on these states.

Note that, with the above, to evaluate �E it suffices to compare the price of sF vs.
effective price of tF on F (sF). This is equivalent to, but faster than, comparing all
prices.

13.4 Simulation-Based Dominance
In this section, we devise a dominance relation that is based itself on a simulation
relation over the leaf states of each leaf factor [Milner, 1971; Gentilini et al., 2003].
Thereby, similar to the last section, we can propagate leaf-state prices to states not ac-
tually reached, increasing the potential for dominance between decoupled states.

We use the concept of simulation relations on leaf state spaces in order to iden-
tify leaf states tL which “can do everything that another leaf state sL can do”. In
this situation, suppose that we are checking whether sF � tF , and prices(tF)[sL] >
prices(sF)[sL], but prices(tF)[tL] ≤ prices(sF)[sL]. Then tF can still dominate sF , be-
cause if a solution for sF relies on sL, then starting from tF we can use tL instead.2

2Note that this is quite different from the use of simulation relations on the state space for dominance
pruning in explicit-state search [Torralba and Hoffmann, 2015; Torralba, 2017, 2018]. In that approach,
the simulation is the dominance relation and the main difficulty is how to compute such a relation over
the exponentially large state space. In our approach, the simulation relation is over small leaf state spaces,
and it is a tool used towards defining a simulation relation over decoupled states.

13.4. SIMULATION-BASED DOMINANCE 199

Definition 49 (Leaf simulation). Let L ∈ L be a leaf factor. A binary relation �L on
L-states is a leaf simulation if: sLG 6�L sL for all sL 6= sLG; and whenever sL1 �L tL1 , for

every transition sL1
a−→ sL2 either (i) sL2 �L tL1 or (ii) there exists a transition tL1

a′−→ tL2
s.t. sL2 �L tL2 , pre(a′)[C] ⊆ pre(a)[C], and cost(a′) ≤ cost(a).

We call �L the coarsest leaf simulation if, for every leaf-simulation �′L, we have
�′L⊆�L.

This follows common notions, except for (i) which, intuitively, “allows tL1 to stay
where it is”, and except for allowing in (ii) different actions a′ so long as they are at
least as good in terms of center precondition and cost. The coarsest leaf simulation
can be computed in time polynomial in the size of the leaf state space, as usual with
simulation relations [Henzinger et al., 1995], and it has similar properties, such as being
reflexive and transitive.

It is easy to see that, whenever sL �L tL, if a leaf path πLs starting in sL complies
with a center path πC , then there exists a πC-compliant leaf path πLt starting in tL s.t.
cost(πLt) ≤ cost(πLs).

Lemma 14. Let �L be a leaf simulation and πC a center path. If sL �L tL and there
exists a path πLs from sL to sLG compliant with πC , then there exists a path πLt from tL to
sLG compliant with πC such that cost(πLt) ≤ cost(πLs).

Based on this, we define a new dominance relation that propagates the price of tL to
any leaf state sL that is simulated by tL:

Definition 50 (�S Dominance Relation). The relation �S over decoupled states is de-
fined by sF �S tF iff center(sF) = center(tF) and for all sL ∈ SL : prices(sF)[sL] ≥
minsL�LtL prices(tF)[tL].

Replacing the price of sL by minsL�LtL prices(tF)[tL] during the dominance pruning
comparison is safe. If sL �L tL and prices(sF)[tL] ≤ prices(sF)[sL], then the price of
sL is irrelevant because, for any possible center path πC , there exists an at least as good
compliant path from tL:

Theorem 35. �S is a decoupled dominance relation.

It is easy to see that this is strictly better than �:

Theorem 36. �S subsumes � and is exponentially separated from it.

The first part of this claim holds simply because �L is reflexive (and therefore
minsL�LtL prices(tF)[tL] ≤ prices(tF)[sL]). For the second part, we use again our run-
ning example. Leaf simulation captures that (p, li) �L (p, T) for all i > 2, since (p, T)
is the only successor of any (p, li) and naturally (p, T) �L (p, T). So, �S reduces the
price of such (p, li) to 1, avoiding the exponential blow-up.

200 CHAPTER 13. DOMINANCE PRUNING FOR FORK TOPOLOGIES

�

�F �E

�S

�ES6

Figure 13.1: Summary of method interrelations. “A → B”: B subsumes A and is
exponentially separated from it. “A 6↔ B”: A is exponentially separated from B and
vice versa.

Inspired by Torralba and Kissmann [2015], we also employ leaf simulation to dis-
cover and remove irrelevant leaf states and leaf actions. A transition sL a−→ tL is ir-
relevant if tL �L sL, or there exists another transition sL a′−→ uL such that tL � uL,
pre(a′)[C] ⊆ pre(a)[C], and cost(a′) ≤ cost(a). After removing such transitions, we
run a reachability check on the leaf state space, removing unreachable leaf states. We
subsequently remove leaf actions that do not induce any transition any longer. This re-
duces leaf state-space size, and may sometimes improve the heuristic function due to
the removal of some actions.

13.5 Method Interrelations and Combination
We have already established the relation of our methods relative to �, as well as the
relation between�E and�F . We next design a combination�ES of�E and�S , which
combines their respective strengths, and we establish the remaining method interrela-
tions. Figure 13.1 provides the overall picture.

The combined relation�ES is obtained by modifying the effective prices underlying
�E , enriching their definition with a leaf simulation, �L.

Definition 51 (Effective Simulation Prices). The effective simulation pricing function
ESprices(tF) := p of a decoupled state tF is defined by the point-wise minimum function
p that satisfies:

p[sL] =

prices(tF)[sL] if sL = sLG
min{minsL�LtL prices(tF)[tL], max

sL
a−→tL

(
p[tL]− cost(a)

)
} otherwise

We integrate the information from a leaf simulation into the effective prices by al-
lowing sL to take cheaper prices from simulating states tL. This amounts to substituting
prices(tF)[sL] with minsL�LtL prices(tF)[tL] in the equation. We thus obtain, again, a
decoupled dominance relation:

13.6. EXPERIMENTAL EVALUATION 201

Definition 52 (�ES Dominance Relation). �ES is the relation over decoupled states
where sF �ES tF iff center(sF) = center(tF) and for all sL ∈ SL : prices(sF)[sL] ≥
ESprices(tF)[sL].

Theorem 37. �ES is a decoupled dominance relation.

Theorem 37 is shown by adapting the property (*) underlying the proof of Theo-
rem 33. Say πLs = 〈a1, . . . , an〉 is a πC-compliant goal leaf path starting in sL, travers-
ing the leaf states sL = sL0 , . . . , s

L
n = sLG. Then, with the same arguments as before,

there exists i such that (a) ESprices(tF)[sL0] ≥ ESprices(tF)[sLi] −∑i
j=1 cost(ai), and

(b) ESprices(tF)[sLi] = minsLi �LtL prices(tF)[tL]. We construct our desired path πL

from sLI to sLG by a cheapest πC(tF)-compliant path to a leaf state tL that minimizes
the expression in (b), concatenated with a πC-compliant goal leaf path πLt starting in tL

where cost(πLt) ≤ cost(πLs). Such πLt exists by the properties of leaf simulations, as in
Theorem 35.
�ES subsumes each of its components. The exponential separations therefore follow

directly from the individual ones:

Theorem 38. �ES subsumes �E and �S , and is exponentially separated from each of
them.

One can also construct cases where �ES yields an exponentially stronger reduction
than both �E and �S , i. e., where �ES is strictly more than the sum of its components.
We complete our analysis by filling in the missing cases:

Theorem 39. �S is exponentially separated from�E , and therefore also from�F . �F ,
and therefore also �E , is exponentially separated from �S .

13.6 Experimental Evaluation
We implemented the new dominance relations in our decoupled search planner based
on Fast Downward [Helmert, 2006b]. The general settings, benchmarks, algorithms,
and heuristics used in the evaluation are as described in Chapter 7.2. We use the Fork
factoring strategy throughout. The source code and evaluation data are publicly avail-
able [Gnad, 2021a].

We focus our evaluation on optimal planning, where the novel dominance relations
have the highest impact on search performance, showing results in satisficing planning
and proving unsolvability on a small subset of the new relations only. We implemented
all relations defined above, namely frontier pruning �F , effective-price pruning �E ,
simulation pruning�S , and the combination�ES . Additionally, we implemented a leaf-
state-space pruning method that removes irrelevant leaf states and actions as described
at the end of Chapter 13.4.

202 CHAPTER 13. DOMINANCE PRUNING FOR FORK TOPOLOGIES

Blind Search A∗ with hLM-cut

Domain # #F B DS aT e r s f fser B DS aT e r s f fser

Driverlog 20 20 7 11 11 11 11 11 11 11 13 13 13 13 13 13 13 13
Logistics 63 63 12 26 26 31 28 28 26 31 26 34 33 34 33 34 32 34
Miconic 150 145 45 46 46 46 46 46 45 46 136 135 135 135 135 135 135 135
NoMystery 20 20 8 20 20 20 20 20 20 20 14 20 20 20 20 20 20 20
Rovers 40 40 5 6 6 6 6 6 6 6 7 9 9 9 9 9 9 9
Satellite 36 36 5 6 6 5 6 6 5 5 7 7 8 8 8 8 8 8
TPP 30 27 5 23 23 22 23 22 23 22 5 18 23 22 23 22 23 22
Woodworking 30 13 4 5 5 5 5 5 5 5 6 10 11 11 11 11 11 11
Zenotravel 20 20 8 12 12 12 12 12 11 12 13 13 12 13 12 13 12 13
Other 1221 33 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8
Total 1630 417 106 162 162 165 164 163 159 165 235 267 272 273 272 273 271 273

Figure 13.2: Coverage data (number of solved tasks) in optimal planning, on instances
where Fork does not abstain. #F denotes the number of such instances per domain.
Domains with the same coverage for all planners are summarized in “Other”. We high-
light the best coverage (separately for blind search and A∗ with hLM-cut) in bold face.

In our comparison in optimal planning, we run all new dominance relations with the
Anytime Decoupled A∗ algorithm defined in Chapter 4.2.1, since it gives the best results
for fork factorings, as we have seen in our main evaluation in Chapter 7.6. As mentioned
in Chapter 13.1, the new dominance relation can be employed together with augmented-
cost dominance �aug, which we do throughout the optimal-planning evaluation. We
compare the new pruning variants to explicit-state search (Base), decoupled A∗ (DS),
and the anytime A∗ variant (aT), both with standard augmented-cost dominance �aug.

We use the following acronyms for decoupled search configurations with the new
dominance relations:

• aT with �F pruning: f

• aT with �E pruning: e

• aT with �S pruning: s

• aT with �aug pruning, removing irrelevant states/actions in leaf state spaces: r

• r combined with f (only for non-optimal planning): fr

• aT with �ES pruning combined with f and r: fser.

Figure 13.2 shows coverage data (number of solved tasks) in optimal planning for
blind search and A∗ with hLM-cut. In most domains, there are only minor changes in

13.6. EXPERIMENTAL EVALUATION 203

100 101 102 103 104 105 106 107
100
101
102
103
104
105
106
107

aT (lower for 1 tasks)

e
(l

ow
er

fo
r5

8
ta

sk
s)

Blind Search – Expansions

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

aT (lower for 94 tasks)

e
(l

ow
er

fo
r4

3
ta

sk
s)

Blind Search – Runtime

100 101 102 103 104 105 106 107
100
101
102
103
104
105
106
107

aT (lower for 1 tasks)

r
(l

ow
er

fo
r3

4
ta

sk
s)

Blind Search – Expansions

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

aT (lower for 82 tasks)

r
(l

ow
er

fo
r5

5
ta

sk
s)

Blind Search – Runtime

100 101 102 103 104 105 106 107
100
101
102
103
104
105
106
107

aT (lower for 1 tasks)

s
(l

ow
er

fo
r5

0
ta

sk
s)

Blind Search – Expansions

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

aT (lower for 89 tasks)

s
(l

ow
er

fo
r5

2
ta

sk
s)

Blind Search – Runtime

100 101 102 103 104 105 106 107
100
101
102
103
104
105
106
107

aT (lower for 10 tasks)

f
(l

ow
er

fo
r3

2
ta

sk
s)

Blind Search – Expansions

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

aT (lower for 107 tasks)

f
(l

ow
er

fo
r2

9
ta

sk
s)

Blind Search – Runtime

100 101 102 103 104 105 106 107
100
101
102
103
104
105
106
107

aT (lower for 0 tasks)

fs
er

(l
ow

er
fo

r5
8

ta
sk

s) Blind Search – Expansions

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

aT (lower for 103 tasks)

fs
er

(l
ow

er
fo

r4
1

ta
sk

s) Blind Search – Runtime

Figure 13.3: Scatter plots comparing the number of state expansions until the last f -
layer in A∗ (top), and runtime (bottom) of Anytime Decoupled A∗ to (from left to right)
pruning via effective-price dominance, leaf-state-space irrelevance pruning, simulation
dominance, frontier dominance, and the combination of all methods. In all plots we run
blind search.

coverage, if any. On the positive side, the only exception is Logistics, with up to 5 more
tasks solved with blind search, depending on the dominance relation. With hLM-cut, e,
s, and their combination fser solve one more instance than the base version aT, and we
see the same in Zenotravel. In some other domains, we observe that the more sophis-
ticated dominance seems to have a certain overhead that does not always outweigh the
additional pruning. In Miconic, Satellite, TPP, and Zenotravel, some blind-search con-
figurations lose an instance in coverage, the same happens with hLM-cut also in Logistics.

In general, it looks like pruning via effective-price dominance e, simulation domi-
nance (s), though only with hLM-cut, and the combination of all methods fser give con-
sistently the best results.

In the scatter plots in Figure 13.3, we see a quite similar behaviour for all methods.
The search space size (number of expanded states until the last f -layer in A∗) gets
reduced only by a small amount, but this can still lead to a runtime advantage of up to
two orders of magnitude. While effective-price dominance and simulation dominance
can cause a certain overhead, this is mostly not the case for irrelevance pruning and
frontier dominance. The combination of all methods is not able to reduce the search
space by more than the maximum of any subsumed method.

In satisficing planning and proving unsolvability, we only evaluate irrelevance prun-
ing of the leaf state spaces (r), frontier dominance (f), and a combination of the two (fr).
For satisficing planning, Figure 13.4, there is only a single instance in NoMystery that
can additionally be solved by these methods compared to the baseline (DS).

The search space size (number evaluated states) and runtime plots in Figure 13.5

204 CHAPTER 13. DOMINANCE PRUNING FOR FORK TOPOLOGIES

GBFS with hFF

Domain # #F Base DS r f fr
Driverlog 20 20 18 19 19 19 19
Logistics 63 63 51 63 63 63 63
NoMystery 20 20 8 19 20 20 20
Pathways 30 29 10 12 12 12 12
Satellite 36 36 25 26 26 26 26
TPP 30 27 22 23 23 23 23
Woodworking 40 34 28 30 30 30 30
Other 1447 208 190 190 190 190 190
Total 1686 437 352 382 383 383 383

Figure 13.4: Same setup as in Figure 13.2 for satisficing planning with GBFS and hFF.
We highlight the best coverage in bold face.

100 101 102 103 104 105 106 107
100
101
102
103
104
105
106
107

DS (lower for 2 tasks)

fr
(l

ow
er

fo
r3

1
ta

sk
s)

GBFS + hFF – Evaluations

10−2 10−1 100 101 102 103
10−2

10−1

100

101

102

103

DS (lower for 197 tasks)

fr
(l

ow
er

fo
r1

39
ta

sk
s)

GBFS + hFF – Runtime

Figure 13.5: Scatter plots comparing the number of state evaluations (left), and runtime
(right) of the baseline DS to fr, which combines frontier dominance with irrelevance
pruning in the leaf state spaces. In all plots we run GBFS with hFF.

confirm that there is no difference in most instances. Where there is an advantage in
search space size (up to one order of magnitude), we also see a similar speed-up. The
points above the diagonal in the runtime plot are all due to the overhead of computing
and pruning irrelevant leaf states and actions using r on instances with large leaf state
spaces.

For proving unsolvability, we see a similar picture. Coverage increases only in No-
Mystery (see Figure 13.6), although there is more margin for improvement here, so up
to 8 additional instances are solved. Frontier dominance seems to have a large overhead
compared to standard pruning, indicated by the fact that it solves 2 instances less than
irrelevance pruning in both NoMystery and Rovers.

The search space size and runtime plots in Figure 13.7 show significant improve-
ments across many instances with a speed-up of up to two orders of magnitude.

13.6. EXPERIMENTAL EVALUATION 205

A∗ with hmax

Domain # #F Base DS r f fr
NoMystery 23 23 2 12 20 18 18
Rovers 19 19 6 8 8 6 6
Other 276 0 0 0 0 0 0∑

318 42 8 20 28 24 24
Unsolvable Benchmarks from Hoffmann et al. [2014]
NoMystery 25 25 0 25 25 25 25
Rovers 25 25 1 2 2 2 2
Other 66 0 0 0 0 0 0∑

116 50 1 27 27 27 27
Total 434 92 9 47 55 51 51

Figure 13.6: Same setup as in Figure 13.2 for proving unsolvability with A∗ and hmax.
We highlight the best coverage in bold face.

100 101 102 103 104 105 106 107
100
101
102
103
104
105
106
107

DS (lower for 0 tasks)

fr
(l

ow
er

fo
r3

7
ta

sk
s)

A∗ + hmax – Expansions

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

DS (lower for 10 tasks)

fr
(l

ow
er

fo
r3

5
ta

sk
s)

A∗ + hmax – Runtime

Figure 13.7: Scatter plots comparing the number of state expansions (left), and runtime
(right) of the baseline DS to fr, which combines frontier dominance with irrelevance
pruning in the leaf state spaces. In all plots we run A∗ with hmax.

206 CHAPTER 13. DOMINANCE PRUNING FOR FORK TOPOLOGIES

Chapter 14

Summary

In Part III of this work, we combined decoupled state-space search with four orthogonal
state-space reduction techniques, namely partial-order reduction via strong stubborn
sets, symmetry breaking, symbolic state representations, and state-dominance pruning.

Strong stubborn sets pruning is a well-established technique that has originally been
introduced in model checking and recently caught interest in the planning community.
Both stubborn sets pruning and decoupled search have been proposed to tackle the state
explosion problem inherent to many variants of explicit-state search. We combined the
two methods in the context of classical planning to be able to get the best of both worlds.
In fact, we proved that decoupled strong stubborn sets are exponentially separated from
both component methods on the same family of planning tasks, i. e., the combination
can be exponentially more than the sum of its parts. Our experiments illustrate that
enabling strong stubborn sets pruning in decoupled search can be highly beneficial in
optimal planning. By using a simple safety belt mechanism, we are able to switch off the
pruning on instances where it is not useful, leading to a superior overall performance.
For the future, we deem it an interesting question whether the recently introduced fact-
based computation of stubborn sets can be adapted to the decoupled setting [Röger et al.,
2020]. Extensions to weak stubborn sets [Sievers and Wehrle, 2021], that we discussed
in Appendix A.4.1, are promising as well.

Symmetry breaking also aims at tackling the state explosion problem, being em-
ployed in many areas of computer science. Like decoupled search, symmetry breaking
can exponentially reduce the search effort on its own. We extended the concept of struc-
tural symmetries to the decoupled state space and adapted the orbit-space search algo-
rithm to decoupled search. This allows to prune symmetric parts of the decoupled search
space, which can significantly improve performance. We proved that the combination
of the two techniques is exponentially separated from its components, demonstrating
in our evaluation that similar structures also appear in standard planning benchmarks.
Interesting future work includes a more thorough investigation of the interplay between
symmetry pruning and decoupled-state dominance. Applying permutations to decou-

207

208 CHAPTER 14. SUMMARY

pled states corresponds to moving small prices to leaf states that are placed at the front
of an arbitrary order over the leaf states. It could be advantageous to permute leaf-state
prices in a way that improves dominance pruning, further reducing the search space.

Our approach of symbolically representing the pricing function introduced a new
hybrid of explicit and symbolic state-space search. We developed the operations re-
quired to perform decoupled search with such a representation, and connected the sym-
bolic pricing function to standard planning heuristics. In particular, we derived a well-
working adaptation of LM-cut. In our experimental evaluation, we observed that the
new representation can indeed be beneficial across all algorithmic planning problems.
It remains an open question if we can tailor our factoring strategies to the specifics of
the symbolic representation. For instance, it could be interesting to move to larger leaf
factors, since the representation of pricing functions can be a lot more compact when
using, e. g., binary decision diagrams to represent the sets of reached leaf states.

Lastly, we have shown that state-dominance pruning methods can be useful for de-
coupled search, addressing the exponential blow-ups inherent in standard benchmarks
similar to our logistics example. We provide a thorough analysis of different dominance-
pruning methods for fork topologies. While these can solve the worst-case exponential
blow-ups of decoupled search incurred by some leaf structures, it it an open question
whether more effective techniques can be devised that more generally tackle these blow-
ups without the use of hypercube pruning. For the future, we believe that further investi-
gating decoupled-state dominance relations is an important topic. A first approach could
be the extension of the relations so-far specialized to fork topologies to more general
star factorings. Moreover, going from reasoning about dominance only within leaves
to relations that also incorporate the center factor is very promising. In that regard, a
combination with the recently introduced concept of quantitative dominance would be
interesting [Torralba, 2017]. Also, adapting dominance variants for satisficing planning
that do not preserve optimality can be beneficial for decoupled search [Torralba, 2018].

Overall, we presented the combination of several orthogonal techniques with de-
coupled search. Naturally, the question arises if we can combine all these methods in
a single planning algorithm. For the combination of partial-order reduction and sym-
metry breaking, this has already been answered positively [Wehrle et al., 2015], and
the same applies in decoupled search. Adding specialized state-dominance pruning for
fork topologies to the mix is feasible, too, since it does not directly interact with the
other methods. Matters get more complicated for symbolic leaf representations, since
all other methods depend on the explicit representation and enumeration of leaf states.
It is an open question whether, e. g., strong stubborn sets can be computed efficiently on
the decision diagrams that represent the leaves without enumerating all leaf states.

Finally, so far we introduced these combinations only for classical planning. We
believe that the same could be done in the context of model checking, where these
methods have successfully been used to tackle the state explosion problem.

Part IV

Model Checking

209

Chapter 15

Introduction

In the area of formal verification, model checking addresses the question whether a
desired property φ holds in a given system. Given a formal system descriptionM, the
model checking problem is to decide whetherM satisfies φ.

In particular, we look into model checking of safety and liveness properties. Safety
properties express things that need to hold in any finite system execution, and are hence
used to prove that certain “bad” things never happen. This is closely related to goal
reachability that we focused on in the previous parts of this work: does there exist a
state s reachable from the initial state of the system such that s violates φ, respectively
satisfies the goal condition. This connection is well-known and has been exploited be-
fore to transfer techniques (e. g. Cimatti et al., 2003; Dräger et al., 2006; Kupferschmid
et al., 2006, 2007, 2008). Herein, we adopt decoupled state-space search, which has
originally been introduced in AI planning, to the context of model checking.

Liveness properties, in contrast, reason about infinite runs of a system, specifying
desired properties that must be satisfied along any infinite execution. Liveness properties
are usually considered to express “good” behaviours of the system that should occur
repeatedly, i. e., infinite runs in which something good happens infinitely often.

State-space search is a common approach to solve the model checking problem for
both safety and liveness properties [West, 1978; Rudin, 1987; Liu, 1989; Courcoubetis
et al., 1992; Valmari, 1992; McMillan, 1993; Godefroid, 1996; Holzmann et al., 1996;
Holzmann, 2004]. The approach is to explore the state space induced by the model de-
scriptionM and check if the property holds on the reachable sub-space. This ensures
that the system will always satisfy the property. To formalize systems, we will con-
sider models that are composed of several non-deterministic automata. These automata
synchronize on a set of shared global labels, and can move individually using internal
labels. For safety properties, we consider non-deterministic finite automata (NFA). In
this case, a witness of an unsatisfied property φ is a finite trace, i. e., a sequence of tran-
sitions, that ends in a state that violates φ. Algorithmically, this corresponds to proving
unsolvability in the planning context, where the state space is exhausted to prove the

211

212 CHAPTER 15. INTRODUCTION

absence of a reachable goal state, or a counterexample, i. e., a plan, is returned.
For model checking of liveness properties, we consider non-deterministic Büchi au-

tomata (NBA). Here, a counterexample takes the form of a lasso, i. e., a finite system run
ρp(ρc)

ω with a prefix ρp and a cycle ρc that never visits a state in which the desired prop-
erty holds, so “nothing good ever happens”. This captures standard liveness verification
problems related to ω-regular properties. An archetypal example is automata-based
checking of properties expressed in linear temporal logic (LTL) [Pnueli, 1977], where
system components are represented as NBAs and are composed with a property moni-
tor, represented as a Büchi automaton (often the negation of an LTL property). In this
case, an accepting run—a lasso—witnesses a violation of a linear-time property. The
predominant approach to address the verification of liveness properties using explicit
state-space search is nested depth-first search (NDFS) [Courcoubetis et al., 1992; Holz-
mann et al., 1996; Schwoon and Esparza, 2005]. NDFS performs on-the-fly checking
of liveness properties while composing the automata ofM.

We start by providing the required background on non-deterministic automata and
their composition in Chapter 16. In Chapter 17, we show how automata can be com-
posed using decoupled search, where component states reachable via internal transi-
tions will be enumerated for each automaton, and the main search only branches over
global transitions, which affect at least two components. We then look more closely
into how the decoupled composition can be used to verify safety (Chapter 18) and live-
ness properties (Chapter 19). For safety properties, we show how decoupled search can
be employed in the established SPIN model checker [Holzmann, 2004]. We illustrate
in our empirical evaluation that it can significantly outperform the explicit-state search
with partial-order reduction of SPIN on standard benchmarks defined in the Promela
language, the input format of SPIN [PromelaManual, 2020]. For liveness checking, we
adapt the nested depth-first search algorithm to the decoupled state representation, and
compare the performance of a prototype implementation on a set of randomly gener-
ated models, and small showcase examples similar to the dining philosophers problem.
In Chapter 20, we look into related techniques, in particular partial-order reduction via
ample sets, and Petri-net unfolding. We prove that decoupled search is exponentially
separated from both, also on our formulation on composed automata. We summarize
this part of the work in Chapter 21.

The following chapters are based on Gnad et al. [2018a] and Gnad et al. [2021c].
Alberto Lluch-Lafuente contributed with his expertise on the SPIN model checker,
Promela modeling, and the intricacies of the automata-based formulation of decoupled
search. Patrick Dubbert implemented a basic version of decoupled search in SPIN for
safety checking. A version of that implementation, extended by the author of this work,
is used in the evaluation in Chapter 18.2. Jan Eisenhut implemented the decoupled
NDFS algorithm from Chapter 19.1.3 in a new tool and conducted the experiments re-
ported in Chapter 19.3. All other contributions are due to the author of this work.

Chapter 16

Background

This section recalls some basic notions of non-deterministic automata, their composi-
tion, the verification problems we consider in this work for such composition, and the
standard algorithmic resolution based on state-space search.

16.1 Non-Deterministic Automata
We will consider non-deterministic automata (NFA) for safety checking and non-deter-
ministic Büchi automata (NBA) for liveness checking. Since these two kinds of au-
tomata only differ in the semantics of accepting runs, we give a general formal defini-
tion of non-deterministic automata, and make the distinction in how accepting runs are
defined.

Definition 53 (Non-Deterministic Automaton). A non-deterministic automaton A is a
tuple 〈S,→, L, s0, A〉, where S is a finite set of states, L is a finite set of transition
labels,→⊆ S ×L× S is a transition relation, s0 ∈ S is an initial state, and A : S → B
is an acceptance function.

Throughout the remainder of this work, we will use the following notation conven-
tion: non-deterministic finite automata are denoted Af , non-deterministic Büchi au-

tomata are denoted AB. We will often denote transitions (s, l, s′) ∈→, by s l−→ s′.
We next specify runs and accepting runs for both types of automata.

Definition 54 (NFA Acceptance). Let Af = 〈S,→, L, s0, A〉 be an NFA. A run ρ of Af
is a finite sequence of states (s0, s1, s2, . . . , sn) ∈ Sn that starts in the initial state s0,
such that 0 ≤ i < n : ∃li ∈ L : si

li−→ si+1 ∈→. A run is accepting if it ends in an
accepting state, i. e., A(sn) = >.

For NFA, an accepting run is a finite sequence of states that starts in the initial state
s0 and ends in an accepting state. For model checking of safety properties φ, exactly

213

214 CHAPTER 16. BACKGROUND

those states s ∈ S are accepting that violate φ, so an accepting run is a witness that φ is
not satisfied in a reachable state.

Definition 55 (NBA Acceptance). Let AB = 〈S,→, L, s0, A〉 be an NBA. A run ρ of
AB is a infinite sequence of states (s0, s1, s2, . . .) ∈ Sω that starts in the initial state s0,
such that for all i ≥ 0 : ∃li ∈ L : si

li−→ si+1 ∈→. A run ρ is accepting if it traverses
accepting states infinitely often, formally

∞
∃i : A(si) = >.

A run ρ of an NBA is an infinite sequence of states s0, s1, s2, · · · ∈ Sω starting
from the initial state. Such a run ρ is accepting if it traverses accepting states infinitely
often. Here, accepting states typically result from the negation of the property we want
to verify. Thus, an accepting run is a witness for an infinite system execution during
which the desired property does not hold.

We define a trace π of an infinite run ρ = s0, s1, s2, · · · ∈ Sω as a sequence of labels
π = l0, l1, · · · ∈ Lω such that ∀i ∈ N : 〈si, li, si+1〉 ∈→. Analogously, we consider
finite traces π ∈ Ln of finite runs ρ ∈ Sn.

As hinted in Chapter 15, the existence of accepting runs is interesting for several
theoretical and practical reasons. On the theoretical side, the language of, e. g., an
NBA, is the set of all traces σ in Lω for which an accepting run exists. On the practical
side, model checking ω-regular properties, including LTL properties, can be reduced to
checking the existence of accepting runs.

16.1.1 Composition of Automata

From now on we assume that the set of labels L of an automaton is partitioned into a set
LI of internal labels and a set LG of global labels. The notion of composition we use
is based on (maximal) synchronisation on global labels, in words: in every transition
involving a global label, each component having the global label in its set of labels
must perform a local transition, while transitions with internal labels can be performed
independently. When composing automata we assume w.l.o.g. that they do not share any
internal label. Furthermore, we assume that every global label is shared by at least two
component automata. Otherwise, such labels can be made internal. For a setA1, . . . ,An
of automata, we will use superscripting to denote the components of each Ai, i. e., we
assume Ai = 〈Si,→i, Li = LiI ∪ LiG, si0, Ai〉.

Definition 56 (Composition of Automata). The composition of n automataA1, . . . ,An,
denoted byA1 ‖ . . . ‖ An, is the automaton 〈S,→, L, ~s0, A〉, where S = S1×· · ·×Sn,
L =

⋃
i∈{1,...,n} L

i, ~s0 = (s1
0, . . . , s

n
0), A = {(s1, . . . , sn) 7→ ∧

i=1,...,nA
i(si)} and→ is

the smallest set of transitions closed under the following rules for interleaving of local
transitions (1) and maximal synchronization on global labels (2):

16.1. NON-DETERMINISTIC AUTOMATA 215

(1)
si

lI−→ s′i lI ∈ LiI
(s1, . . . , si, . . . , sn)

lI−→ (s1, . . . , s′i, . . . , sn)

(2)
∃Ai : lG ∈ LiG ∀j ∈ {1≤i≤n | lG ∈ LiG} : sj

lG−→ s′j ∀j ∈ {1≤i≤n | lG 6∈ LiG} : s′j=sj

(s1, . . . , sn)
lG−→ (s′1, . . . , s

′
n)

As notation convention, we will denote component states simply by small case let-
ters, e. g., s, and composed states (s1, . . . , sn) ∈ S by ~s, i. e., as a vector, and similarly
for local runs ρ (resp. traces π) and composed runs ~ρ (composed traces ~π).

In Figure 16.1 we illustrate a small example of a composition of two automata
A1,A2. In the left of the figure, we show the local state space of the two components
(A1 top, A2 bottom), where the component states are S1 = {1, 2, 3}, S2 = {A,B}, and
the labels are defined as L1

G = L2
G = {l1G, l2G}, L1

I = {l1I}, L2
I = {l2I}. A local state is

accepting for A1, so A1(s) = >, iff s = 2, and similarly A2(s) = > iff s = B. The
initial states are s1

0 = 1 and s2
0 = A. The transitions are as shown. In the right, we depict

the part of the state space of the composition A1 ‖ A2 reachable from ~s0 = (1, A) as
it would be generated by, for example, a standard depth-first search. Here, transitions
via global labels synchronize the components, internal transitions (dashed) are executed
independently. The states crossed out would be pruned by duplicate checking, the un-
derlined state is accepting.

1

2 3

l1I l1G

l2G

A B

l1G

l2I

l2G

(1, A) (2, A) (3, A) (1, B)
(2, B)

(1, A)

(2, A)l1I l2G l1G
l1I

l2I

l2I

Figure 16.1: Example of two non-deterministic automata,A1 (top left) andA2 (bottom
left), and the state space of their composition A1 ‖ A2 (right).

216 CHAPTER 16. BACKGROUND

1 CheckSafety(A1
f ‖ . . . ‖ Anf):

2 Stack← 〈~s0〉
3 V ← ∅
4 DFS(~s0)
5 return empty

6 DFS(~s):
7 if A(~s) then return run
8 V ← V ∪ {~s}
9 foreach ~t s.t. ~s→ ~t do

10 if ~t ∈ V then continue
11 push(Stack, ~t)
12 DFS(~t)
13 pop(Stack)
14 end

Figure 16.2: A standard DFS algorithm for reachability analysis in composed NFAs.

16.2 The Model Checking Problem
In this work, we consider two types of properties that we want to verify, safety properties
and liveness properties.

Safety properties φ are conceptually easier to verify, since this only requires to prove
the absence of a reachable accepting state s, where s violates φ. Hence, any complete
search algorithm can be employed on the composition of NFA A1

f ‖ . . . ‖ Anf that
forms the system model. The absence of a reachable accepting state then shows that all
reachable states, and thus the entire system, satisfy φ. In contrast, if an accepting state,
so an accepting run, is found, this is a counterexample showing that φ does not hold.

In practice, the most-common approach to verify safety properties is to build the
composed state space on-the-fly using a depth-first search (DFS) procedure, which is
preferred due to its memory efficiency. Often such an approach is combined with a
pruning technique that ignores certain states or transitions if it can prove that this still
guarantees completeness. The details of an algorithm for safety checking based on DFS
are specified in Figure 16.2. The state space of the composition A1

f ‖ . . . ‖ Anf is
explored starting in the initial state ~s0. A set V is used to record already visited states
and prune duplicates (line 10), and recursion enforces the depth-first exploration order
of the state space. Moreover, a stack Stack keeps track of the states on the current trace
being explored. If an accepting state is generated (line 7), the corresponding accepting
run is reported. In the absence of an accepting run, CheckSafety returns “empty”.

(1, A) (2, A) (3, A) (1, B) (2, B)
l1I l2G l1G l1I

Figure 16.3: Example run of a depth-first search.

In Figure 16.3, we show the search space generated by DFS on our example from

16.2. THE MODEL CHECKING PROBLEM 217

1 CheckEmptiness(A1
B ‖ . . . ‖ AnB):

2 Stack← 〈~s0〉
3 V ← ∅
4 V ′ ← ∅
5 DFS(~s0)
6 return empty

7 NestedDFS(~s):
8 foreach ~t s.t. ~s→ ~t do
9 if ~t ∈ V ′ then continue

10 if ~t ∈ Stack then return cycle
11 V ′ ← V ′ ∪ {~t}
12 NestedDFS(~t)
13 end

14 DFS(~s):
15 V ← V ∪ {~s}
16 foreach ~t s.t. ~s→ ~t do
17 if ~t ∈ V then continue
18 push(Stack, ~t)
19 DFS(~t)
20 pop(Stack)
21 end
22 if A(~s) then
23 NestedDFS(~s)
24 V ′ ← V ′ ∪ {~s}
25 end

Figure 16.4: A standard NDFS algorithm for lasso search in composed NBAs.

Figure 16.1. As an accepting state, namely (2, B), is reached, we found a witness
showing that an undesired state is reachable, so the system does not satisfy the given
safety property.

The verification problem for liveness properties corresponds to the existence of ac-
cepting runs in the composed NBA A1

B ‖ . . . ‖ AnB. In words, we look for runs in
A1
B ‖ . . . ‖ AnB that infinitely often traverse states in which all component NBAs are in

an accepting state. We discuss alternative acceptance conditions in Chapter 21.
Determining the existence of accepting runs in an NBA can be boiled down to the

existence of so-called lassos, i. e., finite sequences of states in the NBA of the form
~ρp~ρc where ~ρp is the prefix of the lasso and ~ρc is the cycle of the lasso, which contains
at least one accepting state and closes the cycle (i. e., assuming ~ρp = ~s1, . . . , ~sn and
~ρc = ~sn+1, . . . , ~sm, then ~sm = ~sn, and there exists a state ~si with n < i ≤ m where
A(~si) = >). Such a finite sequence of states represents an accepting run ~ρp(~ρc)ω.

Several algorithms can be used to check the existence of lassos. The predominant
family of algorithms are the variants of nested depth-first search (NDFS), originally
introduced in [Courcoubetis et al., 1992]. Figure 16.4 shows the pseudo-code for one
such variant, based on NDFS as presented in Clarke et al. [2001]. The algorithm is
based on an ordinary depth-first search algorithm that works as explained before. The
main difference with respect to ordinary DFS is that a second, nested, depth-first search
algorithm (NestedDFS) is invoked from accepting states on backtracking, i. e., after the
recursive call to DFS. The idea is that, if this second depth-first search finds a state that
is on Stack , then it is guaranteed that a cycle has been found, which contains at least one
accepting state. That is, one finds the (un)desired lasso. The algorithm is also complete:

218 CHAPTER 16. BACKGROUND

(1, A) (2, A) (3, A) (1, B) (2, B) (2, A)

(2, B) (2, A)

l1I l2G l1G l1I l2I

l2I

Figure 16.5: Example run of CheckEmptiness. The wavy arrow indicates the invoca-
tion of NestedDFS((2, B)); the dotted arrow indicates how the cycle is closed.

no accepting cycle is missed.
In Figure 16.5, we illustrate an example run of the CheckEmptiness algorithm on

our example. When DFS backtracks from (2, B), NestedDFS is invoked, illustrated
by the wavy arrow. NestedDFS generates the successor (2, A), which is on Stack, so a
cycle is reported. We can construct an accepting run ~ρp(~ρc)ω with prefix ~ρp induced by
the trace l1I and cycle ~ρc induced by the trace l2G, l

1
G, l

1
I , l

2
I .

Chapter 17

Decoupled Composition of Automata

In the context of composed automata, decoupled state-space search can be instantiated
by searching over global transitions, enumerating all local states reachable via only
internal labels for each component automaton. This relaxes the concept of the star
topology enforced in the AI planning setting, since there is no need for a center com-
ponent, anymore. Instead, if a transition involves more than one automaton, it needs to
be considered in the global search. An advantage over the formulation in planning is
the simplicity of this decomposition. There is no need to partition the state variables to
obtain a star factoring, nor to analyze potentially complex cross-factor dependencies.

In contrast to the explicit construction of the state space, where all reachable states
are generated by searching over all traces of enabled transitions, decoupled search then
only searches over traces of global transitions, the ones that synchronize the component
automata. A decoupled state sD compactly represents an exponential set of composed
states closed under internal steps, which results from the cross-product of local states
reached for each component.

We next introduce decoupled search for automata models, defining the decoupled
state space for composed automata. In Chapter 17.2, we prove that the decoupled com-
position captures reachability of component states exactly.

17.1 Decoupled Composition
We formally introduce the decoupled composition of automata, which adapts the com-
position operation provided in Definition 56 to decoupled state-space search:

Definition 57 (Decoupled composition of Automata). The decoupled composition of
n automata A1, . . . ,An, denoted by A1 ‖D . . . ‖D An, is the automaton 〈SD,→D,
LG, s

D
0 , A

D〉 defined as follows:

• SD = P+(S1)× · · · × P+(Sn), with P+(S) := 2S \ ∅.

219

220 CHAPTER 17. DECOUPLED COMPOSITION OF AUTOMATA

• sD0 = 〈iclose(s1
0), . . . , iclose(sn0)〉, with iclose(s) being the set of states s′ that are

reachable from s in Ai using only Ai’s internal transitions LiI:

iclose(s) = {s′ | s lI∈Li
I−−−−−→∗s′} and iclose(S) =

⋃
s∈S iclose(s).

• AD(sD) = > ⇔ ∀Ai : ∃si ∈ Si : Ai(si)=>, where sD=〈S1, . . . , Sn〉.

• →D is the smallest set of transitions closed under the following rule:

lG ∈ LG ∀1 ≤ i ≤ n : S ′i = {s′i | ~s ∈ sD : ~s
lG−→ (s′1, . . . , s

′
i, . . . , s

′
n)} S ′i 6=∅

sD
lG−→D 〈iclose(S ′1), . . . , iclose(S ′n)〉

where, abusing notation, we write ~s∈sD if sD=〈S1, . . . , Sn〉 and ~s ∈ S1×. . .×Sn.

In the decoupled composition A1 ‖D . . . ‖D An, a decoupled state sD is defined
by a tuple 〈sD[A1], . . . , sD[An]〉, consisting of a non-empty set of component states
sD[Ai] ⊆ Si for each Ai. A decoupled state represents exponentially many member
states, namely all composed states ~s = (s1, . . . , sn) such that ~s ∈ sD[A1]×· · ·×sD[An].
As a notation convention, we will use a superscript D to denote decoupled states sD.

We overload the subset operation ⊆ for decoupled states sD by doing it component-
wise on the sets of reached local states, namely sD ⊆ tD ⇔ ∀Ai : sD[Ai] ⊆ tD[Ai].

During a search in the decoupled composition we define the global trace of a decou-
pled state sD, denoted πG(sD), as the sequence of global transitions on which sD was
reached from sD0 . For DFS, as considered in this work, this is well-defined.

In explicit state search, states that have been visited before—duplicates—are pruned
to avoid repeating the search effort unnecessarily. The corresponding operation in de-
coupled search is dominance pruning, as previously introduced in the context of plan-
ning (cf. Chapter 3.4). A newly generated decoupled state tD is pruned if there exists
a previously seen decoupled state sD that dominates tD, i. e., where tD ⊆ sD. With the
correctness result given below, this is safe.

The initial decoupled state is obtained by closing each local state with internal steps
(iclose), and decoupled transitions generate decoupled states whose local states are also
closed under internal steps. This maximally preserves the decomposition afforded by
the decoupled representation. Namely, as we will prove in what follows, a decoupled
state sD compactly represents all explicit states that are reachable via traces that extend
the global trace πG(sD) = l1G, l

2
G, . . . , l

k
G with local transition labels. That is, for every

componentAi, sD contains the non-empty subset of its local states sD[Ai] ⊆ Si that can
be reached with traces πi = l1, l2, . . . , ln such that there exist indices j1 < j2 < · · · < jk
where ljt is the jt-th element of πG(sD) for all 1 ≤ t ≤ k. In words, after every global
label on πG(sD), arbitrary enabled sequences of internal transitions are allowed.

17.2. CORRECTNESS 221

Given a global trace πG = l1G, . . . , l
k
G, we can efficiently reconstruct a composed

trace ~π by filling in the required internal labels between every pair of global labels,
doing so separately for each component. This can be done in time polynomial in the
size of the component and linear in the length of πG.

We remark that the decoupled composition of a set of automata is always determinis-
tic. For every pair of decoupled state sD and global label lG, there is a unique successor
tD. This is easy to see, since, if there is a composed state ~s contained in sD that has
multiple outgoing transitions labelled with lG, all of the composed successor states are
contained in tD. This increases the possible state-space reduction compared to stan-
dard search, which needs to consider all these successors separately. Note that this is
different from the determinization of automata, which comes with a blow-up [Roggen-
bach, 2001]. The determinism is a consequence of the compact representation where all
possible outcome states of a non-deterministic transition are contained in the decoupled
successor state.

17.2 Correctness
In this section we show that decoupled search, as presented here, is sound and com-
plete with respect to reachability properties, adapting the corresponding result from AI
planning as presented in Chapter 3.3.

We require some additional notation. For a trace ~π, by πG(~π) we denote the subse-
quence of ~π that is obtained by projecting onto the global labels LG.

The decoupled state space captures reachability of the composed system exactly:

Theorem 40. A state ~t of a composition of automataA1 ‖ . . . ‖ An is reachable from a
state ~s via a trace ~π, iff there exist decoupled states sD, tD in the decoupled composition
A1 ‖D . . . ‖D An, such that ~s ∈ sD, ~t ∈ tD, and tD is reachable from sD via πG(~π).

Proof. Let πG(~π) = l1G, . . . , l
k
G, and sDi

li+1
G−−→D sDi+1 for all 1 ≤ i < k. We prove the

claim by induction over the length of πG(~π). For the base case |πG(~π)| = 0, the claim
trivially holds, since, by the definition of iclose(), sD contains exactly the composed
states ~t that are reachable from any ~s ∈ sD via only internal transitions.

Assume a decoupled state sDi is reachable from sD via l1G, . . . , l
i
G. Then, by the

definition of decoupled transitions and iclose(), the state sDi+1 contains all composed
states ~si+1 that are reachable from any state ~si ∈ sDi via a trace πi→i+1 that consists
of only internal transitions and li+1

G . By hypothesis, we can extend the traces reaching
every such ~si from a ~s ∈ sD by πi→i+1 and obtain a trace reaching ~si+1 from ~s with
global sub-trace l1G, . . . , l

i
G, l

i+1
G .

For the other direction, if a composed state ~si is reached in a decoupled state sDi
and can reach a state ~si+1 via a trace πi→i+1 that consists of internal labels and li+1

G ,

222 CHAPTER 17. DECOUPLED COMPOSITION OF AUTOMATA

then there exists a decoupled transition sDi
li+1
G−−→D sDi+1 and, again by the definition of

decoupled transitions and iclose(), sDi+1 contains ~si+1. By hypothesis sDi is reachable
from sD, where ~si is reachable from ~s ∈ sD. Thus, sDi+1 is reachable from sD via
l1G, . . . , l

i
G, l

i+1
G .

The missing piece is to show that dominance pruning preserves completeness:

Proposition 13. LetA1 ‖D . . . ‖D An be the decoupled composition of n automata, and
sD and tD two decoupled states where sD ⊆ tD. Then, for every transition sD lG−→ sDi in
the decoupled composition, tD lG−→ tDi also is a transition, and sDi ⊆ tDi .

Proof. Observe that sD ⊆ tD implies that for all components Ai, sD[Ai] ⊆ tD[Ai]. So,
trivially, lG is enabled in sD, and tD lG−→ tDi is a transition in the decoupled composition.

To see that tDi dominates sDi , note that the set of local states reached in tD that have
an lG-transition can only be larger than in sD. Thus, the set of local successor states in
tDi is a superset of that set in sDi , and this superset relation is preserved by the iclose()
operation.

From Theorem 40 we know that a composed state ~s is reachable from the initial
state ~s0 iff there exists a decoupled state sD that contains ~s and that is reachable from
sD0 . With Proposition 13, which shows that dominance pruning preserves state reacha-
bility, running any complete search algorithm with dominance pruning on the decoupled
composition ensures completeness of the overall approach.

Chapter 18

Decoupled Search for Safety Checking

In this chapter, we introduce decoupled search for verifying safety properties in the
SPIN model checker [Holzmann, 2004]. Decoupled search is not the first planning
technique adopted in SPIN, heuristic search methods, for example, have been adapted
to the system before [Edelkamp et al., 2001, 2004b]. Moreover, compilations from
the Promela language, the input format of SPIN, to planning languages have been de-
signed [Edelkamp, 2003a]. This shows that there is a close relation between goal reach-
ability in the planning context and safety checking as employed in SPIN.

Consequently, with the correctness result from the previous chapter (Theorem 40),
which extends the analogous result from planning, we can directly employ decoupled
search with any complete search algorithm to verify safety properties. We start by
illustrating how Promela models can be decomposed and discussing some specifics of
our implementation in Chapter 18.1. An empirical evaluation of our decoupled search
extension of SPIN is provided in Chapter 18.2.

18.1 Implementation in SPIN

In its formulation in AI planning, the input planning task needs to be decomposed into
factors identified by a partition of the state variables. Two factors interact if there is an
action reading or updating state variables from both of them. Decoupled search requires
the component interactions to take the form of a star topology, where there is a center
component to which all interactions are incident. All other components are then referred
to as leaves. Given such a topology, the leaves depend only indirectly on each other, via
the center. In the automata-based formulation presented in the previous section, there is
no more center component. Instead, transitions are global if the corresponding label is
shared by at least two automata, all other transitions are internal.

Promela models are defined by a set of processes, each with its own internal structure
consisting of control-flow statements and local variables. The processes work on a set of

223

224 CHAPTER 18. DECOUPLED SEARCH FOR SAFETY CHECKING

shared global variables and channels, that can be read and written by each process. Here,
each of the processes forms a non-deterministic automaton, and global variables and
channels, which have a finite domain of possible values, can be interpreted as automata,
too. These global structures can be seen as automata without internal labels, so more or
less correspond to the center component that we have in planning. Then each process
is a “leaf” component, but everything that is affected by more than a single process is
grouped into the “center” component. A star-topology decomposition arises directly
from the formulation as processes interacting with global data-structures.

Concretely, each of the statements in a process corresponds to either an internal
transition, affecting only local variables or advancing the process location; or a global
transition, namely a channel operation, a statement that affects a global variable, or a
run command invoking a new process. The annotation of statements to become internal
or global transitions is done fully automatic. Global and local states are defined as
assignments to the respective parts of the model.

We implemented decoupled search in version 6.4.7 of SPIN, focusing on safety
properties only. Our implementation is preliminary in that it does not handle the full
Promela language accepted by SPIN itself. We specify the handled fragment below.

Our implementation of decoupled search is minimally intrusive. We keep SPIN’s
current state pointer to store the global state sG. Alongside that pointer, we maintain a
data structure storing the current associated set SL(sG) of reached local states. Decou-
pled search is then adopted as follows: the primary search only branches over global
transitions, i. e., transitions that affect global data-structures. We loop over SL(sG) to
determine the global transitions enabled by the reached local states. A global transition
with a label lG applied to a decoupled state 〈sG, SL(sG)〉 can allow updates in other
processes. We compute the set SL(sG)|lG of compliant local states, and apply the lo-
cal updates of lG to the states in that set. Afterwards, SL(sG)|lG is augmented by all
reachable local states to obtain the successor decoupled state 〈rG, SL(rG)〉. We perform
duplicate checking over decoupled states, testing the global states first to save runtime.

The remaining issue with our implementation is SPIN’s parsing process. Due to
the generation of model-specific code, the distinction between internal and global tran-
sitions cannot be identified anymore within the verifier itself, but must be identified
at Promela level. SPIN’s parsing process must be extended to identify the internal-
vs-global information, and to communicate that to the verifier. Currently, our imple-
mentation supports this for assignments, conditions, basic control constructs (do. . .od,
if. . .fi), all unary and binary operators, channel operations (send/receive, both syn-
chronous and buffered), and run commands. We do not support timeout, unless,
and channel polling statements (empty/full/. . .), nor the priority and provided
process constraints, nor more complex constructs like c-code and inline. For
atomic and d_step sequences, we handle basic compounds of statements, series of
conditions, assignments, and channel operations, but not more complex control flows.

18.2. EXPERIMENTAL EVALUATION 225

18.2 Experimental Evaluation
We performed experiments on several case studies, selected to suit the Promela fragment
we can currently handle, and selected to showcase the potential of decoupled search.
The experiments are preliminary and they serve mostly to illustrate the possible reduc-
tion power of decoupled search. Our implementation and all models used in the below
are publicly available [Gnad et al., 2021a].

We run the scalable variant of Peterson’s Mutex algorithm from Lynch [1996], an
elevator control model developed by Armin Biere and used as benchmark in several
papers (e. g. Edelkamp et al., 2001, 2004b), the X.509 protocol from Jøsang [1995],
and a client-server communication protocol. The latter is a toy example we created for
the purpose of this study, as a simple pattern to highlight the kind of structure relevant
to decoupled search. The model consists of a server process handling requests from a
scalable number of client processes; communication is via two channels. In decoupled
search, all processes become leaf components, and the technique is beneficial if there
are local transitions within each client. To show this, we experiment with two variants,
EmptyC where the clients do nothing other than communicating with the server, and
NonEmptyC where each client increments a local variable from 0 to 1. For illustrative
purposes, we also include a logistics planning example very similar to the one used
in the previous parts of this work. The model has a single truck which can move be-
tween two locations, and a scalable number of packages. Modeling this in Promela is
straightforward. We scale the number of packages from 1 to 50.

We compare our decoupled-search SPIN implementation to the standard SPIN model
checker in version 6.4.7 with default settings, providing no additional command line op-
tions (SPIN), and to a configuration disabling statement merging (-M) and partial-order
reduction (-POR). All configurations exhaust the entire state space, using the verifier
options -A and -E. Restricting ourselves to safety properties, we removed any never
claims from the models. We use a runtime limit of 60 min and allow for a maximum
of 32 GiB of memory. The evaluation was performed on a cluster of Intel E5-2660
machines running at 2.20 GHz.

Figure 18.1 shows the results, scaling each case study until all configurations run
out of memory (indicated by a “-”). Memory is always the bottleneck, no configuration
runs out of time. Decoupled search works very well in Peterson, significantly reducing
memory consumption and runtime. The number of states is reduced by more than two
orders of magnitude in the large instances. From the strong gains of SPIN over its
-M -POR variant, we conclude that Peterson in general benefits partial-order reduction
techniques. To a lesser extent, decoupled search also has advantages in Elevator and
X.509. In Elevator, although the number of states is again reduced by up to two orders of
magnitude, the reduction in runtime and memory is less pronounced than in the Peterson
model. Comparing the SPIN variants, we also see a somewhat smaller advantage of the
POR and statement merging techniques.

226 CHAPTER 18. DECOUPLED SEARCH FOR SAFETY CHECKING

SPIN -M -POR SPIN Decoupled Search
Model Time Mem #States Depth Time Mem #States Depth Time Mem #States Depth

2 0 0.13 216 145 0 0.13 56 42 0 0.13 16 12
Peterson 3 0.04 0.13 33434 6924 0 0.13 2999 615 0 0.13 274 120

4 19 1.14 8886434 1703147 0.53 0.21 533083 165342 0.1 0.13 6698 1615
5 - - - - 124 10.08 76620358 25309679 4.16 0.27 153548 27392
6 - - - - - - - - 157 4.79 3503908 473228

Elevator 3 0.23 0.14 99057 4609 0.12 0.13 78284 4950 0.06 0.13 7081 590
4 3.15 0.19 685169 29487 1.49 0.17 498676 30239 0.42 0.16 37095 1643
5 15.5 0.44 3620470 28638 5.02 0.33 2354211 27634 2.38 0.26 115077 1630
6 95.7 1.86 18813600 30818 26.7 1.13 10868993 29712 7.35 0.65 359163 1728
7 676 10.31 97574250 32998 153 5.56 49636481 31790 25.5 2.08 1119285 1826
8 - - - - 782 26.62 224704000 33868 95.5 7.51 3483243 1924
9 - - - - - - - - 360 27 10825893 2022

X.509 1.58 0.18 403311 91 0 0.13 3054 57 0 0.13 1090 35
5 0.1 0.13 25600 3963 0.02 0.13 7731 2001 0.03 0.13 3245 324

Client- 6 0.72 0.15 141312 16235 0.08 0.13 32296 6830 0.15 0.14 13128 755
Server- 7 4.84 0.21 745472 63236 0.42 0.15 143741 27442 0.74 0.19 51037 1607
EmptyC 8 31.3 0.59 3801088 263835 2.05 0.24 507967 104759 3.3 0.42 192464 3297

9 199 2.83 18874368 1062399 8.53 0.44 2206702 370926 14.6 1.36 708597 6274
10 1160 12.38 91750400 4252067 35 1.66 8140911 1277049 63.2 5.34 2558800 13414
11 - - - - 149 4.45 29856762 4335070 256 21.11 9093557 28150
12 - - - - 609 21.06 109424300 14937082 - - - -

4 0.13 0.13 39936 7497 0.01 0.13 4037 1021 0.01 0.13 760 142
Client- 5 2.69 0.18 450560 65354 0.05 0.13 23614 6209 0.04 0.13 3245 324
Server- 6 30.2 0.73 4816896 518833 0.33 0.15 132210 32645 0.21 0.15 13128 755
NonEmptyC 7 416 7.6 49545216 4256969 2.12 0.27 708019 172048 1.04 0.21 51037 1607

8 - - - - 14 0.74 3813278 882008 4.86 0.53 192464 3297
9 - - - - 83.8 3.79 19384754 4254923 20.4 1.87 708597 6274

10 - - - - 480 22.14 95568530 19967819 87.1 7.57 2558800 13414
11 - - - - - - - - 369 30.39 9093557 28150

Transport- 4 0.22 0.13 112735 329 0 0.13 31018 311 0 0.13 18 8
Planning 5 3.85 0.19 1240092 978 0.36 0.14 237249 892 0 0.13 21 9

6 47.8 0.95 13641019 2923 3.14 0.24 1815310 2698 0 0.13 24 10
7 728 12.8 150051220 8756 29 1.07 13954478 6404 0 0.13 27 11
8 - - - - 269 8.03 107967020 19740 0 0.13 30 12

50 - - - - - - - - 0.01 0.13 156 54

Figure 18.1: Performance of SPIN with default options (SPIN), disabling statement
merging (-M) and partial-order reduction (-POR), and with decoupled search. We show
runtime (in seconds) and memory consumption (in GiB), as well as the number of stored
states (#States), and the maximum search depth (Depth) reported by SPIN. Best run-
time/memory is highlighted in bold face.

In Client-Server, as expected, decoupled search is more beneficial with more inter-
nal transitions in the clients. It performs worse than SPIN on the EmptyC variant, in
spite exploring more than an order of magnitude less states. In both variants, the de-
fault SPIN configuration has tremendous advantages over the restricted configuration.
Remarkably, the two model variants result in the exact same number of states for decou-
pled search. This nicely illustrates that internal transitions that do not result in different
global behaviour can be completely compressed into a decoupled state. There is, how-
ever, an overhead in runtime and memory of the larger local state spaces. In the logistics
case study adopted from planning, decoupled search excels. This is not a relevant ob-

18.2. EXPERIMENTAL EVALUATION 227

servation in model checking per se, but points to the advantage decoupled state-space
search may in principle have over previous search methods in SPIN.

In general, the number of decoupled states is consistently smaller than the number
of states in SPIN. Where the reduction is relatively small, it is outweighed by the over-
head of handling decoupled states. Regarding the search depth, keep in mind that the
maximum depth of decoupled search is that of the global transitions only. The depth
bound can, thus, in general be kept significantly smaller for decoupled search, leading
to a reduced memory consumption for the search stack.

228 CHAPTER 18. DECOUPLED SEARCH FOR SAFETY CHECKING

Chapter 19

Decoupled Search for Liveness
Checking

In this chapter, we show how decoupled search can be applied to the verification of live-
ness properties for composed Büchi automata. We adapt, and show correct, a standard
nested depth-first search algorithm for detecting lassos, i. e., infinite accepting runs.

Nested depth-first search (NDFS), like all state-space search methods, suffers from
the state explosion problem. Various methods, such as partial-order reduction [Val-
mari, 1992; McMillan, 1992; Godefroid, 1996; Esparza et al., 2002; Rodríguez and
Schwoon, 2013], symbolic representations [Bryant, 1986; McMillan, 1993], symmetry
reduction [Emerson and Sistla, 1996; Ip and Dill, 1996], or Petri-net unfolding [Esparza
and Heljanko, 2000, 2001] have been proposed to alleviate the state explosion problem.
Here, we add decoupled state-space search as a new method for model checking liveness
properties, complementary to the existing approaches.

In Chapter 19.1, we first discuss some issues that would arise in a naïve attempt
to (incorrectly) adapt NDFS, and describe the (correct) adapted NDFS algorithm. To
guarantee completeness, we introduce a novel decoupled-state splitting mechanism, that
keeps track of the root state of the invocation of each call to the inner DFS. Chapter 19.2
provides the correctness proof of our decoupled NDFS variant.

In Chapter 19.3 we show our experimental evaluation, whose code and models are
publicly available [Gnad et al., 2021b]. We evaluate our approach on two showcase
examples similar to the dining philosophers problem, and a set of randomly generated
models using a prototype implementation. We compare to established tools, namely the
SPIN model checker [Holzmann, 2004], and Petri-net unfolding with Cunf [Rodríguez
and Schwoon, 2013]. The results show that, like for safety properties, decoupled search
can yield exponential advantages over state-of-the-art methods. In particular, its ad-
vantage grows with the degree to which components act independently of others, via
internal transitions that do not affect other components.

229

230 CHAPTER 19. DECOUPLED SEARCH FOR LIVENESS CHECKING

19.1 NDFS for Decoupled Search
We now adapt NDFS to decoupled search. We start by discussing the deficiencies of
a naïve adaptation. We will then introduce the key concepts in our fixed algorithm in
Chapter 19.1.2, and present the algorithm itself in Chapter 19.1.3.

19.1.1 Issues with a Naïve Adaptation of NDFS
In a naïve adaptation of NDFS to decoupled search, the only thing that changes is the
treatment of decoupled states, which represent sets of composed states, compared to sin-
gle states in the standard variant. This leads to three mostly minor changes: (1) instead
of duplicate checking we perform dominance pruning; (2) checking if a decoupled state
is accepting boils down to checking if it contains an accepting member state; and (3)
to see if a state ~t contained in a decoupled state tD generated in NestedDFS is on the
stack, we need to check if tD has a non-empty intersection with a state on Stack .

As we will show next, it turns out that this naïve adaptation can miss cycles due to
pruning. Moreover, revisiting a composed state in NestedDFS does actually not imply
a cycle, because reaching tD from sD entails only that every member state of tD can be
reached from at least one member state of sD, not from all of them. Concretely, say we
started NestedDFS from sDA , and reached tD with ~t ∈ tD∩rD for rD on Stack . Then we
know that ~t can be reached from at least one ~s ∈ sDA; and we know that ~s can be reached
from at least one ~t′ ∈ rD. It is not necessarily the case that ~t = ~t′. The critical point is
that pruning does not take into account from where states are reachable.

Consider the example in Figure 19.1. The left part of the figure shows the local state
space of component NBAA1

B. For simplicity, we only show a single component, which
is sufficient to illustrate the issue. Here, A1

B is defined as follows: S1 = {1, 2, 3, 4},
L1
G = {l1G, l2G}, L1

I = {l1I , l2I , l3I}, A1(s) = > iff s ∈ {2, 4}, and s1
0 = 1. The transitions

are as shown in the left of the figure. The decoupled search space generated using NDFS
is depicted in the right of the figure. Pruned states are crossed out.

NestedDFS is launched (indicated by the wavy arrow) on the accepting initial state
sD0 . Before explaining the main issue, we remark that, to ensure that a cycle through
an accepting member state of sD0 is found, not a cycle through a non-accepting one, we
need to restrict the set of reached local states to those that are accepting, and the states
internally reachable from those via iclose(). Thus, NestedDFS starts in what we call the
acceptance-restriction sD0,A of sD0 , where sD0,A[A1

B] = {2, 4}. Now, the issue results from
the fact that sD0,A contains two accepting member states, only one of which, namely
state 2, is on a cycle. Assuming that the decoupled states are generated in order of
increasing subscripts, so sD1 before sD2 and so on, state 2 is first reached in NestedDFS
as a member state of sD2,A, but via the transition labelled with l2G from state 3, so the
cycle cannot be closed. When generating the l1G successor sD4,A of sD0,A, its only member
state 3 has already been reached in sD1,A, so sD4,A is pruned and the cycle of state 2 via

19.1. NDFS FOR DECOUPLED SEARCH 231

1

2 3 4

l1G, l
2
G

l1I l2I l3I
l1G

l2G
l2G

sD0 [A1
B] = {1, 2, 3, 4}

sD1 [A1
B] = {1, 2, 3, 4} sD2 [A1

B] = {1, 2, 3, 4}sD0,A[A1
B] = {2, 4}

sD1,A[A1
B] = {3}

sD2,A[A1
B] = {2}

sD3,A[A1
B] = {3}

sD4,A[A1
B] = {3}

sD1 = sD0 sD2 = sD0

sD3,A = sD1,A

sD4,A = sD1,A

l1G l2G

l2G

l2G

l1G

l1G

Figure 19.1: Counterexample showing that a naïve adaptation of the NDFS algorithm
is incomplete. The (only) component NBA A1

B is depicted on the left. The search tree
on the right shows the entire reachable decoupled state space, where pruned states are
crossed out; the wavy arrow depicts the invocation of NestedDFS on the acceptance
restriction sD0,A of sD0 .

l1G, l
2
G is missed. In the next section we show how to fix this, through an extended state

representation that keeps track of reachability from a set of reference states.
Another minor issue are lassos ~ρp(~ρc)ω whose cycle ~ρc is induced by internal la-

bels only. These will not be detected, because NestedDFS only considers traces via
global labels. We fix this by checking for LI-cycles in every accepting decoupled state
generated during DFS, to see if there exists a component that can reach such a state.

19.1.2 Reference-State Splits

The problem underlying the issue described in the previous section is that pruning is
done regardless of the accepting states in the root node of NestedDFS. We now intro-
duce an operation on decoupled states splitting them with respect to the set of reached
local accepting states for each component. In our algorithm, this will serve to distin-
guish the different accepting states, and thus force dominance pruning to distinguish
reachability from these. Formally, we define the restriction to accepting local states as
a new transition with a global label lAG that is a self-loop for all accepting states:

Definition 58 (Acceptance-Split Transition). Let 〈SD,→D,L, sD0 , AD〉 be the decoupled
composition ofA1

B, . . . ,AnB. Let sD be an accepting decoupled state, and for 1 ≤ i ≤ n
let 〈si1, . . . , sici〉 ⊆ sD[AiB] be the list of reached accepting states of AiB, where for all
1 ≤ j ≤ ci : Ai(sij) = >. Then the acceptance-split transition lAG in sD is defined as
follows:

232 CHAPTER 19. DECOUPLED SEARCH FOR LIVENESS CHECKING

AD(sD) = > ∀i ∈ {1, . . . n}, j ∈ {1, . . . , ci} : sij ∈ sD[AiB] ∧ Ai(sij) = >

sD
lAG−→D 〈〈iclose(s1

1), . . . , iclose(s1
c1

)〉, . . . , 〈iclose(sn1), . . . , iclose(sncn)〉〉

The outcome state sDA of an acceptance-split transition is a split decoupled state.
The set of reference states of sDA is R(sDA) := {s | ∃AiB : s ∈ sD[AiB] ∧ Ai(s) = >}.

In words, the operation splits up the single set of reached component states sD[AiB]
of AiB into a list of state sets, where each such set sDA[AiB]s contains the states that can
be reached via internal transitions from the respective accepting state s ∈ sD[AiB].

Our search algorithm will use the acceptance-split transition to generate the root
node sDA of NestedDFS from an accepting state sD backtracked from in DFS. Hence
NestedDFS will search in the space of split decoupled states. The transitions over these
behind an sDA are defined as follows:

Definition 59 (Split Transitions). Let 〈SD,→D,L, sD0 , AD〉 be the decoupled composi-
tion of A1

B, . . . ,AnB. Let sD and tD be decoupled states, with a transition sD lG−→D tD.
Let 〈si1, . . . , sici〉 ⊆ Si be reference states for AiB. Then the split transition sDR

lG−→D tDR
is defined such that for every AiB and every 1 ≤ j ≤ ci we have:

tDR[AiB]sij =

{
iclose({s′ ∈ tD[AiB] | ∃s ∈ sDR[AiB]sij : s

lG−→is′}) lG ∈ LiG
sDR[AiB]sij lG 6∈ LiG

The list of reference states for an AiB does not change along a trace of split transi-

tions. Let sDA be a decoupled state generated by an acceptance-split transition sD
lAG−→D

sDA , then for all successor states tD of sDA , the set of reference states is R(tD) = R(sDA).
We extend set operations to the split representation as follows. A split decoupled

state sDR dominates a split decoupled state tDR , denoted tDR ⊆R sDR , if R(tDR) ⊆ R(sDR) and
for all componentsAiB and reference states s ∈ R(tDR)∩Si we have tDR[AiB]s ⊆ sDR[AiB]s.
In contrast, state membership is defined in a global manner, across reference states.
Namely, the set of local states of an AiB reached in a split decoupled state sDR is defined
as sDR[AiB] :=

⋃
s∈R(sDR)∩Si sDR[AiB]s. Composed state membership is defined relative to

these sDR[AiB] as before.
An important property of the splitting is that it preserves reachability of member

states. Concretely, for a split-transition sDR
lG−→D tDR induced by a transition sD lG−→D tD

for all AiB it holds that if sDR[AiB] = sD[AiB], then tDR[AiB] = tD[AiB].
As a notation convention, we will always denote split states sDR by a subscript R,

and the direct outcome of an acceptance-split transition by sDA , with a subscript A.

19.1. NDFS FOR DECOUPLED SEARCH 233

sD1,A[A1
B] = 〈{2}2, {4}4〉

sD1,R[A1
B] = 〈{}2, {3}4〉 sD2,R[A1

B] = 〈{}2, {2}4〉 sD3,R[A1
B] = 〈{}2, {3}4〉

sD4,R[A1
B] = 〈{3}2, {}4〉 sD5,R[A1

B] = 〈{2}2, {}4〉

sD3,R ⊆R sD1,Rl2G

l2G l1G

l1G
l2G

Figure 19.2: With acceptance-splitting, NestedDFS invoked on the lAG-successor sD1,A
of sD0 of the example in Figure 19.1 correctly detects the cycle of state 2 induced by the
trace l1G, l

2
G.

Considering our example again, Figure 19.2 illustrates how, on split decoupled

states, the cycle 2
l1G−→ 3

l2G−→ 2 is not pruned. The state sD3,R is still pruned, as it contains
only component states reached from state 4. In sD4,R and sD5,R, the decoupled state keeps
track of the traces from the origin state 2, so none of the two is pruned, since they are
not dominated by any state sDi,R (the root node sD1,A of NestedDFS is not yet visited).

As indicated before, in our emptiness checking algorithm we will use split decoupled
states only within NestedDFS. The seed state sDA of NestedDFS will always be the lAG-
successor of an accepting state sD backtracked from in DFS. Every member state of sDA
is accepting, or can be reached with LI-transitions from an accepting state.

19.1.3 Putting Things Together: Decoupled NDFS
We are now ready to describe our adaptation of the standard NDFS algorithm to de-
coupled compositions. The pseudo-code is shown in Figure 19.3. The differences w.r.t
the standard algorithm (Figure 16.4) are highlighted in blue. The basic structure of the
algorithm is preserved. It starts by putting the decoupled initial state sD0 onto the Stack
in CheckEmptiness, and launches the main DFS from it.

In DFS, the control flow does not change, decoupled states are generated in depth-
first order by recursion, updating the stack accordingly. There are however three differ-
ences to the standard variant:

1. Before generating the successors, we call CheckLocalAccept on each accepting
decoupled state sD. This detects cycles resulting from LI-transitions, i. e., cycles
that occur “within” a decoupled state. To this end, we check whether there exists a
componentAiB for which an accepting local state sia is reached that can reach itself
using only internal labels LiI (the set of such local states can be precomputed, so
that the check becomes a lookup operation). We can then construct an accepting
run for the composed system by appending the LiI-cycle to the sequence of states

234 CHAPTER 19. DECOUPLED SEARCH FOR LIVENESS CHECKING

1 CheckEmptiness(A1
B ‖D . . . ‖D AnB):

2 Stack← 〈sD0 〉
3 V ← ∅
4 V ′ ← ∅
5 DFS(sD0)
6 return empty

7 NestedDFS(sDR):
8 foreach tDR s.t. sDR →D tDR do
9 if ∃rDR ∈ V ′ s.t. tDR ⊆R rDR then

10 continue
11 if ∀AiB : ∃s : s ∈ tDR[AiB]s then
12 return cycle
13 if ∃rD ∈ Stack s.t. rD ⊆ tDR then
14 return cycle
15 V ′ ← V ′ ∪ {tDR}
16 NestedDFS(tDR)
17 end

18 DFS(sD):
19 V ← V ∪ {sD}
20 if AD(sD) then
21 CheckLocalAccept(sD)
22 foreach tD s.t. sD →D tD do
23 if ∃rD ∈ V s.t. tD ⊆ rD then
24 continue
25 push(Stack, tD)
26 DFS(tD)
27 pop(Stack)
28 end
29 if AD(sD) then

30 Let sDA s.t. sD
lAG−→D sDA .

31 NestedDFS(sDA)
32 V ′ ← V ′ ∪ {sDA}
33 end

34 CheckLocalAccept(sD):

35 if ∃AiB, s∈sD[AiB] : Ai(s)∧s lI∈Li
I−−−→+s

then return cycle

Figure 19.3: Adaptation of NDFS for lasso search in decoupled compositions of NBA.

that reaches sia in sD for AiB. Note that it suffices if a single component moves
and all other components remain in a reached accepting state.

2. Instead of doing duplicate checking, the algorithm performs dominance pruning,
pruning a new decoupled state tD if all its member states have been reached in an
already visited decoupled state rD.

3. As discussed in Section 19.1.2, when we launch NestedDFS at a decoupled state
sD, we do so on the acceptance-split lAG-successor sDA of sD.

NestedDFS now starts in the acceptance-split sDA , and traverses split transitions as
per Definition 59. On generation of a new state tDR , we perform dominance pruning
against the decoupled states visited during all prior calls to NestedDFS. If in an tDR for
every component AiB there exists a reference state s ∈ Si that is reachable from itself,
so s ∈ tD[AiB]s, then we can construct a cycle. As we will show in Theorem 41, this
test is guaranteed to find all cycles that start from an accepting state ~sA ∈ sDA .

Note that we cannot check for a non-empty intersection with states rD on Stack ,
since these are not split relative to the reference states of sDA . Thus, since we do not

19.1. NDFS FOR DECOUPLED SEARCH 235

know from which local state in rD the state in the intersection was reached, such a non-
empty intersection would not imply a cycle. What we can do, however, is check for
dominance instead, as an algorithm optimization inspired by [Holzmann et al., 1996].
The pseudo-code in Figure 19.3 does so by checking whether tDR ⊇ rD, where the ⊇
relation between a split vs. non-split state is simply evaluated based on the overall sets
tDR[AiB] vs. rD[AiB] of reached components states. If this domination relation holds true,
then the reachability issue mentioned in the previous section is resolved because all
~t ∈ rD are then reachable from sDA—including those ~t from which an accepting state
~s ∈ sDA is reachable. Lemma 15 in the next section will spell out this argument as part
of our correctness proof.

Observe that splitting a decoupled state incurs an increase in the size of the state
representation, as the same local state may be reached from several reference states.
More importantly, as dominance pruning is weaker on split states (which after all is the
purpose of the split operation) the size of the search space may increase. As shown
by the example in Figure 19.1, though, there is no easy way around the splitting, since
the algorithm has to be able to know from which component state the successors states
are reached. Assuming a component has M accepting states, then in the worst case all
local successor states that are shared between these accepting states can be visited M
times across all NestedDFS invocations. Unless some of the decoupled states revisiting
the same member state are pruned by dominance pruning, it can actually happen that
the revisits multiply across the components, so the size of the decoupled state space in
NestedDFS can potentially be exponentially larger than the standard state space. As we
shall see in our experimental evaluation, typically such blow-ups do not seem to occur.

In case we want to construct a lasso, we need to store a pointer to the predecessor
of each decoupled state and the label of the generating transition. With this, we can,
for each component AiB separately, reconstruct a trace ~π of a state ~t ∈ tD reached from
a state ~s ∈ sD where πG(sD, tD) = πG(~π). Here, for a decoupled state tD that was
reached from another decoupled state sD, by πG(sD, tD) we denote the global trace via
which tD was reached from sD. Reconstructing ~π can be done in time polynomial in
the size of the component and linear in the length of πG(sD, tD). Since the traces for all
components are synchronized via πG(~π), we add the required internal labels for each
component in between every pair of global labels. We remark that, to decide if a lasso
exists, we do not need to store any predecessor or generating label pointers.

We next show on an example how our algorithm works.

Example 12. The model has two component NBAs A1
B,A2

B illustrated in Figure 19.4.
It is a variant of an example from Laarman et al. [2013]. We remark that all global
transitions l1G, . . . l

7
G induce a self loop in the only state 1 of A2

B.
CheckEmptiness starts by putting sD0 onto Stack and enters DFS(sD0). Let sD1 =

〈{B,D}, {1}〉, sD2 = 〈{E,F}, {1}〉, and sD3 = 〈{D}, {1}〉 be the successors generated
along the trace l1G, l

2
G, l

3
G in DFS. Since sD3 ⊆ sD1 ∈ V , sD3 is pruned and the search

236 CHAPTER 19. DECOUPLED SEARCH FOR LIVENESS CHECKING

A1
B: AB

C

D

E

F

G

H

l1G

l4G

lI

l2G

l5G

l6G

lIl3Gl7G

A2
B: 1 l1−7

G

Figure 19.4: Illustration of the component NBAs used in Example 12.

backtracks to sD1 . Say DFS selects the transition via l4G next, generating the state sD4 =
〈{C}, {1}〉 and its l5G-successor sD5 = 〈{F}, {1}〉. Then sD5 is pruned because it is
dominated by sD2 ∈ V , and the search backtracks from sD4 , which is accepting.

Thus, NestedDFS(sD5,A) is invoked, where sD5,A = 〈〈{C}C〉, 〈{1}1〉〉, because C
and 1 are accepting local states that become the reference states of sD5,A. NestedDFS
will follow the trace l5G, l

3
G, l

6
G, l

7
G, l

7
G, which among others generates the state sD6,R =

〈〈{G}C〉, 〈{1}1〉〉 by l6G, and ends in sD7,R = 〈〈{G}C〉, 〈{1}1〉〉. The latter is pruned,
because it is dominated by sD6,R, which is contained in V ′. No cycle is reported. This is
correct, because the only member state (C, 1) of sD5,A does not occur on a cycle.

DFS then backtracks to sD1 = 〈{B,D}, {1}〉 and generates its remaining successor
sD8 = 〈{G}, {1}〉 via l6G. DFS further generates the l7G-successors of sD8 and eventually
backtracks from sD8 , invoking NestedDFS(sD8,A), where sD8,A = 〈〈{G}G〉, 〈{1}1〉〉.

After two transitions via l7G the resulting state sD9,R = 〈〈{G}G〉, 〈{1}1〉〉 satisfies the
condition that for all components AiB : s ∈ sD9,R[AiB]s, namely G and 1. Thus, a cycle
is reported. It is induced by the trace l1G, lI , l

6
G, l

7
G, l

7
G.

Note that no decoupled state in the second NestedDFS is pruned, since none of
them is dominated by a state in V ′ of the first NestedDFS invocation. In particular,
sD8,A = 〈{G}G, {1}1〉 is not dominated by sD6,R = 〈{G}C , {1}1〉, because the reference
states differ—G and 1 for sD8,R and C and 1 for sD6,R.

19.2 Decoupled NDFS Correctness
We now show the correctness of our approach. In Lemmas 15, 16, 17, we show that if
our algorithm reports a cycle, then there exists an accepting run for A1

B ‖ . . . ‖ AnB. In
Theorem 41, we then show that decoupled NDFS does not miss an accepting run.

We first show that the optimization of checking dominance of states in NestedDFS
against states on the stack is sound, i. e., that an accepting run exists if it fires.

Lemma 15. Let rD be a decoupled state on the current DFS Stack , and let tDR be a
decoupled state generated by NestedDFS. If tDR ⊇ rD, then there exists an accepting
run for A1

B ‖ . . . ‖ AnB.

19.2. DECOUPLED NDFS CORRECTNESS 237

Proof. Let sD be the accepting state that is backtracked from in DFS, i. e., the current
NestedDFS was invoked on its lAG-successor sDA .

From Theorem 40 we know that if sD2 is reachable from sD1 , then for every state
~s2 ∈ sD2 there exists a state ~s1 ∈ sD1 such that ~s1

~π−→ ~s2, where πG(~π) = πG(sD1 , s
D
2).

This result also holds for decoupled states reached in NestedDFS from states in
DFS. This is because the acceptance-split transition lAG only restricts the set of reached
member states of sD in sDA , so in particular sDA ⊆ sD. Furthermore, split transitions
generating states behind sDA do not affect reachability of member states of these split-
decoupled states compared to their non-split counterparts.

In particular, (1) for every state ~s2 ∈ sD there exists a state ~s1 ∈ sD0 that reaches
~s2 on a trace ~π where πG(~π) = πG(sD0 , s

D), which, with sDA ⊆ sD also holds for all
~s2 ∈ sDA; and (2) for every state ~t ∈ tDR there exists an accepting state ~sA ∈ sDA that
reaches ~t on a trace ~π where πG(~π) = πG(sDA, t

D
R).

Since rD is on Stack, it holds that every ~s ∈ sDA is reachable from a ~r ∈ rD, and,
with tDR ⊇ rD, that every ~r ∈ rD is reachable from an accepting state ~sA ∈ sDA .

Let pred(sD1 , s
D
2 , ~s2) be a function that, if sD2 is reachable from sD1 and ~s2 ∈ sD2 ,

outputs a state ~s1 ∈ sD1 that reaches ~s2 via a trace ~π with πG(sD1 , s
D
2) = πG(~π).

Let ~s0 be a state reached in both tDR and rD, and let ~s1 = pred(rD, tDR, ~s0) be
its predecessor in rD. If ~s1 = ~s0, then we are done, because there exists a lasso
~s0, . . . , ~s0, . . . , ~sA, . . . , ~s0, . . . , ~sA, where ~sA is an accepting state traversed in sDA . Such
an accepting state exists because all member states of a decoupled state in NestedDFS
are reachable from an accepting state in sDA .

If ~s1 6= ~s0, then we iterate and set ~si = pred(rD, tDR, ~si−1), where such ~si exist
because rD ⊆ tDR . Because there are only finitely many states in rD, eventually we get
~si = ~sj (where j < i) and there exists a lasso as follows:

First, there exists a cycle ~si, . . . , ~si−1, . . . , ~sj = ~si, where between every pair of
states ~sk, ~sk−1 an accepting state ~sk,A in sDA is traversed, for the same reason as before.
We can obviously shift and truncate the cycle to start right after and end in ~si,A. The
prefix of the lasso is ~s0, . . . , ~si,A.

Lemmas 16 and 17 show the soundness of our main termination criterion, and of
CheckLocalAccept.

Lemma 16. Let tDR be a split decoupled state generated in NestedDFS. If for every
component AiB there exists a component state si such that si ∈ tD[AiB]si , then there
exists an accepting run for A1

B ‖ . . . ‖ AnB.

Proof. Let sDA be the acceptance-split decoupled state from which NestedDFS was
started. If for every component AiB such an si exists, then the state ~s = (s1, . . . , sn)
is reachable in both sDA and tDR . By the construction of the reached state sets tDR[AiB]si , ~s
is reachable from itself and is accepting. Hence, there exists a lasso ~s0, . . . , ~s, . . . , ~s.

238 CHAPTER 19. DECOUPLED SEARCH FOR LIVENESS CHECKING

Lemma 17. Let tD be an accepting decoupled state generated in DFS such that a cycle
is reported by CheckLocalAccept(tD), then an accepting run for A1

B ‖ . . . ‖ AnB exists.

Proof. By prerequisite, there exists an accepting member state ~s of tD. If CheckLo-
calAccept(tD) reports a cycle, then there exists a component AiB, where an accepting
state si ∈ tD[AiB] is reached that lies on an cycle induced by transitions labelled with
LiI . Thus, we can set the local state of AiB in ~s to si, and the lasso looks as follows:
~s0, . . . , ~s, . . . , ~s, where on the cycle only AiB moves.

We are now ready to prove the correctness of our decoupled NDFS algorithm.

Theorem 41. Let A1
B ‖ . . . ‖ AnB be the composition of n NBA and let A1

B ‖D . . . ‖D
AnB be its decoupled composition. Then CheckEmptiness(A1

B ‖D . . . ‖D AnB) reports a
cycle if and only if an accepting run for A1

B ‖ . . . ‖ AnB exists.

Proof. If CheckEmptiness reports a cycle, then by Lemmas 15, 16, and 17, which
cover exactly the cases where a cycle is reported, an accepting run for A1

B ‖ . . . ‖ AnB
exists.

For the other direction, assume that ~ρ is an accepting run forA1
B ‖ . . . ‖ AnB. Let ~sa,

with 0 ≤ a < k, be the accepting state that starts the cycle of the lasso ~ρp = ~s0, . . . , ~sa,
~ρc = ~sa+1, . . . , ~sk, where ~sa = ~sk. Let ~π = l1, . . . , lk be the trace on which ~sk is
reached, i. e., for all 1 ≤ i < k : 〈~si, li+1, ~si+1〉 ∈→.

By Theorem 40, there exists a decoupled state sD reached in DFS that contains ~sa.
If ~π is such that for all a < i ≤ k : li ∈ LI , i. e., the cycle ~ρc is induced only

by internal labels, we next proof that CheckLocalAccept(sD) reports a cycle: As ~sa is
accepting, sD is accepting, too, so unless a cycle is reported before, eventually Check-
LocalAccept(sD) is called. If ~ρc is induced by only internal labels, then, because there
cannot be any component interaction via LI-transitions, there must exist a component
AiB for which the local state si in ~sa reaches itself with only LiI-transitions. We can
pick any such AiB and ignore transitions from ~ρc that are labelled by an element of
LI \ LiI , since these are not required for an accepting cycle. Consequently, CheckLo-
calAccept(sD) reports a cycle.

We next show that, if ~π contains a global label on the cycle, i. e., there exists an i ∈
{a+1, . . . , k} such that li ∈ LG, then, unless a cycle is reported before, NestedDFS(sDA)
reports a cycle, where sDA is the lAG-successor of sD.

Assume for contradiction that this is not the case, i. e., no cycle has been reported
before, and NestedDFS(sDA) does not report a cycle. Let NestedDFS(sDA) be the first
call to NestedDFS that misses a cycle, although an ~sa ∈ sDA that is on a cycle exists.

If ~sa is on a cycle, then by Theorem 40 there exists a decoupled state tD reachable
from sDA that also contains ~sa. The result of Theorem 40 holds in this case because, by
the definition of split transitions, the splitting does not affect reachability of member
states. So there exists tDR reachable from sDA that contains ~sa.

19.3. EXPERIMENTAL EVALUATION 239

l1I l2I

l3I

l4I

l5I

l6I

liG

li+1
G llFi

G

llFi
G

lrFi
G

lrFi
G

llFi
G l

rFi+1

G

leatI

llFi
Gl

rFi+1

G

lthinkI

Figure 19.5: Illustrations of the ring model (left) and the fork (middle) and philosopher
(right) NBAs of the philosophers model. Initial states are marked by an incoming arrow,
accepting states by a double circle.

Denote by ~πc = la+1, . . . lk the cycle part of ~π. Because ~sa is an accepting member
state of sD, all its component states siA become reference states in sDA . Therefore, as-
suming that πG(sDA, t

D
R) = πG(~πc), for all components we have siA ∈ tDR[AiB]siA and a

cycle is reported. If this is not the case, then either (1) sD was not reached in DFS, or
(2) tDR was not reached in NestedDFS(sDA).

In case (1), there must exist a state sDP ⊇ sD that prunes sD. But then, sDP contains
~sa, too, and NestedDFS was called on its lAG-successor sDP,A and the cycle of ~sa was
missed before, in contradiction.

For (2), either (a) there exists a state tDP,R ⊇R tDR that was reached in a prior invo-
cation of NestedDFS on an accepting state sDP,A, or (b) a state tDP,R ⊇ tDR was reached
in NestedDFS(sDA) before tDR . In both cases, tDR is pruned and the cycle through ~sa is
missed. Case (a) can only happen if sDP,A contains ~sa, too, because the reference states of
sDA need to be a subset of the ones of sDP,A. But then, the cycle of ~sa was missed before,
in contradiction. For (b), if tDR ⊆R tDP,R, then for all AiB we have siA ∈ tDP,R[AiB]siA , so
the cycle would have been reported before, in contradiction.

The reachability argument in (1,2a,2b) applies recursively to all predecessors of sD

in DFS, and of tDR in NestedDFS(sDA), so, unless a cycle is reported before, eventually
a state sD is reached in DFS that contains ~sa, and a state tDR with siA ∈ tDR[AiB]siA in
NestedDFS(sDA).

19.3 Experimental Evaluation
We implemented a prototype of the decoupled NDFS algorithm from Figure 19.3. The
input is specified in the Hanoi Omega-Automata format [Babiak et al., 2015], describing
a set of NBAs synchronized via global labels as in Definition 56. Although, as men-
tioned before, it is possible to represent decoupled states symbolically (see Chapter 12),
we maintain decoupled states as sets of explicit local states in our implementation. We
compare our prototype to the SPIN model checker [Holzmann, 2004] (v6.5.1), and to
the Cunf Petri-net unfolding tool [Rodríguez and Schwoon, 2013] (v1.6.1). We also

240 CHAPTER 19. DECOUPLED SEARCH FOR LIVENESS CHECKING

Dining Philosophers Ring Topology
SPIN Cunf DecNDFS SPIN Cunf DecNDFS

#AB Time #States M Time #E M Time #States M #AB Time #States M Time #E M Time #S M
2 0.0 18 129 0.0 23 6 0.0 13 8 5 0.01 12.2K 129 0.0 225 6 0.0 7 8
3 0.0 76 129 0.0 75 6 0.0 36 8 6 0.10 81.5K 133 0.0 342 6 0.0 8 8
4 0.0 348 129 0.0 162 6 0.0 97 8 7 0.95 560K 157 0.0 484 7 0.0 9 8
5 0.0 2000 129 0.0 293 6 0.0 272 8 8 8.35 3.7M 303 0.01 651 7 0.0 10 8
6 0.0 9416 131 0.01 482 7 0.01 783 8 9 73.6 24.6M 1367 0.01 843 8 0.0 11 8
7 0.2 45132 139 0.01 735 8 0.06 2290 8 10 - - - 0.01 1060 9 0.0 12 8
8 1.3 212K 175 0.02 1066 9 0.60 6761 8 15 - - - 0.03 2525 17 0.0 17 8
9 7.9 992K 333 0.02 1481 11 5.49 20.1K 9 20 - - - 0.10 4570 37 0.0 22 8
10 46.8 4.6M 993 0.04 1994 15 56.7 59.9K 14 25 - - - 0.22 7240 74 0.01 27 8
11 278.0 21.6M 3965 0.04 2386 18 558 179K 44 50 - - - 3.80 30K 917 0.06 52 8
12 - - - 0.06 2874 23 - - - 75 - - - - - - 0.26 77 8

Figure 19.6: Statistics on the two scaling models, where #AB is the number of philoso-
phers, resp. the number of NBAs, Time is runtime in seconds, #States (#S) and #E are
the number of visited states, resp. generated events, and M is the memory usage in MiB.
We highlight best runtime and memory performance in bold face.

experimented with the symbolic model checkers NuSMV and PRISM [Cimatti et al.,
2002; Kwiatkowska et al., 2011], but both are significantly outperformed by the other
methods. We conjecture that this is because both systems are not specifically designed
for LTL checking on an asynchronous execution of processes. For SPIN, we translate
each NBA to a process where NBA states are represented by state labels, internal transi-
tions by goto statements, and global transitions by rendezvous channel operations. For
the latter, SPIN only supports synchronization of two processes at a time, so we restrict
the models to global transitions with exactly two components. We model acceptance
for SPIN explicitly using a monitor process that gets into an accepting state if all pro-
cesses are in a local accepting state. The translation for Cunf encodes NBA states as net
places and transitions as net transitions into a single Petri net, ignoring the individual
components. In our prototype and in SPIN, when a lasso is reported or the algorithm
proved that no lasso exists within the cut-off limits, we say that the instance was solved.
For Cunf, we attempt to construct a complete unfolding prefix. We consider an instance
solved if the construction terminates, i. e., we do not actually check the liveness prop-
erty. The experiments were performed on a cluster of Intel E5-2660 machines running
at 2.20 GHz, with a time cut-off of 15 min and a memory limit of 4 GiB. Our code and
models are publicly available [Gnad et al., 2021b].

We compare SPIN with standard options, i. e., with partial-order reduction enabled,
Cunf with the cut-off rule of Esparza et al. [2002], and decoupled search (DecNDFS),
using two kinds of benchmarks: (1) two scaling examples to showcase the behaviour
on well-known models. One is an encoding of the dining philosophers problem, the
other is a ring-shaped synchronisation topology. Both are illustrated in Figure 19.5. The
philosophers model has 2N NBAs,N philosophers andN forks, synchronized by global
transitions llFi

G and lrFi
G . After synchronizing with its left and right fork, a philosopher

19.3. EXPERIMENTAL EVALUATION 241

10−1 100 101 102 103

10−1

100

101

102

103

SPIN

D
ec

N
D

FS

0%
20%
40%
60%
80%

10−1 100 101 102 103

10−1

100

101

102

103

Cunf

D
ec

N
D

FS

0%
20%
40%
60%
80%

10−1 100 101 102 103

10−1

100

101

102

103

SPIN

D
ec

N
D

FS

2
3
4
5
6
7
8

10−1 100 101 102 103

10−1

100

101

102

103

Cunf

D
ec

N
D

FS

2
3
4
5
6
7
8

Figure 19.7: Scatterplots with the runtime of DecNDFS on the y-axis and the runtime
of SPIN (left column) and Cunf (right column) on the x-axis, on randomly generated
models. Each point represents one instance. In the top row, we highlight different ratios
of local labels with different colors/shapes, in the bottom row we highlight different
numbers of components.

can perform an internal eat transition; after releasing the forks it can perform an internal
think transition. In the ring-topology model, each component can enter a diamond-
shaped region via internal transitions, followed by a synchronization with its left or right
neighbor via liG or li+1

G . No accepting run exists for either model. Moreover, (2) we use
a set of random automata, where for each combination of a ratio of internal transitions
in {0%, 20%, . . . , 80%}, i. e., the number of transitions labelled with LI divided by the
total number of transitions, and a number of components in {2, . . . , 8}, we generated
sets of 150 random graphs. Each component has 15 to 100 local states, out of which
up to 3% are accepting (at least one). We ensure that none of the instances has an
internal accepting cycle to focus on more interesting cases. One could easily implement
a lookup similar to CheckLocalAccept, which is necessary for DecNDFS, for the other
methods, too, which then essentially simplifies the problem to basic reachability.

In Figure 19.6, we show detailed statistics for the scaling models, with increasing
number of components #AB (Time in seconds, #States is the sum of states visited

242 CHAPTER 19. DECOUPLED SEARCH FOR LIVENESS CHECKING

Ratio # SPIN Cunf DecNDFS #AB # SPIN Cunf DecNDFS
2 750 721 750 749
3 750 696 745 712

0% 1050 373 369 319 4 750 411 243 541
20% 1050 385 384 462 5 750 130 114 372
40% 1050 397 384 573 6 750 49 53 266
60% 1050 422 394 723 7 750 24 34 180
80% 1050 468 431 888 8 750 14 23 145∑

5250 2045 1962 2965
∑

5250 2045 1962 2965

Figure 19.8: Number of solved instances on the random models as a function of the
ratio of internal transitions (left) and the number of components #AB (right).

in both DFSs, #E is the number of events in the prefix, Memory in MiB). In dining
philosophers, SPIN and DecNDFS show similar results. SPIN has a runtime advantage
in the larger instances of roughly a factor of 2, but DecNDFS uses only a fraction of the
memory. Cunf clearly outperforms both. This model is not very well suited to decoupled
search. Only half of the NBAs have internal transitions, and only two each, and there are
no non-deterministic transitions that DecNDFS could represent compactly. On the ring-
topology model, SPIN manages to exhaust the search space for up to 9 components.
Cunf and DecNDFS scale significantly higher, the number of decoupled states grows
only linearly in the number of components. Cunf on the other hand does show a blow-
up and runs out of memory between 50 and 75 components. This showcase example
only serves to illustrate a near-to-optimal case for decoupled search reductions, which
likely does not carry over in this extent to real-world models.

In Figure 19.7, we show detailed runtime behaviour in terms of scatter plots with a
per-instance comparison on the random models. Each point corresponds to one instance,
where the x-value is the runtime of SPIN, resp. Cunf, and the y-value is the runtime of
DecNDFS, so points below the diagonal indicate an advantage of DecNDFS. Different
ratios of internal labels (top row) and numbers of components (bottom row) are depicted
in different colors/shapes. We observe that, as expected, with a higher ratio of internal
transitions, the advantage of DecNDFS increases significantly. For all ratios, DecNDFS
clearly improves with a higher number of components.

In Figure 19.8, for the same benchmark set we show the number of solved instances
as a function of the ratio (left) and of the number of components (right). Observe that,
from around 20% internal transitions, DecNDFS consistently beats both SPIN and Cunf.
SPIN and Cunf also benefit from the decrease in synchronizing statements, although not
as much as DecNDFS. On the right, we see that starting with 4 component NBAs (#AB),
DecNDFS consistently beats SPIN and Cunf. While SPIN and Cunf show a significant
decline with more components, this effect is less pronounced for DecNDFS.

Chapter 20

Related Work – Exponential
Separations

As we observed in the context of AI planning (see Chapter 6), decoupled state-space
search relates to several existing state-space reduction techniques. In the setting of
verification of safety and liveness properties on composed non-deterministic automata,
the most closely related techniques are partial-order reduction and Petri-net unfolding.

Decoupled search relates to partial-order reduction (POR) techniques (e. g. Valmari,
1992; McMillan, 1992; Godefroid, 1996; Esparza et al., 2002; Rodríguez and Schwoon,
2013), in that it avoids interleavings of internal traces. It can be viewed as a variant
of unfolding, exploiting component independence by organizing the unfolding in terms
of global transition paths, which ensures by design that there are no cross-component
conflicts. We show that decoupled search can have exponential advantages over both
methods, extending our findings from AI planning to the model checking field.

The connections to symbolic state representations [McMillan, 1993], and symmetry
breaking [Clarke et al., 1993; Emerson and Sistla, 1993; Sistla et al., 1997] are weak,
analogously to our observations in the planning context; the reduction achieved by both
methods is in general incomparable. For safety checking, examples similar to those
for planning show that decoupled search can have advantages over both techniques,
and vice versa. Since for liveness checking the state space also needs to be exhausted
in the first place, we expect simple adaptations of such examples to show exponential
separations also for that setting. This is indeed the case for the separating examples
that we use in our comparison to POR and unfolding. In this chapter, we hence focus
on ample-sets pruning, as a representative of partial-order reduction typically employed
with depth-first search, and Petri-net unfolding.

For liveness checking, there exists an alternative approach to nested depth-first search
(NDFS) that is based on state-space search, namely algorithms that compute the strongly-
connected components of the state space [Lichtenstein and Pnueli, 1985; Clarke et al.,
1986; Couvreur, 1999; Geldenhuys and Valmari, 2004]. In this work, we did not con-

243

244 CHAPTER 20. RELATED WORK – EXPONENTIAL SEPARATIONS

Ai Bi

la,iG

lb,jG

AiBi Ci

lG lG

Figure 20.1: Illustration of the exponential separations to ample sets (left) and unfold-
ing (right) for liveness checking.

sider this alternative and focused on NDFS. We believe that decoupled search could be
adapted to this approach, too, but leave its exploration to future work.

20.1 Exponential Separations
In this section, we show that decoupled search can be exponentially more efficient than
alternative methods. We capture this formally in terms of exponential separations,
which we define analogously to Chapter 2.4 for models of composed automata.

Definition 60 (Exponential Separation). Let {Mn=A1, . . . ,Am | n ∈ N+} be a family
of models of size (number of states and labels) polynomially related to n. Then search
method X is exponentially separated from search method Y if (i) the representation size
of the reachable state space under X is bounded by a polynomial in n, while (ii) the
representation size of the reachable state space under Y is exponential in n.

First, we look into exponential separations for safety checking, then we extend these
findings to liveness verification.

20.1.1 Safety Checking
We have investigated the relation of decoupled search to other state-space reduction
methods in the context of AI planning in Part II of this work, in particular to partial-order
reduction via strong stubborn sets [Valmari, 1992], and Petri-net unfolding [Esparza and
Heljanko, 2000, 2001]. For both techniques, there exist families of scaling examples
where decoupled search is exponentially more efficient.

We next describe two scaling models showing that the ample sets variant imple-
mented in SPIN [Holzmann and Peled, 1994; Peled, 1996], as a representative for
partial-order reduction in explicit-state search, and Petri-net unfolding are exponen-
tially separated from decoupled search employed on sets of composed automata. We
give formal proofs in the following:

Theorem 42. Decoupled search is exponentially separated from ample-sets pruning.

20.1. EXPONENTIAL SEPARATIONS 245

Proof. Consider the model depicted in the left of Figure 20.1 (the dashed transition
is internal). There are n such NFA, each with the same state space: two local states
Ai, Bi, initial state Ai, two global labels la,iG , lb,jG , one internal label. The global tran-
sitions synchronize components pairwise; our argument holds for every possible such
synchronization.

Under ample set pruning, no reduction is achieved (no state is pruned) because there
is a global transition enabled in every state. Thus, there exists no state where only safe
(i.e. internal) transitions are enabled, and the search always branches over all enabled
transitions of all components. The decoupled state space, in contrast, only has a single
decoupled state, where both local states are reached in each component. All decoupled
successor states are dominated by the initial decoupled state and will be pruned.

The ample sets from Holzmann and Peled [1994] only consider internal transitions
as safe if there is no global transition enabled in the same state. Thus, no reduction can
be achieved in the presented model. Compared to that, decoupled search represents the
entire state space in only a single decoupled state, even though there is only one internal
transition per component.

Similar to decoupled search, Petri-net unfolding exploits component independence
by a special representation. Instead of searching over composed states and pruning
transitions, the states of individual components are maintained separately.1

Theorem 43. Decoupled search is exponentially separated from Petri-net unfolding.

Proof. Consider the model illustrated in the right of Figure 20.1. There are n such
components, each with the same state space with three local states Ai, Bi, Ci, a global
label lG, and transitions as shown in the figure. In a Petri net, this model is encoded with
3n places and 2n transitions, one for every combination of one output place in each of
the components. In the unfolding, this results in an event (the equivalent of a state) for
every net transition. The decoupled state space has only two decoupled states: the initial
state where {Ai} is reached for all components, and its lG-successor where {Bi, Ci} is
reached in every component.

The advantage of decoupled search here results from the compact representation of
the outcome states of non-deterministic transitions. Both local states that are reached
via the lG-transition of every component are contained in the decoupled successor state,
which hence represents 2n composed states.

In the context of SPIN, decoupled search is exponentially separated from statement
merging, too, which is a weak form of partial-order reduction. It can only reduce the
number of states local to a process, merging statements that only touch local variables.

1Recall that a general difference between the two methods is that checking reachability of a con-
junctive property is linear in the number of reached decoupled states, but NP-complete for an unfolding
prefix [McMillan, 1992].

246 CHAPTER 20. RELATED WORK – EXPONENTIAL SEPARATIONS

Ai Bi

la,iG

lb,jG

AiBi Ci

lG lG

Figure 20.2: Illustration of the exponential separations to ample sets (left) and unfold-
ing (right) for liveness checking.

It cannot merge statements that have conditions on global variables, and thus cannot
tackle the exponential search-space size in, e. g., the logistics example described in
Chapter 18.2. Similar arguments apply to reduction methods based on τ -confluence
(e. g. Groote and Sellink, 1995; Groote and van de Pol, 2000). Moreover, note that in-
ternal transitions, while local to a process, may be relevant to the property being checked
(e. g., be part of a conjunctive reachability property as in planning). All local states can
still be observed when using decoupled search, while this is not necessarily the case for
statement merging and τ -confluence.

20.1.2 Liveness Checking
We close our comparison to related techniques by showing that the exponential separa-
tions to ample-sets pruning and Petri-net unfolding from the previous chapter carry over
to liveness checking by simple modifications of the models, illustrated in Figure 20.2.

Theorem 44. CheckEmptiness with decoupled search is exponentially separated from
CheckEmptiness with explicit-state search and ample sets pruning.

Proof. The argument from the proof of Theorem 42 remains valid. With the states Bi

accepting (see Figure 20.2, left), explicit-state search with ample sets pruning in the
worst case has to exhaust the entire state space. It invokes NestedDFS on the accepting
state (B1, . . . , Bn) and, worst-case, needs to exhaust the state space again to detect
the cycle. Decoupled search invokes NestedDFS on the initial state restricted to the
component states Bi. Every successor of that decoupled state closes the cycle via an
arbitrary lbG transition. So there are only three decoupled states overall (including the
acceptance-restricted initial state).

For unfolding, we only compare decoupled NDFS to the construction of a finite
prefix for the model, which is required to perform the verification of the property.2

Theorem 45. CheckEmptiness with decoupled search is exponentially separated from
constructing a complete unfolding prefix.

2We remark that, for liveness checking, a weaker cut-off rule is required, that can only increase the
prefix size [Esparza and Heljanko, 2000].

20.1. EXPONENTIAL SEPARATIONS 247

Proof. Compared to the model from the proof of Theorem 43, the component states
Bi are made accepting and internal transitions Bi → Ai are added (see the illustration
in the right of Figure 20.2). Unfolding constructs a complete prefix as described in
the proof of Theorem 43, and adds one more event for each new internal transition.
Decoupled search generates the lG-successor sD1 of the initial decoupled state, which
has {Ai, Bi, Ci} reached for all components. The successor of sD1 via lG is pruned.
NestedDFS is invoked on the restriction of sD1 to Bi, in which all Ai get reached via
the new internal transitions. The lG-successor of that state closes the cycle, so there are
only four decoupled states.

The scaling examples that show the exponential separation for liveness checking are
simple adaptation of those used in the case of safety checking. Decoupled search can
lead to exponential advantages over established methods even on very small, almost
trivial, models. We conclude that decoupled search has the potential to outperform
these methods in practice whenever a given model shows characteristics that benefit the
decoupled state representation.

248 CHAPTER 20. RELATED WORK – EXPONENTIAL SEPARATIONS

Chapter 21

Summary

In this part of the thesis, we adapted decoupled state-space search to the setting of model
checking. In particular, we addressed the verification of safety and liveness properties
in systems modeled by several automata that synchronize on a set of shared global la-
bels. Our approach is formulated for systems composed of a set of non-deterministic
finite automata (NFA) for safety checking, respectively non-deterministic Büchi au-
tomata (NBA) for liveness checking. We formally defined the decoupled composition
of such automata and proved that it captures reachability of the underlying composed
system states exactly, i. e., the approach is sound and complete.

With this correctness result, it is straightforward to use the decoupled composition
for safety checking, where properties φ are given as state features that need to hold in
every reachable system state. Thus, the absence of a reachable state that violates φ is a
proof that the property is satisfied by the system. We implemented decoupled search as
an extension of the well-known SPIN model checker. The Promela models that SPIN
takes as input can naturally be decomposed for decoupled search. Every process in
the model becomes a separate component, and these interact via a set of shared global
variables and channels. Such a decomposition then instantiates a star topology as in the
AI planning formulation, where processes interact only via global (center) structures.

Our implementation in SPIN is still preliminary in that it does not support the full
Promela language. Nevertheless, on models expressible in the supported language frag-
ment, we have observed a significant state-space reduction. On a set of existing bench-
marks, where the number of processes can be scaled linearly, decoupled search strongly
outperforms the default configuration of SPIN that uses statement merging and ample-
sets pruning as partial-order reduction techniques. On two models that we designed
ourselves, a client-server architecture and a variant of our logistics example, we show-
cased the potential pruning power of decoupled search. In the client-server model, for
instance, when there are internal transitions in the clients, decoupled search yields huge
savings compared to the default SPIN configuration.

249

250 CHAPTER 21. SUMMARY

For liveness checking, we adapted a standard on-the-fly algorithm for checking ω-
regular properties, nested depth-first search (NDFS), and proved its correctness. The
necessary adaptations essentially pertain to the conditions that identify the existence
of accepting runs, which must be handled differently given the different properties of
decoupled states. A naïve adaptation of NDFS results in an incomplete and unsound
algorithm, so accepting runs could be missed, and spurious cycles could be reported.
We addressed this by introducing a decoupled-state splitting technique, that, in the in-
ner depth-first search, keeps track of the accepting member states from which the nested
search was invoked. Moreover, we need a special handling of cyclic runs induced only
by internal transitions, which can be done efficiently by precomputing accepting mem-
ber states that lie on such cycles. With this, and slightly adapted termination conditions
to account for the decoupled-state representation, our new NDFS algorithm is correct.

Our approach is sufficiently general to cover significant cases like automata-based
LTL model checking. This extends the scope of decoupled search from safety prop-
erties, which is conceptually close to AI planning, to liveness properties. Our experi-
mental evaluation has shown that decoupled search can yield significant reductions in
search effort across random models that consist of a set of synchronized NBAs, and
simple scaling showcase examples. We compared decoupled search, implemented in
our own new model checker, against SPIN and the Cunf Petri-net unfolding tool. We
show results on two scaling examples, one where decoupled search does not perform
well because of lack of internal transitions, and another where decoupled search excels.
On the former, decoupled NDFS still outperforms SPIN in terms of memory usage (be-
cause of smaller state-space size), but the runtime overhead leads to a slowdown of a
factor of two in large instances. Cunf performs at lot better than both on this model.
On the second example, decoupled NDFS significantly beats both other approaches. On
the randomly generated models, we observe that, as expected, the advantage of decou-
pled search increases with (1) a higher number of system components, and (2) larger
percentage of internal over global transition labels. For high values of both, we see an
advantage of up to four orders of magnitude over both competitors.

Finally, we analyzed the theoretical relation of decoupled search to ample-sets prun-
ing, a variant of partial-order reduction used in SPIN, and Petri-net unfolding. Similar
to the planning setting, we proved that decoupled search is exponentially separated from
both methods by using small scaling example models where decoupled search results
in a compact state-space representation, while the other two methods need to explore
an exponential search space. This emphasizes our findings in the AI planning context,
showing that decoupled state-space search is a novel approach that tackles the state
explosion problem in a unique way.

Part V

Conclusion

251

Chapter 22

Conclusion

Decoupled state-space search is a novel technique designed to tackle the state explo-
sion problem. We formally introduced decoupled search with a focus on classical AI
planning, and extended its scope to model checking of safety and liveness properties.

Decoupled search exploits the structure of planning tasks, in particular the condi-
tional independence between the leaf components in a star-topology decomposition of a
task. Given this independence, it can compactly represent large sets of states, exponen-
tially reducing the search effort. We developed the concept of the decoupled state space,
which captures the reachability of the underlying planning task exactly. This allowed us
to connect decoupled search to arbitrary search algorithms, and, important for planning,
in principle use every existing heuristic function. We formally analyzed the properties
of the decoupled state space, and conceived dominance pruning techniques under which
its size is guaranteed to be bounded by the size of the standard state space. For an auto-
matic task decomposition, we devised several strategies that can identify star topologies,
respectively more restricted fork or inverted-fork factorings. These are detected on the
majority of standard planning benchmarks. While the relevance of these benchmarks
for practical purposes can be questioned, we argue that star topologies naturally arise
in many human-designed systems, such as distributed client-server architectures, multi-
agent systems, or modern multi-core processors working on shared memory.

We showed that the reduction achieved by decoupled search can lead to signifi-
cant advantages over existing state-space reduction methods. In particular, we proved
that decoupled search is exponentially separated from well-known related techniques,
namely partial-order reduction via stubborn sets, Petri-net unfolding, symmetry break-
ing, and symbolic state representation with binary decision diagrams. This confirms that
decoupled search is indeed a novel method that uniquely exploits the structure of plan-
ning tasks. Our decoupled search implementation extends the established Fast Down-
ward framework. It is competitive with state-of-the-art planners in all common algorith-
mic planning problems—satisficing and optimal planning, and proving unsolvability—
obtaining superior performance in presence of pronounced star topologies.

253

254 CHAPTER 22. CONCLUSION

Given the observation that decoupled search is orthogonal to other reduction tech-
niques, we developed combinations with strong stubborn sets, symmetry breaking, sym-
bolic state representations, and state-dominance pruning. We showed the correctness of
the combined algorithms and provided a theoretical and empirical evaluation of their
pruning power. We proved that decoupled strong stubborn sets, decoupled symmetry
breaking, and enhanced dominance pruning for fork topologies can lead to exponential
advantages over the respective base methods. Our experimental evaluation confirmed
these findings by discovering that there are standard planning benchmarks where the
combined algorithm can lead to huge savings.

In model checking, we introduced decoupled search for systems of composed au-
tomata that synchronize on a set of shared labels. Similar to planning, we devel-
oped the decoupled automata composition and proved its correctness. For models us-
ing non-deterministic finite automata, employed for safety checking, we evaluated our
decoupled-search extension of the established SPIN model checker and showcased its
benefits on a set of existing Promela benchmarks. Here, decoupled search outperforms
ample-sets pruning, the partial-order reduction variant implemented in SPIN. On the
theoretical side, we show that, in its automata-based formulation for safety checking,
decoupled search is exponentially separated from Petri-net unfolding and partial-order
reduction via ample sets. For checking liveness properties, on models composed of
non-deterministic Büchi automata, we have derived a variant of the nested depth-first
search algorithm. This required a non-trivial adaptation of the decoupled state space in
the inner search to ensure that no accepting runs are missed. We proved our adapted al-
gorithm correct, and showed that it is exponentially separated from ample-sets pruning
and Petri-net unfolding in the context of liveness checking. Empirically, our prototype
implementation consistently outperforms SPIN on models with several components or
a small percentage of internal (i. e., leaf) transitions.

For the future, one of the most interesting challenges is to adopt decoupled state
space search to alternative formalisms in AI planning, model checking, and potentially
beyond. In the context of planning, we believe that it is highly promising to move into
richer frameworks, such as numeric planning, non-deterministic or probabilistic models,
or planning with conditional effects and axioms. Similar formalisms are also common
in the field of formal verification, in particular timed automata and probabilistic models
look very interesting. Extending the scope of liveness properties that can be verified,
CTL (computation tree logic) properties [Kupferman et al., 2000], as well as gener-
alized Büchi acceptance [Tauriainen, 2006], so language intersection of the involved
automata, seem to be viable topics for future research. On the application side, some
of the aforementioned multi-core processors open up a highly relevant area, namely the
verification of weak-memory models, where decoupled search can potentially lead to
strong state-space reductions [Jonsson, 2008; Linden and Wolper, 2013; Travkin et al.,
2013; Alrahman et al., 2014; Podkopaev et al., 2019].

255

Moreover, despite the thorough development and analysis of decoupled search in
this work, there are still several questions that can be addressed in the future. In plan-
ning, we expect a generalization of star factorings to more flexible topologies without
a center factor, similar to our presentation using automata, to further extend the appli-
cability of decoupled search. Also, as we have seen in the experimental evaluation on
planning benchmarks, it is still not clear how to determine upfront if a given factoring
will result in good search performance. This is likely dependent on the algorithmic
problem that is tackled, as we have observed that, e. g., inverted-fork topologies beat
state-of-the-art planners by a large margin in satisficing planning, but are not competi-
tive in optimal planning. What characterizes a good factoring for a given purpose?

In model checking, an obvious next step is the integration of orthogonal methods
into decoupled search, as already done in planning. Partial-order reduction, symmetry
breaking, and symbolic representations are commonly employed in that area. Thus, we
believe it is highly promising to develop these combined algorithms also in that context,
and obtain a system that has the strengths of multiple state-space reduction techniques.

Overall, decoupled state-space search is a very generic concept that can, in princi-
ple, be applied to many types of models that are based on factored state representations,
where an overall system is described as a set of synchronized components. Many sys-
tems formalized in this way can probably be decomposed using decoupled search. This
opens a wide space for applications of decoupled search, not only in the fields of plan-
ning and model checking, but whenever large state spaces that arise from the product of
multiple components need to be explored.

256 CHAPTER 22. CONCLUSION

Appendices

257

Appendix A

Full Proofs of Part II

A.1 Correctness of the Decoupled State Space
To capture decoupled-state reachability, we introduce an intermediate concept, embed-
ded states, exhibiting the link between member states and decoupled states. Instead
of an explicit leaf-state assignment, embedded states contain a link to the respective
compliant-path graph vertex:

Definition 61 (Embedded State). Let Π be a planning task, and F a factoring for Π
with center C and leaves L. For a decoupled state sF in ΘFΠ , an embedded state in sF

is a function ŝ on F , mapping C to center(sF), and mapping each L ∈ L to a vertex
sLn in CPGΠ(πC(sF), L) with prices(sF)[sL] <∞, where n := |πC(sF)|. The set of all
embedded states of sF is the embedded hypercube of sF , denoted [ŝF].

The initial embedded state, Î , maps C to center(IF) = I[C] and, for each L ∈ L,
maps L to the vertex I[L]0 in CPGΠ(〈〉, L).

Given a decoupled state sF , as CPGΠ(πC(sF), L) contains exactly one vertex sLn
for every sL ∈ SL, the member states and embedded states of sF are in one-to-one
correspondence. Given a decoupled state sF and member state s ∈ [sF], we denote the
unique corresponding embedded state by ŝ, and vice versa.

Intuitively, embedded states ŝ serve to “track the progress of the corresponding states
s through the decoupled state space”. We formalize this through a notion of embedded
transitions:

Definition 62 (Embedded Transitions). Let Π be a planning task, and F a factoring for
Π with center C and leaves L. Let sF be a decoupled state in ΘFΠ , and ŝ ∈ [ŝF] an
embedded state. Then ŝ a−→ t̂ is an embedded transition

(i) on L in ΘFΠ , if a ∈ AL6C , CPGΠ(πC(sF), L) contains an arc ŝ(L)
a−→ t̂(L), and for

all L 6= F ∈ F we have ŝ(F) = t̂(F);

259

260 APPENDIX A. FULL PROOFS OF PART II

(ii) on C in ΘFΠ , if a ∈ AC , sF a−→ tF is a transition in ΘFΠ , and for all L ∈ L we have
that CPGΠ(πC(tF), L) contains an arc ŝ(L)

0−→ t̂(L).

We refer to paths of embedded transitions as embedded paths. The cost of an embedded
path π̂, denoted cost(π̂), is the summed-up cost of its transition labels.

Note here that, necessarily by the construction of t̂ and compliant path graphs, t̂ ∈
[ŝF] in (i), and t̂ ∈ [t̂F] in (ii). Decoupled-state reachability is captured in the following
form:

Lemma 18. Let Π be a planning task, andF a factoring for Π. Let SF be the decoupled
states in ΘFΠ . For any sF ∈ SF , ŝ ∈ [ŝF], and t̂ reachable from ŝ in ΘFΠ , there exists
tF ∈ SF such that t̂ ∈ [t̂F] and tF is reachable from sF in ΘFΠ . Vice versa, for any
sF , tF ∈ SF where tF is reachable from sF in ΘFΠ , and for any t̂ ∈ [t̂F], there exists
ŝ ∈ [sF] such that t̂ is reachable from ŝ in ΘFΠ .

Proof. For the first part of the claim, tF and t̂ as specified must exist simply because the
individual transitions on an embedded path from ŝ to t̂ all follow decoupled transitions
(C) respectively compliant-path graph arcs (L) present in ΘFΠ . For the second part of the
claim, if πF is a decoupled path from sF to tF , then we can backchain from t̂ through
the compliant-path graphs along πF to obtain the desired embedded state ŝ in sF .

Having clarified the basics of embedded states and how they capture reachability,
let us get back to the link with member states. The core observation is that, like the
member states and embedded states themselves, their transitions also are in one-to-one
correspondence:

Lemma 19. Let Π be a planning task, and F a factoring for Π with center C and leaves
L. Let sF be a decoupled state in ΘFΠ . Then, for any member state s ∈ [sF] and action
a, s a−→ t is a transition in Π if and only if ŝ a−→ t̂ is an embedded transition in ΘFΠ .

Proof. From left to right, say a is applicable to s and t = s[[a]]. We distinguish
two cases. First, a is a non-center action, a 6∈ AC . Then, as F is a star factor-
ing, a affects a single leaf factor L, aL ∈ AL6C . As a is applicable to s, we have
center(sF) |= pre(a)[C] and s[L] |= pre(a)[L]. Therefore, by Definition 8 (i), the
compliant path graph CPGΠ(πC(sF), L) layer at time n corresponding to sF contains
the arc s[L]n

a−→ t[L]n, which establishes the desired embedded transition.
Second, say a is a center action, a ∈ AC . As a is applicable to s, for every L ∈ L

where pre(a)[L] 6= ∅, there exists a finite-price leaf state in sF , namely s[L]. Hence
there exists a transition sF a−→ tF in ΘFΠ . Furthermore, for each L, by Definition 8 (ii) the
compliant path graph CPGΠ(πC(tF), L) contains the arc s[L]n

0−→ t[L]n+1. Together,
these establish the desired embedded transition.

A.1. CORRECTNESS OF THE DECOUPLED STATE SPACE 261

From right to left, say ŝ a−→ t̂ is an embedded transition in ΘFΠ . Distinguishing the
same two cases, if aL ∈ AL6C then ŝ a−→ t̂ is an L-transition. By Definition 62 (i), ŝ
and t̂ differ only in terms of taking a single arc on L, so s and t differ only on L. By
Definition 8 (i), center(sF) |= pre(a)[C], s[L] |= pre(a)[L], and s[L][[a]] = t[L]. But
this immediately implies that a is applicable to s and t = s[[a]], as desired.

Say finally that a ∈ AC so ŝ a−→ t̂ is an C transition. By Definition 62 (ii), t̂ results
from ŝ by updating the center state according to a, and taking the arc ŝ(L)

0−→ t̂(L) for
every L. By Definition 8 (ii) for every L we have s[L] |= pre(a)[L] and s[L][[a]] = t[L].
But then, again a is applicable to s and t = s[[a]], concluding the proof.

We are now ready to prove the two core lemmas:

Lemma 1. Let Π be a planning task, and F a factoring for Π. Let sF be a reachable
decoupled state in ΘFΠ . Then:

(i) [sF] is exactly the set of states s for which there exists a path π, from I to s in ΘΠ,
where πC(π) = πC(sF).

(ii) For every s ∈ [sF], the cost of a cheapest such path π is cost(πC(sF))+price(sF , s).

Proof. To prove (i), say first that s ∈ [sF]. Consider the corresponding embedded state
ŝ. As all compliant path graph vertices in ŝ are reached at sF , for every L there must
exist a path π[L] from I[L]0 to ŝ(L) in CPGΠ(πC(sF), L). From the collection of these
paths, along with πC(sF), we obtain an embedded path π̂ from Î to ŝ: simply interleave
the embeddedC transitions induced by πC(sF) with the embeddedL transitions induced
by π[L]. With Lemma 19, from π̂ we obtain a path π as desired.

Say now that π is a path in Π from I to some s, where the center action subsequence
of π is πC(sF). With Lemma 19, we obtain an embedded path π̂ from Î to ŝ. Collecting
the L transitions from π̂ for each L, clearly we get paths π[L] from I[L]0 to ŝ(L) in
CPGΠ(πC(sF), L). Therefore, s ∈ [sF] as desired.

Claim (ii) now follows directly, because the above shows that, for every s ∈ [sF],
the paths π as specified are in one-to-one correspondence with πC(sF) augmented with
the possible selections of CPGΠ(πC(sF), L) paths from I[L]0 to s[L]n, where n :=
|πC(sF)|. Thus, by the definition of pricing functions, the cheapest such π has exactly
the specified cost.

Lemma 2. Let Π be a planning task, and F a factoring for Π. Let s be a reachable
state in Π, and let π be a path reaching s. Then there exists a reachable decoupled state
sF in ΘFΠ so that s ∈ [sF], and πC(π) = πC(sF).

Proof. With Lemma 19, π corresponds to an embedded path π̂ from Î to ŝ. By Lemma 18,
there exists a decoupled state sF such that ŝ ∈ [ŝF], and sF is reachable from IF in
ΘFΠ . Clearly, the decoupled transitions taken in reaching sF , according to the proof of
Lemma 18, correspond exactly to the center action subsequence of π.

262 APPENDIX A. FULL PROOFS OF PART II

A.2 Decoupled State-Space Size
In what follows, we consider N -vectors v ∈ RN over some subset R ⊆ R0+ of non-
negative reals. For the special case of N = 1, we identify v with v[1]. We consider
(possibly infinite) sequences ~v = v0, v1, v2, . . . of vectors. We define the relation �
over vectors by saying that v � v′ iff there exists a vector position 1 ≤ k ≤ N so that
v[k] > v′[k]. We say that a vector sequence ~v is descending if, whenever v precedes v′

in the sequence, v � v′. We say that R has an infinite descending N -sequence if there
exists an infinite descending sequence of N -vectors.

Theorem 3 (Finiteness under Dominance Pruning). Let Π be a planning task, and F a
factoring for Π. Under ancestor dominance pruning, ΘRFΠ is finite.

Proof. Consider the non-pruned paths πF in ΘRFΠ . Observe that such paths necessarily
are descending: some prices along πF must descend each time we encounter the same
center state, as otherwise the new state would be dominated by some previous state. We
prove that there is no infinite descending path, i. e., every πF has finite length. As every
decoupled state sF in ΘRFΠ must be the endpoint of such a path, and as the branching
factor is finite, this proves the claim.

Assume to the contrary that there is an infinite descending path πF . As the number
of different center states is finite, there must exist a center state sC visited infinitely
often on πF . Denote by ~sF = sF0 , s

F
1 , . . . the sub-sequence of decoupled states along

πF where center(sFi) = sC .
Collect, from each sFi , the vector pi of leaf state prices (using some arbitrary order

of leaf states to fix the ordering of vector positions). Denoting by N the number of leaf
states, ~p := p0, p1, . . . is a sequence of N -vectors over R0+ ∪ {∞}. More precisely, ~p
is a sequence of N -vectors over possible plan cost values, i. e., over R ∪ {∞} where R
contains

∑n
i=1 cost(ai) for any finite sequence 〈a1, . . . , an〉 of actions in Π.

Proposition 14 below shows thatR has no infinite descending 1-sequence. Lemma 20
below shows that, given this, R ∪ {∞} has no infinite descending N -sequence for any
N . However, by construction, whenever p precedes p′ on ~p then there exists a vector
position k so that p[k] > p′[k]. That is, ~p is descending, in contradiction, showing the
claim.

Proposition 14. Let Π be a planning task. Let R ⊆ R0+ be the set of numbers that
contains

∑n
i=1 cost(ai) for any finite sequence 〈a1, . . . , an〉 of actions in Π. Then R

does not have an infinite descending 1-sequence.

Proof. Consider any sequence ~v = v0, v1, v2, . . . of 1-vectors over R. Then, in partic-
ular, vi < v0 for all i > 0. But, for any C ∈ R0+, there is only a finite number of
values

∑n
i=1 cost(ai) < C. This is because any non-0 cost action a can occur at most

bC/cost(a)c times on 〈a1, . . . , an〉.

A.2. DECOUPLED STATE-SPACE SIZE 263

Lemma 20. Let R ⊆ R be a set of numbers that has no infinite descending 1-sequence.
Let ~v be a descending sequence of N -vectors over R ∪ {∞}. Then ~v is finite.

Proof. Let K ⊆ {1, . . . , N} be an arbitrary subset of vector positions. Denote by
~v[K,∞] the subsequence of vectors v on ~v where v[k] 6= ∞ iff k ∈ K. In words,
consider the subsequence of vectors that fits the “∞-profile” given by K. We show that
~v[K,∞] is finite, which proves the claim as there is only a finite number of profiles.

Construct the vector sequence ~v[K,∞]|K by projecting each element of ~v[K,∞]
onto the position subset K. Then ~v[K,∞]|K is a sequence of vectors over R ∪ {∞}.
By construction, as ~v[K,∞] is a descending sequence, and because the elements of
~v[K,∞] all agree on the positions outside K, we have that ~v[K,∞]|K is a descending
sequence. It thus remains to show that every descending sequence of finite vectors over
R is finite. We prove this by induction over N .

The induction base case, N = 1, holds by prerequisite as R has no infinite descend-
ing 1-sequence.

For the inductive case, assume that there is no infinite descending sequence of N -
position vectors overR. We show that there is no infinite descending sequence ofN+1-
position vectors over R.

Let ~w = w0, w1, w2, . . . be any descending sequence of N + 1-position vectors over
R. Denote w0 = (c1, . . . , cN+1), where each cj is a constant, i. e., cj ∈ R.

Let j ∈ {1, . . . , N + 1} be arbitrary. Denote Cj := {c′ ∈ R | c′ < cj}. Then Cj

is finite because otherwise we could sequence its elements into an infinite descending
1-sequence over R. Let c′ ∈ Cj be arbitrary. Denote by ~w[j, c′] the subsequence of
vectors w on ~w where the j-th position has value c′. Obviously, every wi for i > 0 must
be contained in at least one ~w[j, c′]. We show that each ~w[j, c′] is finite. As there is a
finite number of choices of j′ and c′, this proves the claim.

Denote K := {1, . . . , N + 1} \ {j}. Construct the vector sequence ~w[j, c′]|K by
projecting each element of ~w[j, c′] onto the position subset K. By construction, as
~w[j, c′] is a descending sequence, and because the elements of ~w[j, c′] all agree on the
single position j that is outside K, we have that ~w[j, c′]|K is a descending sequence. As
~w[j, c′]|K is a sequence of vectors with N positions, by induction assumption, ~w[j, c′]|K
is finite. Hence ~w[j, c′] is finite as desired, concluding the argument.

We next prove that decoupled states capture the solvability of member states:

Lemma 3. Let Π be a planning task, F a factoring for Π, and sF a decoupled state.
Then sF is solvable if and only if at least one s ∈ [sF] is solvable.

Proof. From left to right, say the decoupled goal state tF is reachable from sF in ΘFΠ .
Clearly, there exists a goal state t ∈ [tF]. By Lemma 18, there exists an embedded state
ŝ ∈ [ŝF] such that t̂ is reachable from ŝ in ΘFΠ . By Lemma 19, t is reachable from s in
Π. Hence the state s is solvable as desired.

264 APPENDIX A. FULL PROOFS OF PART II

From right to left, say the goal state t is reachable from s in Π. By Lemma 19, t̂
is reachable from ŝ in ΘFΠ . By Lemma 18, there exists a decoupled state tF such that
t̂ ∈ [t̂F] and tF is reachable from sF in ΘFΠ . As t is a goal state, tF is a decoupled goal
state, as desired.

Finally, we show the hardness of hypercube pruning:

Proposition 5. Given a planning task Π and a factoring F for Π, it is co-NP-complete
to decide whether reachable decoupled states tF1 , . . . , t

F
n cover a reachable decoupled

state sF .

Proof. Membership follows directly from the results by Hoffmann and Kupferschmid
[2005] for general hypercube covering problems.

Hardness follows by reduction from the complement of SAT, extending Hoffmann
and Kupferschmid’s argument by a simple construction of Π and F . Assume a CNF
formula φ with propositional variables P1, . . . , Pn and clauses C1, . . . , Cm. The con-
struction of Π includes state variables p1, . . . , pn, each with domain {u, 0, 1} where
u is the initial value; there furthermore is a variable c with domain {u, 0, 1, . . . ,m}.
The goal does not matter for our purposes. The factoring F has center {c} and leaves
{{p1}, . . . , {pn}}.

The actions are as follows. For each clause Cj there is a center action aCj which is
applicable to the initial state, and which allows to generate a hypercube corresponding
to the truth-value assignments disallowed by cj . Specifically, we set pre(aCj) = {c = u},
and eff(aCj) = {c = j}. Furthermore, we include leaf actions aLl , one for each literal
l ∈ Cj , with pre(aCl) = {c = j}, and eff(aCl) = {l} where l is the opposite of l, i. e.,
pi = 1 if l = ¬Pi, and pi = 0 if l = Pi. Finally, we include leaf actions aLij0 and aLij1
for each variable Pi that does not occur in Cj , with pre(aLij0) = pre(aLij1) = {c = j},
eff(aLij0) = {pi = 0}, and eff(aLij1) = {pi = 1}. Observe that, once aCj has been applied,
the hypercube tFj of reached leaf states over the variables pi corresponds exactly to those
assignments over Pi which do not satisfy Cj .

We finally include a center action aC0 which is applicable to the initial state, and al-
lows to generate a hypercube corresponding to all truth-value assignments. Specifically,
we set pre(aC0) = {c = u}, and eff(aC0) = {c = 0}, and we include leaf actions aLi00 and
aLi01 for each 1 ≤ i ≤ n, with pre(aLi00) = pre(aLi01) = {c = 0}, eff(aLi00) = {pi = 0},
and eff(aLi01) = {pi = 1}. Observe that, once aC0 has been applied, the hypercube
sF of reached leaf states over the variables pi corresponds exactly to the space of all
assignments over Pi.

Consider the time point in search where search has explored each of the alternatives
aC1 , . . . , a

C
m (applied each of these actions to the initial state separately), and now ex-

plores the alternative aC0 . Then all-visited hypercube pruning checks whether tF1 , . . . , t
F
m

cover sF . The latter is the case iff φ is unsatisfiable.

A.3. RELATION TO PETRI-NET UNFOLDING 265

A.3 Relation to Petri-net Unfolding

A.3.1 Technical Background – Details
We spell out the concepts previously only outlined, and we give additional notations as
needed in our proofs. Our definitions loosely follow Bonet et al. [2014].

Petri-Net Unfolding

A net N is a tuple N = 〈P, T, F 〉, where P and T are sets of places and transitions.
F ⊆ (P × T) ∪ (T × P) is the flow relation. For z ∈ P ∪ T , we denote pre(z) :=
{y | (y, z) ∈ F} and eff(z) := {y | (z, y) ∈ F}. For Z ⊂ P ∪ T , we denote
pre(Z) :=

⋃
z∈Z pre(z) and eff(Z) :=

⋃
z∈Z eff(z). A set of places M ⊆ P is called a

marking.1 A Petri net Σ = 〈N,M0〉 is a pair of a net N = 〈P, T, F 〉 and initial marking
M0 ⊆ P . By �, we denote the reflexive transitive closure of the flow relation F . Two
nodes y, y′ ∈ P ∪ T are in conflict, denoted y#y′, if there exist distinct t, t′ ∈ T s.t.
pre(t) ∩ pre(t′) 6= ∅, t � y, and t′ � y′. Two nodes y, y′ ∈ P ∪ T are concurrent,
denoted y ‖ y′, if neither y#y′ nor y � y′ nor y′ � y.

The unfolding procedure builds a branching process, which is an occurrence net
labeled with the places and transitions in Σ. An occurrence net ON = 〈B,E,G〉 is
a net where B and E are called conditions and events, corresponding to places and
transitions in a net. Occurrence nets have the following properties: they are acyclic,
i. e., � is a partial order; for every b ∈ B : |pre(b)| ≤ 1; for every y ∈ B ∪ E, ¬(y#y)
and there are finitely many y′ s.t. y′ ≺ y, where ≺ is the transitive closure of G. ≺ is
called the causality relation, and an event f with f ≺ e is called a causal predecessor
of e. Min(ON) is the set of ≺-minimal elements of B ∪ E.

A branching process ∆ of a Petri net Σ is a pair ∆ = 〈ON, φ〉 of an occurrence
net ON and a homomorphism φ from ON to Σ. It is required that: φ : B ∪ E →
P ∪ T is a mapping from conditions/events to places/transitions such that φ(B) ⊆ P ,
φ(E) ⊆ T ; for all e ∈ E the restriction of φ on pre(e) is a bijection between pre(e) and
φ(pre(e)) and the restriction of φ on eff(e) is a bijection between eff(e) and φ(eff(e));
φ(Min(ON)) = M0; and for all e, f ∈ E, if pre(e) = pre(f) and φ(e) = φ(f) then
e = f . We say that x ∈ B ∪ E is labeled with y if φ(x) = y.

A set of conditions D is called a co-set if for all d 6= d′ ∈ D : d ‖ d′. A set of events
C ⊆ E is causally closed if for every e ∈ C, f ≺ e implies f ∈ C. A configurationC is
a finite set of events that is causally closed and free of conflicts (∀e, f ∈ C : ¬(e#f)).
By [e] := {f | f � e} we denote the local configuration of an event e ∈ E. For a
configuration C, Mark(C) := φ((Min(ON)∪ eff(C))\pre(C)) is a reachable marking
of Σ. Intuitively, a configuration corresponds to a partially ordered plan.

1We only consider safe nets, where each place can hold only one token at a time, so that defining
markings as sets of places is possible.

266 APPENDIX A. FULL PROOFS OF PART II

An event e is a cut-off if there exists a configuration C in ∆ such that Mark(C) =
Mark([e]). An event e ∈ E labeled with a transition t is a possible extension of a
configuration C in ∆ if C ∪{e} is a configuration, and there exists a co-set D in ∆ such
that no event in pre(D) is a cut-off, |D| = |pre(t)|, φ(D) = pre(t), and ∆ contains no
event e′ with pre(e′) = D where φ(e′) = t. We then say that e fires in C.

The unfolding process for Σ incrementally builds a branching process called a com-
plete prefix, denoted UnfΣ. The process starts from Min(ON), and adds possible ex-
tensions while ones exist. The extensions e are added according to an order � over
their local configurations [e]. In each step, the�-minimal event e is considered. If e is
not a cut-off, then new instances of eff(φ(e)) are added to UnfΣ. Upon termination, all
reachable markings of Σ are represented by a configuration in UnfΣ [McMillan, 1992].

If � is a well-founded order and satisfies certain conditions (see Def. 3 in Bonet
et al. [2014]), then the number of non-cut-off events in UnfΣ is upper-bounded by the
number of reachable markings in Σ. We will consider such� throughout. We define
the size of UnfΣ as |UnfΣ| := |B|.

A planning task Π = 〈V ,A, cost, I,G〉 can be encoded as a Petri net Σ(Π) =
〈〈P, T, F 〉,M0〉. Facts are encoded as places. Actions a ∈ A are encoded as tran-
sitions t ∈ T with pre(t) = pre(a) and eff(t) = eff(a), adding redundant effects
eff(a)[v] = pre(a)[v] for prevail conditions. In this section, we do not consider ac-
tions with effect-only variables v, i. e., v ∈ vars(eff(a)) but v 6∈ vars(pre(a)). Such
actions can cause an exponential blow-up in the Petri net itself, as mentioned in Chap-
ter 7.2. We assume this encoding throughout, and refer to its unfolding as the unfolding
of Π, denoted UnfΠ. We identify facts with places, actions with transitions, and (partial)
states with markings.

Compatibility of Orders

We next define the compatibility of orders formally. To do so, we need the notion of a
center sub-configuration. Given a configuration C = {e1, . . . , en} and a factoring F ,
by CC := {ei | ei ∈ C ∧ φ(ei) ∈ AC} we denote the sub-configuration of C that
consists of center events only. We say that a center path πC extends CC if there exists a
linearization of CC that is a sub-sequence of πC .

Throughout this section, whenever we require compatible search orders, we assume
strict total orders � for both decoupled search and unfolding. This guarantees that,
in every step in the search, there is a unique action/event that is selected. If this is
not the case, e. g., there is no strict order between two possible center extensions, both
techniques are exponentially separated from each other as shown in Theorem 16 and 17.

A search order�U for unfolding is a strict total order over local configurations [e].
At each point in the unfolding process, the �U -minimal possible event e is added. A
search order�D for decoupled search is a strict total order over center paths, where each
step considers the�D-minimal possible expansion. A pair of search orders (�U ,�D)

A.3. RELATION TO PETRI-NET UNFOLDING 267

is compatible if (O1)�U always orders new leaf events before new center events, and
(O2) �D and �U agree on center paths in the sense that a �-minimal event in the
unfolding corresponds to �D-minimal center paths adding the corresponding center
action to the decoupled state space.

Formally, we have (O1) if for all pairs of possible extensions (e1, e2) and their local
configurations ([e1], [e2]), where φ(e1) ∈ AL6C and φ(e2) ∈ AC , it holds that [e1] �U

[e2]. To formalize (O2), say that the�-minimal possible event e is a center event, i. e.,
φ(e) = aC ∈ AC . Consider the center paths πC which extend [e]C \ {e}, and define
the set P as all possible expansions in the decoupled state space that have the form
πC ◦ 〈aC〉. We require that, when ignoring ordering relations inside P , all elements of
P are�-minimal among the possible expansions.

Regarding (O1), in case we deal with planning tasks in +P, we remark that a leaf
event e, where φ(e) ∈ AL6C , might have an effect on the center. Such effects result from
prevail conditions of e on the center, that require a redundant effect that adds back a
token in the Petri net encoding. We still consider such events as leaf events.

A.3.2 Proofs
We give the full proofs of our theorems, covering first the separation results, then the
domination results.

Separation Theorems

Theorem 14. There exists a family of tasks Πn in +P, with factorings in -M and search
orders in -O, where |ΘRFΠn | is polynomial in n while |UnfΠn| is exponential in n.

Proof. One family as claimed is our illustrative running example, Πn = 〈Vn,An, costn,
In,Gn〉 defined as follows. Vn = {T, p1, . . . , pn} where D(T) = {l, r} and D(pi) =
{l, r, T}. The initial state is In = {T = l, p1 = l, . . . , pn = l}. The goal does
not matter here. The actions are An = {drive(x, y) | (x, y) ∈ {(l, r), (r, l)}} ∪
{load(i, z), unload(i, z) | 1 ≤ i ≤ n, z ∈ {l, r}} where pre(drive(x, y)) = {T = x},
eff(drive(x, y)) = {T = y}, pre(load(i, z)) = {T = z, pi = z}, eff(load(i, z)) =
{pi = T}, and pre(unload(i, z)) = {T = z, pi = T}, eff(unload(i, z)) = {pi = z}.

Assume the factoring F with center C = {T} and leaves L = {{p1}, . . . , {pn}}.
The number of decoupled states is #ΘRFΠn = 3: after applying drive(l, r) and drive(r, l),
all leaf states are reached. ΘFΠ contains |ΘFΠ | = 3+2n+3n+3n = 8n+3 factor states.

The size of the unfolding prefix |UnfΣ|, however, is exponential in n. Any load(i, l)
event that fires in the initial state consumes an instance of the condition (T = l), and
produces a new instance of that condition. As the consumed instance can be any instance
produced beforehand, the number of instances in the Petri net doubles in each step.

268 APPENDIX A. FULL PROOFS OF PART II

Theorem 15. There exists a family of tasks Πn in -P, with factorings in +M and search
orders in -O, where #ΘRFΠn is exponential in n while |UnfΠn| is polynomial in n.

We prove the following stronger claim:

Lemma 21. There exists a family of tasks Πn in -P, with factorings in +M and search
orders in -O, where #ΘRFΠn is exponential in n for every family of factorings Fn, while
|UnfΠn| is polynomial in n.

Proof. Consider Πn = 〈Vn,An, costn, In,Gn〉 as follows. Vn = {v1, . . . , vn}, where
D(vi) = {0, 1, 2} for 1 ≤ i ≤ n. The initial state is In = {v1 = 0, . . . , vn = 0}. The
actions are An = {a0} ∪ {a12

i | 1 ≤ i ≤ n} ∪ {a12
ij | 1 ≤ i, j ≤ n} where pre(a0) =

{v1 = 0, . . . , vn = 0} and eff(a0) = {v1 = 1, . . . , vn = 1}; pre(a12
i) = {vi = 1} and

eff(a12
i) = {vi = 2}; pre(a12

ij) = {vi = 0, vj = 1} and eff(a12
ij) = {vi = 2, vj = 2}.

The unfolding prefix UnfΣ has size |UnfΣ| = 3n, with a single condition b for every
reachable fact. #ΘRFΠn is exponential in n as claimed. Observe that the a12

ij actions
have an unreachable precondition, yet their presence means that, in any star factoring,
there can be at most one leaf: if there were two leaves Fi and Fj containing vi and vj
respectively, then the action a12

ij would incur a direct dependency across Fi and Fj , in
contradiction. Thus, for any family Fn = {Cn, Ln} of star factorings (where Ln may
not be present for some values of n), max(|Cn|, |Ln|) ∈ Ω(n). So #ΘRFΠn is exponential
in n since it has to enumerate all applications of a12

i actions for a linear number of
variables vi.

Theorem 16. There exists a family of tasks Πn in -P, with factorings in -M and search
orders in +O, where |ΘRFΠn | is polynomial in n while |UnfΠn| is exponential in n.

Proof. We construct a task family Πn = 〈Vn,An, costn, In,Gn〉 as follows. The vari-
ables are Vn = {c, l1, . . . , ln}, where D(c) = {0, 1} and D(li) = {0, 1, 2}. The initial
state is In = {c = 0, l1 = 0, . . . , ln = 0}. The actions are An = {aC01all2, a

C
10} ∪

{aC01i01, a
L
i20, a

L
i21 | 1 ≤ i ≤ n}. The action preconditions and effects are: pre(aC01all2) =

{c = 0, l1 = 0, . . . , ln = 0} and eff(aC01all2) = {c = 1, l1 = 2, . . . , ln = 2};
pre(aC10) = {c = 1} and eff(aC10) = {c = 0}; pre(aC01i01) = {c = 0, li = 0} and
eff(aC01i01) = {c = 1, li = 1}; pre(aLi20) = {li = 2} and eff(aLi20) = {li = 0};
pre(aLi21) = {li = 2} and eff(aLi21) = {li = 1}.

Assume the factoring F with center C = {c} and leaves L = {{l1}, . . . , {ln}}.
After applying aC01all2, exploration of the leaf actions aLi20 and aLi21 reaches all variable
values and thus a compact representation of reachability. We construct the search orders
� so that decoupled search finds this compact representation, but unfolding does not.

We postpone configurations containing leaf events until no more center-only con-
figurations are available (thus violating constraint (O1) of compatible orders); and we
constrain the order on center actions to start with the sequence 〈aC01all2, a

C
10〉. Precisely:

if Cl contains an event e labeled by φ(e) = a ∈ AL6C , but C does not contain such

A.3. RELATION TO PETRI-NET UNFOLDING 269

an event, then C � Cl; denoting C1 = {aC01all2} and C2 = {aC01all2, a
C
10}, we set

C1 � C2 � C ∈ UnfΣ \ {C1, C2}. Inside these constraints,� can be arbitrary.
With this search order, decoupled search first generates sF = IF [[aC01all2]], where

application of the leaf actions aLi20 and aLi21 reaches all values of the leaf variables. Then
decoupled search generates tF = sF [[aC10]]. After that, the process stops: sF covers
everything with center state c = 1, tF covers everything with center state c = 0. The
decoupled state space has #ΘRFΠn = 3 states, and thus polynomial size.

The unfolding prefix UnfΣ, however, has size exponential in n. The unfolding starts
with the center events aC01all2 and aC10. Thereafter, given �, it prefers to explore the
center events aC01i01 rather than the leaf events aLi2x. The unfolding thus has to set each
leaf variable separately to 1, using aC01i01. Every step aC01i01 sets c to 1, and must be
followed by aC10 setting c back to 0. In doing so, aC01i01 consumes an instance of the
condition c = 0, and aC10 generates a new instance of that condition. As the consumed
instance can be any instance produced beforehand, the number of instances in the Petri
net doubles in each step.

Theorem 17. There exists a family of tasks Πn in -P, with factorings in -M and search
orders in +O, where #ΘRFΠn is exponential in n while |UnfΠn| is polynomial in n.

Proof. We adapt the task Πn used in the proof of Theorem 16. We add a new variable l
with domain {0, 1} and initial value 0. We include a new action aL01 with precondition
{l = 0} and effect {l = 1}. We add the fact l = 1 into the preconditions of all
actions aC01i01, and we add l = 0 into the effects of these actions. In this modified task,
to enter the exponential part of the search space, the leaf action aL01 must be applied
first. Decoupled search always applies leaf actions first. If we violate (O1) however,
unfolding can avoid this.

Precisely, we constrain � to order configurations containing (an event labeled)
aC01all2 behind all configurations containing any of aC01i01; and to order configurations
containing aL01 behind all other configurations. Decoupled search then expands the leaf
action aL01 at IF , enabling the aC01i01 actions, thus forcing the search into exploring the
search sub-space using these actions. This sub-space contains a different decoupled
state for every subset of leaf states so is exponentially large. Yet unfolding prefers to
do anything other than adding aL01, so initially adds aC01all2 and then expands the aLi20 and
aLi21 actions, which together with a single aC10 event and a single aL01 event represent all
reachable markings.

Domination Theorems

We first analyze the case of singleton components, then that where there are no prevail
conditions. For the first case, we show that if the center factor is singleton, then no
two events that affect the center are concurrent. This directly translates to paths and
configurations that affect the center, so there is a direct correspondence between center

270 APPENDIX A. FULL PROOFS OF PART II

paths and center configurations. Given this property, unfolding cannot combine reached
conditions across decoupled states, so it exploits the concurrency across leaves as de-
coupled search. For the case without prevail conditions, we introduce the concept of
compatible steps, showing that with compatible orders, in each such step the same set
of states is reached by unfolding and decoupled search.

By â we denote an occurrence of an action a in ΘRFΠ , i. e., center action aC ∈ AC
inducing a new decoupled state sF , or a leaf action aL ∈ AL inducing a leaf state in a
decoupled state sF . By p̂ we denote an occurrence of a factor state p, i. e., a center state
or a reached leaf state in a decoupled state.

Theorem 18. For Π in +P, factorings with singleton center factor (-M), and search
orders in -O, with hypercube pruning #ΘRFΠ ≤ |UnfΠ|.

The proof shows how to embed ΘRFΠ into UnfΠ. Theorem 18 follows directly from
the following two Lemmas.

Lemma 22. Let Π be a planning task and F a factoring with singleton center factor
|C| = 1. Let UnfΠ be the unfolding of Π. Then every pair of distinct events e1 6= e2

affecting the center factor C is not concurrent, i. e., e1 6‖ e2 if vars(φ(eff(e1))) ∩ C 6= ∅
and vars(φ(eff(e2))) ∩ C 6= ∅.

Proof. Note first that every transition with an effect on a variable v necessarily has a
precondition on v, too, i. e., F ∩ vars(pre(t)) = F ∩ vars(eff(t)). Correspondingly
for events in UnfΠ. Observe further that for every variable v ∈ V , we have c0 ≺ e,
where φ(c0) = I[v], for all events e where v ∈ vars(φ(pre(e))) (conditions that encode
assignments to v must result from the initial assignment to v).

Now say that two events e1 6= e2 in UnfΠ both affect the center factor C, i. e.,
vars(φ(eff(e1)))∩C 6= ∅ and vars(φ(eff(e2)))∩C 6= ∅. As C is singleton component by
prerequisite, this means that vars(φ(eff(e1)))∩ vars(φ(eff(e2))) ⊇ {v} where C = {v}.
Therefore, with the above, we have that either (i) there exist e′1 6= e′2, where e′1 � e1,
e′2 � e2, with pre(e′1) ∩ pre(e′2) ⊇ {c0} 6= ∅, so e1 and e2 are in conflict; or (ii) e1 ≺ e2

or e2 ≺ e1, so one is a causal predecessor of the other.

Lemma 23. Let Π be a task in +P, and F a factoring with singleton center factor
C ∈ F . Let ΘRFΠ and UnfΠ be generated using compatible orders�, with hypercube
pruning for ΘRFΠ . Then decoupled states in ΘRFΠ can be injectively mapped to non-cut-
off events in UnfΠ.

Proof. Given the definition of compatible orders, we can view ΘRFΠ and UnfΠ as being
built by, iteratively, (1) adding a new center event e to UnfΠ and adding corresponding
possible expansions in ΘRFΠ , at all center paths that extend [e]C \ {e}; and (2) adding all
possible leaf events to UnfΠ in any order.

A.3. RELATION TO PETRI-NET UNFOLDING 271

T = l

T = l T = l

p1 = l

p1 = T

p2 = l

p2 = T

load(p1 , l) load(p2 , l)

Figure A.1: An incomplete prefix of the unfolding of the logistics example.

Observe that, in (1), always at most one2 decoupled state is added to ΘRFΠ . This
is because, by Lemma 22, different configurations that affect the center factor are not
concurrent. In particular, for a center event e, [e]C \ {e} is totally ordered (it is a path
through the state space of the single center variable). The only center paths πC that
extend [e]C \ {e} are therefore ones that append some postfix πCpost to [e]C \ {e}. By
construction, as ΘRFΠ and UnfΠ are built iteratively from (1) and (2), πCpost must be empty
so the only possible πC is [e]C \ {e} itself.

Given this, we can map the decoupled state at the new center action (if one is added)
to e. The mapping is injective as e is a new event each time (1) is applied.

Let now sF in ΘRFΠ be arbitrary. Denote by D the prefix of ΘRFΠ generated prior
to sF , and by U the corresponding prefix of UnfΠ. As sF is not pruned by hypercube
pruning, there exists s ∈ [sF] not contained in [tF] for any tF in D. Let â be an action
occurrence in sF that generates s, i. e., either the center action application leading to sF

or a leaf action application setting a leaf L to s[L]. Then the corresponding event e is
a non-cut-off event in UnfΠ, because U cannot contain reachable markings (states) not
contained in D. The latter is true because, first, component states in D are generated in
the same order as the corresponding conditions in U ; and second, with Lemma 22 the
conditions in U cannot be combined into new co-sets across decoupled states, because
the center sub-configuration leading to a condition that is part of a decoupled state tF is
not concurrent with the center configuration of sF .

Example 13. Consider our logistics example with n = 2 packages. An incomplete prefix
is shown in Figure A.1, where all leaf events that are possible in the initial marking have
fired, namely load(p1, l) and load(p2, l). In this prefix, there are three center events
possible that drive the truck from l to r, consuming one of the T = l conditions. In
the decoupled state space, however, these three events are encoded by a single center
path 〈drive(r)〉. Thus, only for the first drive(r) event a decoupled state is added, the
remaining two events do not lead to a change in the decoupled state space.

Theorem 19. For Π in -P, factorings in +M, and search orders in -O, |UnfΠ| ≤ |ΘRFΠ |.
We will first illustrate the advantage of unfolding on planning tasks with non-singleton

center component in Example 14, then introduce compatible steps as a means to capture
2See Example 13 for a case where no state is added.

272 APPENDIX A. FULL PROOFS OF PART II

c1 = 0

c1 = 1

c2 = 0

c2 = 1

c3 = 0

c3 = 1

l = 0

l = 1

setc1 e1 setc2 e2 setc3 e3 set l e0

Figure A.2: The complete unfolding prefix U3 of the planning task from Example 14
and Example 15 for n = 3.

the set of new states reached by an expansion step given compatible orders. Finally, we
give the full details of the proof of Theorem 19. The proof shows how to surjectively
map factor states in ΘRFΠ to factor co-sets in UnfΠ, showing that the number of factor
states is at least as high as that of factor co-sets. The analysis is decomposed into two
steps, first showing a correspondence across hypothetical non-pruned infinite structures,
then showing that this correspondence persists in the actual structures. The non-pruned
UnfΠ expands cut-off events. The non-pruned ΘRFΠ does not prune decoupled states,
and within each decoupled state does not do duplicate checking across leaf-factor states.
Note that these structures can be built incrementally by choosing applicable center and
leaf expansions non-deterministically.

Example 14. Consider the following family of planning tasks Πn in -P: Πn = 〈Vn,An,
costn, In,Gn〉, where Vn = {c1, . . . , cn, l}, with D(v) = {0, 1} for all v ∈ Vn;
and initially all variables have value In[v] = 0. There are 2n+1 actions An =
{setc1, . . . setcn, resetc1, . . . , resetcn, setl}, where pre(setci) = {ci=0}, eff(setci) =
{ci=1}, pre(resetci) = {ci=1, l=1}, eff(resetci) = {ci=0, l=0}, and pre(setl) =
{l=0}, eff(setl) = {l=1}.

A complete prefix of the unfolding of UnfΠn with n = 3 is shown in Figure A.2. Only
the events setci and setl are non-cut-offs, all events corresponding to resetci actions
are cut-offs. This is because all set∗ transitions are concurrent, so any subset of these
events in UnfΠn is a configuration, that represents a state of Πn. Obviously, all states of
Π can be represented using the respective actions.

In decoupled search, with the factoring F = {C = {c1, . . . , cn}, L = {l}} in +M,
all interleavings of the center actions setci are enumerated, leading to a total of 2n de-
coupled states with different center state, so none of them can be pruned. This behavior
occurs whenever a subset of the actions that affects a factor F ∈ F is concurrent. Then
the representation size of the component state space of F , i. e., the number of conditions
vs. the number of component states, can be exponentially smaller in the unfolding.

As a last new concept, we introduce the notion of compatible steps to capture all
new events and action occurrences induced by a center event, when constructing UnfΠ
and ΘRFΠ , for Π in -P, with compatible orders�U and�D. In an unfolding prefix U , a
compatible step consists of all events caused by adding the�U -minimal center event e
that can fire in U and the following leaf events. Formally, a compatible step is the set of

A.3. RELATION TO PETRI-NET UNFOLDING 273

c1 = 0

c1 = 1

c2 = 0

c2 = 1

c3 = 0 l = 0

l = 1

setc1 e1 setc2 e2 set l e0

Figure A.3: The prefix U2 of the unfolding of the task from Example 15 for n = 3.

events CSeU := {e} ∪ {e′ | φ(e′) ∈ AL6C ∧ [e]C = [e′]C ∧ e ≺ e′} that contains e and all
leaf events e′ enabled by e.

In a decoupled state-space prefix D, this corresponds to appending aC = φ(e) to all
center paths πC that extend [e]C \{e}, generating new decoupled states sF . Let P be the
set of all possible expansions in D that have the form πC ◦ 〈aC〉. A compatible step of a
center event e in a decoupled state-space prefix D is the set of center action occurrences
CSeD := {âC | πC ◦ 〈aC〉 ∈ P} that includes all possible �D-minimal âC inducing
decoupled states sF reached on center paths πC ◦ 〈aC〉 where πC extends [e]C \ {e}.

Example 15. Figures A.2, A.3, and A.4 show two prefixes U2, U3 of the unfolding,
respectively D2, D3 of the decoupled state space, of Πn from Example 14 for n = 3.
For illustration purposes, we only show the center state of each decoupled state in
Figure A.4, denoting, e. g., the state {c1=0, c2=1, c3=0} by 010. In all decoupled states,
the leaf states l = 0 and l = 1 are reached.

In the initial prefixes U0 and D0, there is only a single event e0, respectively action
occurrence â0, for the leaf action setl. The prefix D2 (left) corresponds to the state
space after performing the two compatible steps CSsetc1D0

and CSsetc2D1
. In the unfolding

this only generates the events e1 and e2 (see Figure A.3), where φ(ei) = setci. The two
compatible steps generate three decoupled states, namely the states 100, 010, and 110
that can be reached using interleavings of the actions setc1 = φ(e1) and setc2 = φ(e2).
In D2, note that setc2 is appended to all center paths that extend [e2] \ {e2} = ∅. This
holds for all center paths, so setc2 is appended to 〈setc1〉 and to the empty center path.

Say the prefixes D2 and U2 are extended by CSsetc3 . Then, in U3, this only generates
an event e3 for setc3, with all events in U3 being concurrent. In D3, four new decoupled
states are generated, as highlighted in red in Figure A.4 (right). In CSsetc3D2

, setc3 is
appended to all center paths that extend the center sub-configuration [e3]C \ {e3} = ∅,
which has no ordering constraints. Every center path (including the empty path) extends
[e3]C , so setc3 is appended to all of them.

Compatible steps capture exactly the behavior of search expansions in unfolding and
decoupled search when following a compatible order. A compatible step corresponds
to adding the�U -minimal possible center event e in the unfolding and is composed of
e and all leaf events it enables. In decoupled search, e corresponds to a set of center
action occurrences âC that generate new decoupled states sF by appending aC = φ(e)
to all center paths πC where πC extends [e]C \ {e}.

274 APPENDIX A. FULL PROOFS OF PART II

000

100

110

010

setc1
setc2

setc2

000

100 010 001

110101 011

111

setc1
setc2

setc3

setc2
setc3

setc3

setc3

Figure A.4: Two prefixes, D2 (left) and D3 of the center state space of the task from
Example 15 for n = 3.

We next prove that, when incrementally building an unfolding prefix U and a decou-
pled state-space prefix D with compatible orders, when expanding one compatible step
after the other in both unfolding and decoupled search, after every step i if a state s is
reachable in Di, then it is also reachable in Ui.

Lemma 24. Let Π be a task in -P, and F a factoring in +M. Let Ui and Di be the
prefixes of UnfΠ and ΘRFΠ , respectively, generated by i iterated compatible steps. Then
all states reached in Di are also reached in Ui.

Proof. We show that, after every compatible step CSei−1 of a center event e, a state s is
reached in Ui if it is reached in Di. The proof goes by induction over the number of
compatible steps i. For the base case i = 0, the claim holds trivially, since in both U0

and D0 exactly those states are reached that are reachable with leaf-only actions from
the initial state.

For the inductive case, assume that the new state s is reached in Di in a decoupled
state sF by an action occurrence â′ of the compatible step CSeDi−1

. By definition, πC(sF)

is composed of πC ◦〈aC〉, where aC = φ(e) and πC extends [e]C \{e}. Denote by tF the
predecessor of sF in Di−1, so πC(tF) extends [e]C \ {e} and πC(tF) ◦ 〈aC〉 = πC(sF).
By induction hypothesis, all states s′ ∈ [tF] in Di−1 are also reached by a configuration
C ′ in Ui−1. Let C be the configuration in Ui−1 that reaches the last predecessor t of s in
tF .

If the occurrence â′ that generates s in sF corresponds to aC , then the configuration
C∪{e} reaches s inUi. Otherwise, assume â′ corresponds to a leaf-only action aL ∈ AL6C
of leaf L. Denote by t0 the state t[[aC]] and byC0 the configurationC∪{e}, both reached
in Di, respectively Ui. Denote by πL the sequence of L-only actions within sF behind
aC on the path to s, and by eLk the corresponding events of the actions aLk , so φ(eLk) = aLk
for all 1 ≤ k ≤ n. Finally, denote by t1, . . . , tn the states t0[[aL1]], . . . , t0[[〈aL1 , . . . , aLn〉]],
where tn = s. We prove by induction that if the state tj is reached in Di, then there
exists a corresponding co-set Qj , where φ(Qj) = tj , in Ui.

For the base case, remember that t0 is reached in Di, and that C0 reaches t in Ui.
Denote byQ0 the co-set at the end ofC0, where φ(Q0) = t0. Then, since aL1 is applicable

A.3. RELATION TO PETRI-NET UNFOLDING 275

in t0, because πL is a valid sub-sequence on the path to s, reaching t1, we get that eL1
can fire in Q0 reaching Q1 = (Q0 \ pre(eL1))∪ eff(eL1), where φ(Q1) = t1. Observe that,
in case eL1 is concurrent to e, then it already exists in Ui−1, and no new event for aL1 is
added in Ui. In any case, C0 ∪ {eL1 } is a configuration in Ui that reaches t1.

For the inductive case, let aLj be the action that is applied in tj−1. By hypothesis,
the co-set Qj−1 is reached in Ui by configuration Cj−1 = C0 ∪ {eL1 , . . . , eLj−1}. Again,
since πL is a valid path, so aLj is applicable in tj−1, eLj can fire in Qj−1 reaching Qj . As
before, if eLj is concurrent to e and all leaf events eLk for k < j, then it already exists in
Ui−1 and no new event is added. We get that Cj = Cj−1 ∪ {eLj } is a configuration in Ui
that reaches tj .

If s is generated by leaf action occurrences of multiple leaves in sF , we can apply
the above reasoning to every leaf separately. We can construct the overall configuration
Cn by adding the leaf events of all involved leaves, since, without prevail conditions,
the events affecting different leaves (and not the center) are concurrent.

We use the following notations for the proof of Theorem 19. A factor co-set P is a
co-set where vars(φ(P)) = F for some F ∈ F . We write P [F] to indicate the factor
F concerned, and given an arbitrary co-set Q we write Q[F] for the restriction of Q to
conditions over the variables F . We write [Q] for the configuration supporting Q. We
write p[F] to indicate that a factor state p is over factor F .

Proof. The proof has two parts: first, we consider the non-pruned ΘRFΠ and UnfΠ; then
we analyze cut-off events vs. hypercube pruning.

For the first part, we prove that (*) there is a surjective mapping g where (a) for every
p̂, φ(g(p̂)) = p; (b) for every co-set Q, there is at least one sF where πC(sF) extends
[Q]C; and (c) for every such sF and every F , there is p̂[F] in sF where g(p̂[F]) ⊇ Q[F].
Note that in (c), we do not have g(p̂[F]) = Q[F], because Q may instantiate only a
subset of the variables of F .

We prove (*) by structural induction over an incremental construction of ΘRFΠ along-
side the construction of UnfΠ. D and U denote the current prefix of ΘRFΠ and UnfΠ
respectively, during the construction.

The induction base case is simple: U is then the set Min(ON) of ≺-minimal ele-
ments of B ∪ E. This contains exactly one condition b for every state variable v, with
φ(b) = I[v]. The factor co-sets P [F] here match exactly the factor states I[F] for
F ∈ F . We construct D as the non-expanded initial decoupled state IF0 . Defining
g(I[F]) := P [F], we obviously get (a) – (c).

For the inductive case, say that U ′ results from U by adding event e. We denote
a := φ(e). By hypothesis, we have a mapping g from D to U satisfying (*). We show
how to extend D and g to suitable D′ and g′ respectively.

We construct D′ by, for every sF where πC(sF) extends [pre(e)]C , extending sF

with a, as follows. If a is a leaf action, then (i) we apply a to every factor state p in

276 APPENDIX A. FULL PROOFS OF PART II

sF where p |= pre(a). If a is a center action and sF |= pre(a), then we apply a to sF ,
resulting in a new successor tF . In the latter, (ii) we add the updated center state; (iii)
for every leaf factor L affected by a, and for every sL ∈ SL where prices(sF)[sL] <∞
and sL |= pre(a)[L], we add sL updated with eff(a)[L]; (iv) for every (leaf) factor L not
affected by a, we add to tF occurrences of actions aL ∈ AL6C reaching all of sL ∈ SL

where prices(sF)[sL] < ∞. The latter is possible because, without prevail conditions,
no such aL has preconditions on the center.

Observe that this construction ofD builds several decoupled states in a parallel man-
ner, in difference to the actual construction of (pruned) ΘRFΠ during search. However,
the construction of D complies with the unfolding search order.

Regarding the construction of g′: For (i) – (iii), let p̂′[F] be a new factor state occur-
rence added toD′ by an occurrence â of a, and let p̂[F] be the factor state occurrence that
â is applied to. By hypothesis, P [F] := g(p̂[F]) is a factor co-set and P [F] ⊇ pre(e)[F].
Let P ′[F] := (P [F] \ pre(e)[F]) ∪ eff(e)[F]. Then P ′[F] is a co-set in U ′. We set
g′(p̂′[F]) := P ′[F]. For (iv), i. e., a factor state occurrence p̂′[L] of p′[L] ∈ SL, where
prices(sF)[p′[L]] <∞, added to D′, we define g′(p̂′[L]):=g(p̂[L]), where p̂[L] is p′[L]’s
occurrence in sF .

We next show that g′ has the desired properties (*) on D′ and U ′. Obviously, (a) is
given by construction.

To see that g′ is surjective, note that any new factor co-set P ′[F] in U ′ must result
from a factor co-set P [F] in U through P ′[F] := (P [F] \ pre(e)[F]) ∪ eff(e)[F] where
eff(e)[F] 6= ∅ and thus pre(e)[F] 6= ∅. Let Q := P [F] ∪ pre(e). Then Q is a co-set
in U as otherwise P ′[F] could not be a co-set in U ′. By hypothesis (b), there is at
least one sF in D where πC(sF) extends [Q]C . By hypothesis (c), for every F there
is p̂[F] in sF where g(p̂[F]) ⊇ Q[F] = P [F], which implies with hypothesis (a) that
g(p̂[F]) = P [F].

It remains to show that for every factor co-set P ′[F] there exists a factor state
φ(P ′[F]) that is mapped to P ′[F] by g′. As Q ⊇ pre(e), we have that πC(sF) ex-
tends [pre(e)]C . Thus sF has been extended with a = φ(e). If a is a leaf action, then,
because there are no prevail conditions and thus no Petri net outputs of e on the center,
F must be the respective leaf factor L. We have p[L] |= pre(a), so a was applied to
p[L] by (i), generating the outcome state φ(P ′[L]) which is mapped by g′ to P ′[F] as
desired. If a is a center action, then, because there are no prevail conditions and thus
no Petri net outputs of e on factors not affected by a, F must be either (ii) the center or
(iii) a leaf factor L affected by a. In both cases, a was applied to p[F], generating the
outcome state φ(P ′[F]) which is mapped by g′ to P ′[F] as desired.

Let now Q′ be any new co-set in U ′. We must show that (b) and (c) hold for Q′.
Observe first that Q′ must result from Q := (Q′ \ eff(e)) ∪ pre(e) in U , and that Q is a
co-set in U .

Regarding (b): By hypothesis (b), there is at least one sF where πC(sF) extends

A.3. RELATION TO PETRI-NET UNFOLDING 277

[Q]C . If a is a leaf action, there is nothing to show as, then, [Q]C = [Q′]C . Say that
a is a center action. By construction, sF has been extended with a, producing a new
successor tF . Clearly, πC(tF) extends [Q′]C .

Regarding (c): Let tF in D′, where πC(tF) extends [Q′]C , be arbitrary. We need to
show that for every such tF and every F , there is p̂′[F] in tF where g(p̂′[F]) ⊇ Q′[F].
First, say that a is a leaf action. Then D contains sF with πC(sF) = πC(tF), namely
the same decoupled state but yet with less leaf states. Let F be arbitrary. By hypothesis
(c), there is p̂[F] in sF where g(p̂[F]) ⊇ Q[F]. Say that a affects L. If F 6= L, then,
as there are no prevail conditions and thus no outputs of e on any factor other than L,
Q[F] = Q′[F] and we are done. Say that F = L. Then, as Q ⊇ pre(e), we have
p[L] |= pre(a) so a was applied to p[L] by (i). The outcome state p′[L] is mapped by g′

to a co-set P ′[L] in U ′, where P ′[L] ⊇ Q′[L] as needed.
Finally, say that a is a center action. Then tF was generated by extending sF in D

with a. Let F be arbitrary. By hypothesis (c), there is p̂[F] in sF where g(p̂[F]) ⊇ Q[F].
If a affects F , then similar to the above we have p[F] |= pre(a)[F], so a was applied to
p[F] by either (ii) or (iii), and the outcome state p′[F] in tF is mapped by g′ to a co-set
P ′[F] ⊇ Q′[F] in U ′ as needed. If a does not affect F , then as above Q[F] = Q′[F]. In
that case, due to construction (iv), tF contains a new occurrence of p[F], mapped by g′

to g(p̂[F]) which concludes the argument.
For the second part of the proof, consider now the pruned versions of ΘRFΠ and UnfΠ,

built using compatible orders�.
Assume that e is a non-cut-off event in UnfΠ. Consider the construction step where

e is added, and denote D,D′ and U,U ′ as above. Consider the decoupled states sF

extended with a := φ(e) in D′ by the above construction. For every such sF , and for
every factor F affected by a, there is a factor-state occurrence p̂[F] in sF mapped to
a factor co-set P [F] := g(p̂[F]) where P [F] ⊇ eff(e)[F] and in particular |P [F]| ≥
|eff(e)[F]|.

Observe that, for any other event e′, the factor-state occurrences p̂′[F] identified in
the same manner must map to different factor co-sets P ′[F] 6= P [F], simply because
every construction step of kinds (i) – (iii) maps to factor co-sets including newly gener-
ated conditions. Therefore, to prove the main claim it now suffices to show that at least
one sF as above is not pruned by hypercube pruning.

Observe that the iterative addition of conditions and factor states as per the con-
struction above follows exactly the definition of compatible orders, where the leaf states
within each decoupled state are added step-by-step. As each addition step for center
events is exactly the addition of a compatible step, we can invoke Lemma 24.

As e is a non-cut-off event in UnfΠ, the state s = φ([e]) is not reached in U . With
Lemma 24, there cannot exist a decoupled state sF in D where s ∈ [sF]. The decoupled
states tF where πC(tF) extends [e]C are generated by the compatible step CSe′D, where
e ∈ CSe′U . So at least one decoupled state exists in D′ after CSe′D where s ∈ [sF]. Since

278 APPENDIX A. FULL PROOFS OF PART II

100

101p̂1 110

111p̂4

l=0p̂2

l=1p̂3 l=0p̂5

l=1p̂6

setc2âC1 : setc3

âC2 : setc3âL1 : setl

âL2 : setl

Figure A.5: Illustration of the surjective mapping g in the decoupled state space used
in the proof of Theorem 19.

s is not reached in D, at least one of these states is not pruned by hypercube pruning,
which is what we needed to prove.

Example 16. Consider again the construction from Example 15, where the event e3

adds an instance of the setc3 action to U . We illustrate the action and factor state
occurrences that our construction adds to D in Figure A.5. For practical reasons, we
only show two of the four newly generated center states, namely {c1=1, c2=0, c3=1}
and {c1=1, c2=1, c3=1}. The action occurrences that generate the other two decou-
pled states, and the mapping g′ for the other factor state occurrences are analogous.
The added center action occurrences in the figure are âC1 and âC2 , generating the fac-
tor states p̂1 and p̂4. Denote by cv=x the condition in U3 in Figure A.2 that corre-
sponds to the fact v = x. Note that there is always only a single such condition
for each fact. Then in the extended mapping g′ we get g′(p̂1) = {cc1=1, cc2=0, cc3=1},
g′(p̂4) = {cc1=1, cc2=1, cc3=1}, g′(p̂2) = g′(p̂5) = {cl=0}, and g′(p̂3) = g′(p̂6) = {cl=1}.
Analogously, g′ is extended for the other two decoupled states generated when append-
ing setc3 to all center paths in D2.

A.4 Relation to Stubborn-Sets Pruning

A.4.1 Technical Background – Details
We give the background required for our proofs, loosely following the definitions of Siev-
ers and Wehrle [2021]. First, we formally define the notion of necessary enabling sets,
and action interference, which form the basis of stubborn sets pruning.

For a planning task Π and a state s of Π, by app(s) we denote the set of actions
applicable in s, i. e., app(s) := {a ∈ A | s |= pre(a)}.
Definition 63 (Necessary Enabling Set). Let Π be a planning task. For an action a
and a state s such that a 6∈ app(s), a necessary enabling set for a in s is a set of

A.4. RELATION TO STUBBORN-SETS PRUNING 279

actions N ⊆ A such that for every path 〈a1, . . . , an〉 applicable in s, if ai = a then
{a1, . . . , ai−1} ∩N 6= ∅.

For a state s such that s 6|= G, a necessary enabling set for G in s is a set of actions
N ⊆ A such that for every plan 〈a1, . . . , an〉 for s, {a1, . . . , an} ∩N 6= ∅.

To formalize the notion of interference, we first define when an action enables or
disables another, and action conflicts:

Definition 64 (Enabling, Disabling, Conflicting Actions). Let Π be a planning task, and
let a1, a2 be actions, and s a state of Π, where a1 ∈ app(s). Then:

• a1 disables a2 in s if a2 ∈ app(s) and a2 6∈ app(s[[a1]]).

• a1 disables a2 on fact {v = p} in s if a2 ∈ app(s), pre(a2)[v] = p, and s[[a1]][v]6=p.

• a1 enables a2 on fact {v = p} in s if s[v] 6= p, pre(a2)[v] = p, and s[[a1]][v] = p.

• a1 and a2 conflict in s if a2 ∈ app(s), a1 ∈ app(s[[a2]]), a2 ∈ app(s[[a1]]), and
s[[〈a1, a2〉]] 6= s[[〈a2, a1〉]].

An action enables another on a fact p in a state, if it achieves the missing precondi-
tion fact p. Analogously, an action disables another action (on a fact p) in a state if it
makes a precondition (precondition p) false. Two actions conflict in a state if both are
applicable in any order, but the outcome states differ.

We are now ready to define action interference:

Definition 65 (Action Interference). Let Π be a planning task, and let a1, a2 be actions,
and s a state of Π, such that both actions are applicable in s. Then a1 weakly interferes
with a2 in s if:

• a1 disables a2 in s, or

• a1 and a2 conflict in s.

We say that a1 interferes with a2 in s if:

• a1 weakly interferes with a2 in s, or

• a2 disables a1 in s.

Action a1 weakly interferes with a2, if there exists a variable v ∈ vars(eff(a1)) such
that (1) v ∈ vars(pre(a2)) and eff(a1)[v] 6= pre(a2)[v], or (2) v ∈ vars(eff(a2)) and
eff(a1)[v] 6= eff(a2)[v].

280 APPENDIX A. FULL PROOFS OF PART II

We distinguish two concepts of interference, state-based interference, and syntactic
interference. For the former, two actions interfere if there exists a state in which they
interfere; for the latter, this additional condition is dropped. Thus, syntactic interference
is strictly weaker than state-based interference in the sense that two actions that are in
state-based interference always syntactically interfere, but not vice versa.

While interference is an “undirected” relation, i. e., a1 interferes with a2 in s iff a2

interferes with a1 in s, this is not the case for weak interference, which is directed.
We next define three variants of stubborn set pruning previously introduced for plan-

ning. These variants only differ in the notion of interference they employ for applicable
actions in the stubborn set.

Definition 66 (Stubborn Sets). Let Π be a planning task and let s be a solvable non-goal
state of Π. Let T ⊆ A be a set of actions such that the following conditions hold:

(a) T contains a necessary enabling set for G in s.

(b) For every a ∈ T , where a 6∈ app(s): T contains a necessary enabling set for a in s.

Then T is:

• a strong stubborn set, if for every a ∈ T , where a ∈ app(s): T contains all actions
a′ such that a interferes with a′ in any state s′ of Π.

• a compliant stubborn set, if for every a ∈ T , where a ∈ app(s): T contains all
actions a′ such that a weakly interferes with a′.

• a weak stubborn set, if for every a ∈ T , where a ∈ app(s): T contains all actions
a′ such that a weakly interferes with a′ in any state s′ of Π, and for all facts
(v = p) ∈ pre(a):

(i) T contains all actions a′ such that a′ disables a on {v = p} in any state s′

of Π, or

(ii) T contains all actions a′ such that a′ enables a on {v = p} in any state s′ of
Π.

For all variants of stubborn sets (a) ensures that the actions in T make progress to
the goal, and (b) this progress chains back to the current state s. The different condi-
tions on action interference lead to different pruning behaviour of the three stubborn set
instantiations.

A.4. RELATION TO STUBBORN-SETS PRUNING 281

A.4.2 Proofs
Theorem 20. Decoupled search is exponentially separated from all three variants of
stubborn sets.

Proof. Consider again the variant of our example from Chapter 6.1.1, with a truck and
n packages on a map with two locations l and r. Recall that initially everything is at l
and the goal is for all packages to be at r. On top of the usual drive and (un)load actions,
we introduce a new action reset() with empty precondition and effect that the truck and
all packages are at l.

There are only 3 reachable decoupled states: in IF , all packages can be at l or
loaded; via drive(r) we reach state sF1 where additionally the packages can be at r with
a price of 2. From sF1 we can drive back to l, yielding sF2 , where prices do not change
any more. In all states, we can apply reset(), which results in a state that is identical to
IF , so is pruned.

All of the stubborn sets variants, however, result in an exponential search space.
By ST=l we denote the set of states where the truck is at l and the packages are either
loaded or at l. We next show that the search will generate all states in ST=l. This
results in > 2n visited states for all stubborn sets variants, which proves the claim. The
key observation is that reset() is in conflict (and therefore (weakly) interferes) with
any load(pi, l) actions in all states in ST=l where load(pi, l) is applicable (condition (2)
in Definition 65 fires for compliant stubborn sets). Therefore, since reset() is always
applicable, whenever such a load action is in the stubborn set, via reset() all other load
actions are added, too. Thus, until all packages are loaded, the search branches over all
applicable load(pi, l) actions.

An algorithm computing stubborn sets could, however, decide to instantiate condi-
tion (a) of Definition 66 with drive(r), instead, since it is also part of any plan for all
states in ST=l. Nevertheless, since drive(r) is in conflict with reset(), too, again all
load actions end up in the stubborn set, concluding the proof.

Theorem 21. All three variants of stubborn sets are exponentially separated from de-
coupled search.

Proof. Consider again the task family Πn from the proof of Lemma 21 with Πn =
〈Vn,An, costn, In,Gn〉 as follows Vn = {v1, . . . , vn}, where D(vi) = {0, 1, 2} for
1 ≤ i ≤ n. The initial state is In = {v1 = 0, . . . , vn = 0}, the goal state is Gn =
{v1 = 2, . . . , vn = 2}. The actions are An = {a0} ∪ {a12

i | 1 ≤ i ≤ n} ∪ {a12
ij | 1 ≤

i, j ≤ n} where pre(a0) = {v1 = 0, . . . , vn = 0} and eff(a0) = {v1 = 1, . . . , vn = 1};
pre(a12

i) = {vi = 1} and eff(a12
i) = {vi = 2}; pre(a12

ij) = {vi = 0, vj = 1} and
eff(a12

ij) = {vi = 2, vj = 2}.
First, a0 is applied to In. For the successor state s1 := In[[a0]], stubborn sets pick

a variable vi with unsatisfied goal, and add the necessary enabling set actions a12
i , a12

ij ,

282 APPENDIX A. FULL PROOFS OF PART II

I A

l0,0,0,1

l0,0,1,0

l0,1,0,2
. . .

ln−1,n,n,n

0 1

li,j,∗,∗

l∗,∗,i,j

Figure A.6: Illustration of the task family used in the proof of Theorem 22 that expo-
nentially separates decoupled search from symbolic breadth-first search.

and a12
ji to the stubborn set T . Since no a12

kl action is ever applicable, their only enabler
a0 is added to T . Except a12

i , no action in T is applicable in s1, but all actions interfering
(for any form of interference) with a12

i are already in T , so it is the only action applied
to s1. The same happens in all successors of s1.

The decoupled state space is exponential in n as shown in the proof of Lemma 21.

A.5 Relation to Symbolic State Representation
Theorem 22. Decoupled search is exponentially separated from symbolic breadth-first
search with BDDs.

Proof. Consider the following planning task family Πn with center factor C = {c} and
n2 leaves Li,j = {xi,j} that represent the cells in a n× n grid. Each leaf has two states
0, 1, which can be represented in a BDD by a variable xi,j . The center variable has the
domain D(c) = {I, A} ∪ {li,j,i′,j′ | cell (i, j) is adjacent to (i′, j′)}, where value li,j,i′,j′
encodes that the pair of grid cells (i, j) and (i′, j′) are adjacent in the grid. Initially, all
leaves have value 0, and the center is I . The goal does not matter for our purpose here.

Figure A.6 shows the component state spaces for the center (left) and a leaf (right).
These arise from the following actions: there are two types of center actions, aCI,i,j,i′,j′ ,
where pre(aCI,i,j,i′,j′) = {c = I} and eff(aCI,i,j,i′,j′) = {c = li,j,i′,j′}, and aCi,j,i′,j′,A,
where pre(aCi,j,i′,j′,A) = {c = li,j,i′,j′} and pre(aCi,j,i′,j′,A) = {c = A}. For each leaf
variable xi,j and pair of adjacent cells (i, j) and (i′, j′), there are two actions, both with
effect {xi,j = 1}, namely aLi,j,i′,j′ with precondition {c = li,j,i′,j′ , xi,j = 0}, and aLi′,j′,i,j
precondition {c = li′,j′,i,j, xi,j = 0}.

This task has a polynomial number of center paths and therefore trivially a polynomial-
size decoupled state space.

Consider now symbolic breadth-first search, and the set of states with distance 4
from the initial state. These states arise from moving the center to some li,j,i′,j′ , moving

A.5. RELATION TO SYMBOLIC STATE REPRESENTATION 283

two adjacent leaves to 1, and moving the center to A. As all the states are in the same
center state, we can ignore the impact of c on BDD size (it does not matter where the
center bits are in the variable ordering, they only multiply the size of the BDD by a
logarithmic factor, log(n2)).

Now, consider the leaf variables. The function that represents our state set is the
function that represents the set of all pairs of adjacent variables in a grid. Note that
we cannot just represent it by using only c = A, because this characterizes the state
set where each cells would be adjacent to all other cells. This function requires an
exponential number of BDD nodes [Edelkamp and Kissmann, 2011].

284 APPENDIX A. FULL PROOFS OF PART II

Appendix B

Full Proofs of Part III

B.1 Decoupled Strong Stubborn Sets

B.1.1 DSSS Special Case Topologies
Lemma 11. Let Π = 〈V ,A, cost, I,G〉 be a planning task and F a fork factoring. Let
sF be a solvable decoupled state, let L be a leaf factor, and let p be a partial assignment
to L reached in sF . Let πF be a decoupled plan for sF , and let π be a global plan given
πF . Let A be a fork-price frontier set for p in sF .

Define at, πpast , and πfuture as before. If there exists k > t such that, denoting by
〈aL1 , . . . , aLi 〉 and sL0 , . . . , s

L
i the L-actions, respectively states, in π prior to ak, we have

cost(〈aL1 , . . . , aLi 〉) < prices(sF)[sLi] and sLi |= p, then {at, . . . , ak−1} ∩ A 6= ∅.
Proof. Denote by l the index of the first action on πL where aLl is on πfuture . Since we
have that cost(〈aL1 , . . . , aLi 〉) < prices(sF)[sLi] by prerequisite, aLi must be on πfuture ,
i. e., we must have i ≥ l. Let j ≥ l be the smallest index where cost(〈aL1 , . . . , aLj 〉) <
prices(sF)[sLj]. Consider the transition sLj−1

aLj−→ sLj on πL. As j ≥ l, this transition is

part of πfuture . We prove that (*) sLj−1

aLj−→ sLj is a fork-price frontier transition for p in
sF .

Because j is the smallest index where cost(〈aL1 , . . . , aLj 〉) < prices(sF)[sLj], it fol-
lows that prices(sF)[sLj−1] ≤ cost(〈aL1 , . . . , aLj−1〉). Observe that, therefore, sLj−1 is
reached in sF , because its price is upper-bounded by a finite value. Furthermore, ob-
serve that, adding the cost of aLj on both sides of the inequality prices(sF)[sLj−1] ≤
cost(〈aL1 , . . . , aLj−1〉), we get prices(sF)[sLj−1] + cost(aLj) ≤ cost(〈aL1 , . . . , aLj 〉). As, by
construction, cost(〈aL1 , . . . , aLj 〉) < prices(sF)[sLj], we obtain that prices(sF)[sLj−1] +
cost(aLj) < prices(sF)[sLj].

Furthermore, sLj−1

aLj−→ sLj lies on the L-path πL from I[L] to sLi where sLi |= p. To
show (*), it remains to prove that (a) center(sF) 6|= pre(aLj)[C] and (b) πL is simple.

285

286 APPENDIX B. FULL PROOFS OF PART III

Regarding (a), because aLj affects L, in a fork topology aLj cannot affect the center.
Hence, prices(sF)[sLj−1] + cost(aLj) < prices(sF)[sLj] implies that aLj cannot be reached
in sF . We do know, however, that sLj−1 is reached in sF . As the only non-L precondition
of aLj must be on C, (a) follows.

Regarding (b), in a fork topology, any cheapest compliant leaf path is simple, be-
cause without center preconditions nor effect on the leaf there is no reason to visit the
same leaf state twice.

We have now proved (*). Given this, as A is a goal-price frontier set for L in sF ,
by definition we know that the segment 〈aLj , . . . , aLi 〉 of πL between sLj−1 and sLi must
contain an action from A. The claim follows as, with j ≥ l and by definition of aLi ,
〈aLj , . . . , aLi 〉 is a subsequence of 〈at, . . . , ak−1〉.
Definition 67 (Fork-Past-Maximality). Let Π = 〈V ,A, cost, I,G〉 be a planning task
and F a fork factoring. Let sF be a decoupled state, let πF be a decoupled plan for sF ,
and let π be a global plan given πF .

Define at, πpast , and πfuture as before. We say that π is fork-past-maximal if, for
every leaf factor L and for every k > t where ak ∈ AL is reached in sF , denoting by
〈aL1 , . . . , aLi 〉 and sL0 , . . . , s

L
i the L-actions, respectively states, in π prior to ak, we have

cost(〈aL1 , . . . , aLi 〉) < prices(sF)[sLi].

Lemma 25. Let Π = 〈V ,A, cost, I,G〉 be a planning task and F a fork factoring.
Let sF be a decoupled state, let πF be a decoupled plan for sF , and let π be a global
plan given πF . Then there exists a fork-past-maximal global plan π′ given πF where
cost(π′) ≤ cost(π).

Proof. We obtain such a π′ as follows. Start with π′ := π. If π′ is past-maximizing,
stop. Else, select a counter-example L and k, and denote 〈aL1 , . . . , aLi 〉 and sL0 , . . . , s

L
i

as in Definition 67. As cost(〈aL1 , . . . , aLi 〉) ≥ prices(sF)[sLi], there exists a πC(sF)-
compliant L-path πLi that ends in sLi . So π′ remains a plan when removing 〈aL1 , . . . , aLi 〉
from π′, and inserting πLi as a subsequence of πpast . Further, we can move ak to the end
of πpast , because its L precondition is achieved by πL, and its C precondition (if any)
is true in I[[πpast]] as pre(ak) is reached in sF . Now, iterate. This algorithm terminates
as, after each step, there is one action less in πfuture . The outcome π′ satisfies the claim
as we have not changed the center-action subsequence, and the permuted leaf paths are
still compliant with that sequence.

Theorem 25. Let Π = 〈V ,A, cost, I,G〉 be a planning task and F a fork factoring. Let
sF be a solvable decoupled state for which 〈〉 is not an optimal decoupled plan, and let
πF be a strongly optimal decoupled plan for sF . Let AFs be an FDSSS for sF . Then AFs
contains a center action starting a permutation of πF .

Proof. Let π be a global plan for πF , and assume, without loss of generality by Lemma 25,
that π is fork-past-maximal. Denote π = 〈a1, . . . , an〉. As above, let at be the starting

B.1. DECOUPLED STRONG STUBBORN SETS 287

action of πC(πF) in π, and denote πpast := 〈a1, . . . , at−1〉 and πfuture := 〈at, . . . , an〉.
Then the following properties hold:

(a) There must be an action a shared betweenAFs and πfuture , i. e., a ∈ AFs ∩{at, . . . , an}.
If G is not reached in sF , then this follows by the same argument as for (a) in the
proof of Theorem 23.

If G is reached in sF , then this follows by the same argument as for (a) in the proof
of Theorem 24, replacing Lemma 10 with the variant of Lemma 11 for fork-goal-
price frontier sets.

Given (a), let ak be the first shared action, i. e., say that ak ∈ AFs and {at, . . . ,
ak−1} ∩ AFs = ∅.

(b) ak is reached in sF .

By the same argument as for (b) in the proof of Theorem 23.

(c) ak is a center action, ak ∈ AC .

Assume for contradiction that ak is a leaf action, ak ∈ AL. First, with (b) and
due to Definition 36, we then know that AFs contains a fork-price frontier set A for
p := pre(ak)[L] in sF . We show that πfuture contains an action from A in front of
ak, in contradiction to ak being the first shared action.

Denote by 〈aL1 , . . . , aLi 〉 and sL0 , . . . , s
L
i the L-actions, respectively states, in π prior

to ak. We know that k ≥ t because ak is on πfuture . In fact, as at is a center action,
given the fork topology we know that ak 6= at and hence k > t. Given this, as π is
fork-past-maximal and ak is reached in sF by (b), we have that cost(〈aL1 , . . . , aLi 〉) <
prices(sF)[sLi]. Furthermore, of course sLi |= p = pre(ak)[L]. We can therefore
apply Lemma 11 and get that {at, . . . , ak−1} ∩ A 6= ∅, as we needed to show.

(d) ak does not interfere with any of the actions ai, t ≤ i ≤ k − 1, where pre(a) ‖
pre(ai).

With (b) and (c), and as Definition 36 (iii) includes interfering actions for reached
center actions in AFs , this follows by the same argument as for (c) in the proof of
Theorem 23.

(e) ak can be moved to the start of πfuture . Precisely, π′ := πpast ◦ 〈ak, at, . . . , ak−1,
ak+1, . . . , an〉 is a plan for Π.

By the same argument as for (e) in the proof of Theorem 23, except that we do not
need to take care of leaf preconditions as, in a fork structure, the center action ak
cannot have any such preconditions.

288 APPENDIX B. FULL PROOFS OF PART III

The claim now follows with the same concluding argument as in the proof of Theo-
rem 23.

Definition 68 (DSSS: Enhanced). Let Π = 〈V ,A, cost, I,G〉 be a planning task and F
a star factoring. Denote by FFL the set of fork leaves in F , denote by F IFL the set of
inverted-fork leaves inF , and denoteFGL := L\(FFL∪F IFL). Let sF be a decoupled
state where G[

⋃
L∈FIFL L] is reached in sF .

An action set AFs is an enhanced decoupled strong stubborn set (EDSSS) for sF if
all of the following conditions hold:

(i) If G is not reached in sF , then AFs contains a decoupled necessary enabling set
for G in sF , discarding actions a′ where pre(a′)[

⋃
L∈FIFL L] is not reached in sF .

If G is reached in sF , then for every L ∈ FGL where G[L] 6= ∅, AFs contains a
goal-price frontier set forL in sFG, discarding actions a′ where pre(a′)[

⋃
L∈FIFL L]

is not reached in sF ; and for every L ∈ FFL where G[L] 6= ∅,AFs contains a fork-
goal-price frontier set for L in sFG.

(ii) For all actions a ∈ AFs not reached in sF , AFs contains a decoupled necessary
enabling set for pre(a) in sF , discarding actions a′ where pre(a′)[

⋃
L∈FIFL L] is

not reached in sF .

(iii) For all actions a ∈ AFs \
⋃
L∈FFL AL reached in sF , AFs contains all actions a′

interfering with a where pre(a) ‖ pre(a′) and pre(a′)[
⋃
L∈FIFL L] is reached in

sF .

(iv) For all actions a ∈ AFs \
⋃
L∈FFL AL reached in sF , and for allLwhere pre(a)[L] 6=

∅, AFs contains a reached-enabling set for pre(a)[L] in sF ; and for all actions
aL ∈ AFs ∩

⋃
L∈FFL AL reached in sF , AFs contains a fork-price frontier set for

pre(aL)[L] in sF

Note that, in (i), actions in a fork-goal-price frontier set cannot have a precondition
on an inverted-fork leaf, so we do not need to exclude actions with unreached inverted-
fork leaf preconditions. In (iv), for non-fork-leaf actions a (first case in the item), a
cannot have a precondition on any such leaf. Reached-enabling sets are thus collected
only for non-fork leaves.

Theorem 46. Let Π = 〈V ,A, cost, I,G〉 be a planning task and F a star factoring.
Denote FFL, F IFL, and FGL as in Definition 68. Let sF be a solvable decoupled state
(in particular, G[

⋃
L∈FIFL L] is reached in sF), and let πF be a decoupled plan for sF .

Let AFs be an EDSSS for sF . Then AFs contains a center action starting a permutation
of πF .

B.1. DECOUPLED STRONG STUBBORN SETS 289

Proof. Let π be a global plan for πF . Observe first that the notions of past-maximality
and fork-past-maximality affect individual leaves only, i. e., the actions ak in question
affect exactly one leaf factor. So we can transform π as per Lemma 8 to be past-maximal
for non-fork leaves; and we can transform it as per Lemma 25 to be fork-past-maximal
for fork leaves. We can hence assume that π has these properties, without loss of gener-
ality.

Denote π = 〈a1, . . . , an〉. As before, let at be the starting action of πC(πF) in
π, and denote πpast := 〈a1, . . . , at−1〉 and πfuture := 〈at, . . . , an〉. Then the following
properties hold:

(a) There must be an action a shared betweenAFs and πfuture , i. e., a ∈ AFs ∩{at, . . . , an}.
If G is not reached in sF , this holds by the same argument as for (a) in the proof of
Theorem 23.

If G is reached in sF , then for non-fork leaves this holds by the same argument as for
(a) in the proof of Theorem 24, and for fork leaves this holds by the same argument
as for (a) in the proof of Theorem 25.

In all but the last case, we invoke Proposition 9 to show that actions with unreached
inverted-leaf preconditions can be discarded.

Given (a), let ak be the first shared action, i. e., say that ak ∈ AFs and {at, . . . ,
ak−1} ∩ AFs = ∅.

(b) ak is reached in sF .

By the same argument as for (b) in the proof of Theorem 23, invoking Proposition 9
to show that actions with unreached inverted-leaf preconditions can be discarded.

(c) If ak ∈ A \
⋃
L∈FFL AL, then ak does not interfere with any of the actions ai,

t ≤ i ≤ k − 1, where pre(a) ‖ pre(ai).

By the same argument as for (c) in the proof of Theorem 23, applied to ak∈A \⋃
L∈FFL AL with Definition 68 (iii), and invoking Proposition 9 to show that actions

with unreached inverted-leaf preconditions can be discarded.

(d) ak ∈ A \
⋃
L∈FFL AL.

Assume for contradiction that ak is a fork-leaf action, ak ∈ AL for a fork leaf
L. With (b) and due to Definition 68, AFs contains a fork-price frontier set A for
p := pre(ak)[L] in sF . From here, the argument is the same as for (c) in the proof
of Theorem 25, invoking fork-past-maximality for L.

(e) The leaf precondition of ak is true at the end of πpast , i. e., in I[[πpast]].

By the same argument as for (d) in the proof of Theorem 23, applied to ak∈A \⋃
L∈FFL AL with (d) and Definition 68 (iv).

290 APPENDIX B. FULL PROOFS OF PART III

(f) ak can be moved to the start of πfuture . Precisely, π′ := πpast◦〈ak, at, . . . , ak−1,
ak+1, . . . , an〉 is a plan for Π.

By the same argument as for (e) in the proof of Theorem 23, applied to ak∈A \⋃
L∈FFL AL with (d).

(g) ak is a center action.

By the same argument as for (e) in the proof of Theorem 23, applied to ak∈A \⋃
L∈FFL AL with (d), invoking past-maximality for the non-fork leaf L.

The claim now follows with the same concluding argument as in the proof of Theo-
rem 23.

Definition 69 (DSSS: Inverted Forks with Single Variables). Let Π = 〈V ,A, cost, I,
G〉 be a planning task and F an inverted-fork factoring where every leaf consists of a
single variable, ∀L ∈ L : |L| = 1. Let sF be a non-goal decoupled state where G[V \C]
is reached in sF .

An action set AFs is a single-variable-inverted-fork decoupled strong stubborn set
(SVIFDSSS) for sF if all of the following conditions hold:

(i) AFs contains a center-necessary enabling set for G[C] in sF .

(ii) For all center actions a ∈ AFs ∩ AC not reached in sF , AFs contains a center-
necessary enabling set for pre(a)[C] in sF .

(iii) For all center actions a ∈ AFs ∩AC reached in sF , AFs contains all center actions
a′ interfering with a where pre(a) ‖ pre(a′) and pre(a′)[V \ C] is reached in sF .

(iv) For all center actions a ∈ AFs ∩AC reached in sF , AFs contains all center actions
a′ that have a leaf precondition competing with a, pre(a)[V \ C] ∦ pre(a′)[V \ C],
and pre(a′)[V \ C] is reached in sF .

Theorem 47. Let Π = 〈V ,A, cost, I,G〉 be a planning task and F an inverted-fork
factoring where every leaf consists of a single variable, ∀L ∈ L : |L| = 1. Let sF be a
solvable non-goal decoupled state, and let πF be a decoupled plan for sF . Let AFs be a
SVIFDSSS for sF . Then AFs contains a center action starting a permutation of πF .

Proof. Let π be a global plan for πF , and assume, without loss of generality, by Lemma 8,
that π is past-maximal. Denote π = 〈a1, . . . , an〉. As above, let at be the starting action
of πC(πF) in π, and denote πpast := 〈a1, . . . , at−1〉 and πfuture := 〈at, . . . , an〉. Then
the following properties hold:

(a) There must be a center action shared between AFs and πfuture , i. e., a ∈ AFs ∩
{at, . . . , an}. Such an action must exist by the same argument as for (a) in the
proof of Theorem 23. It must be a center action due to Proposition 9.

B.1. DECOUPLED STRONG STUBBORN SETS 291

Given (a), let ak be the first shared action, i. e., say that ak ∈ AFs and {at, . . . ,
ak−1} ∩ AFs = ∅.

(b) ak is reached in sF .

By the same argument as for (b) in the proof of Theorem 46 .

(c) ak does not interfere with any of the center actions ai in 〈at, . . . , ak−1〉, where
pre(ak) ‖ pre(ai).

For the center actions in 〈at, . . . , ak−1〉, this holds by the same argument as for (c)
in the proof of Theorem 46.

(d) The leaf preconditions of ak agree with those of all center actions ai on 〈at, . . . ,
ak−1〉; formally pre(ak)[V \ C] ‖ pre(ai)[V \ C], t ≤ i < k.

Assume for contradiction that there exists an action ai where pre(ak)[V \ C] ∦
pre(ai)[V \ C] preceding ak on πfuture . By (a) and (b) ak is a reached center action.
Thus, with Definition 69 (iv), AFs contains all center actions a′ where pre(ak)[V \
C] ∦ pre(a′)[V \ C], invoking Proposition 9 to show that actions with unreached
leaf preconditions can be discarded. But then, ai is such an action and is therefore
contained in AFs , in contradiction to ak being the first shared action.

(e) No action on 〈at, . . . , ak−1〉 affects a variable in vars(pre(ak)) ∩
⋃
L∈L L.

Observe first that, due to the inverted-fork structure, every action that affects a vari-
able in vars(pre(ak))∩

⋃
L∈L L must be a leaf action a ∈ AL. Moreover, all AL are

disjoint and vars(pre(a)) ∪ vars(eff(a)) = L for all a ∈ AL (because |L| = 1, for
all L ∈ L). Further, if vars(pre(ak)) ∩ L 6= ∅ then L ⊆ vars(pre(ak)).

To prove the claim, we next show that there exists no action ai on 〈at, . . . , ak−1〉,
with t ≤ i < k, where ai ∈ AL and L ⊆ vars(pre(ak)). Assume for contradiction
that such an ai exists. From (b), we have that (1) ak is reached in sF . In particular,
its leaf precondition on vars(pre(ak))∩L is reached in sF . With (d), we have that (2)
no center action on 〈at, . . . , ak−1〉 has a competing leaf precondition, so in particular
there exists no center action aj , with t ≤ j < k, s.t. pre(ak)[L] ∦ pre(aj)[L].

Denote by πL→k the L-affecting leaf-action subsequence in π prior to ak that includes
ai. Because π is a plan, πL→k is compliant with πC(sF) ◦ πC(〈at, . . . , ak−1〉). From
(1) and (2), it follows that πL→k is also compliant with πC(sF). Given that by pre-
requisite ai is in 〈at, . . . , ak−1〉 this is in contradiction to the assumption that π is
past-maximal.

(f) The leaf precondition of ak is true at the end of πpast , i. e., in I[[πpast]].

This follows directly from (b) and (e), and the fact the π is a plan.

292 APPENDIX B. FULL PROOFS OF PART III

(g) ak can be moved to the start of πfuture . Precisely, π′ := πpast ◦ 〈ak, at, . . . , ak−1,
ak+1, . . . , an〉 is a plan for Π.

Given (b) and (f), ak is applicable in I[[πpast]]. With (c) ak does not interfere
with any center action ai in 〈at, . . . , ak−1〉 by the same argument as in the proof
of Theorem 23. The only leaf actions it can interfere with are those affecting
vars(pre(ak)) ∩

⋃
L∈L L, but with (e) there are no such action on πfuture prior to

ak, concluding the argument.

The claim now follows with the same concluding argument as in the proof of Theo-
rem 23.

B.1.2 Exponential Separations
Theorem 26. DSSS is exponentially separated from both, decoupled search and SSS.

Proof. Consider a variant of our running example with M trucks and N packages on
a map with two locations A and B, where each truck Ti is associated with a group of
N packages that only Ti can transport (all trucks and packages start at A, all packages
must be transported to B).

The number of reachable decoupled states is exponential in M , because all trucks
must be in the center factor, and their move combinations are enumerated. For SSS, as
soon as As contains a load/unload action for one group of N packages, the load/unload
actions for all other packages in that group are present as well, due to interference. So
the SSS-pruned reachable state space has size exponential in N .

Consider now decoupled search with DSSS pruning. In IF , all packages can be at
A or loaded into their respective truck. The necessary enabling set for G will select one
package, associated with some truck Ti; hence AFs includes drive(Ti, A,B). This does
not interfere with the drive actions for the other trucks, so it is the only applicable center
action in AFs , and we get a single successor state sF . In sF , the packages associated
with Ti can all be at B. So the decoupled necessary enabling set for G for DSSS se-
lects a package associated with another truck Tj 6= Ti. The only non-pruned action is
drive(Tj, A,B); and so forth. Once all trucks are at B, we have a goal decoupled state
sFG. The goal-price frontier sets for all L ∈ L in sFG are empty, because the package
prices are already the cheapest possible ones. So there are exactly M + 1 reachable
decoupled states.

B.2. DOMINANCE PRUNING FOR FORK TOPOLOGIES 293

B.2 Dominance Pruning for Fork Topologies
In this section, we will give the full proofs of the claims from Chapter 13.

Theorem 31. �F is a decoupled dominance relation.

Proof. Whenever sF �F tF and a global plan for sF exists, we can construct a global
plan that is at least as good for tF . Consider any global plan for sF consisting of a center
path πC , and a goal leaf path πL compliant with πC(sF)◦πC starting in sLI for each leaf.
As sF �F tF implies that center(sF) = center(tF), πC is applicable to tF as well.

Denote πL = 〈a1, . . . , an〉 and denote the leaf states it traverses by sLI = sL0 , . . . , s
L
n =

sLG. Let sLi be the last state visited by πL such that prices(sF)[sLi] =
∑i

j=1 cost(aj).
Such state must exist because the price of the initial state is always 0. sLi is the last state
in which its price corresponds to the price obtained by πL so 〈ai+1, . . . , an〉 must be
compliant with πC .

It follows that sLi ∈ F (sF). This is trivially true if sLi = sLn since the goal state
always belongs to the frontier. If sLi 6= sLn , then we have prices(sF)[sLi] + cost(ai+1) <
prices(sF)[sLi+1], which implies sLi ∈ F (sF). Since sF �F tF , prices(tF)[sLi] ≤
prices(sF)[sLi] follows.

Consider the path πLt from sLI to sLG constructed as the concatenation of: a cheap-
est πC(tF)-compliant path to sLi with the postfix of πL behind sLi . Then cost(πLt) =
prices(tF)[sLi] +

∑n
j=i+1 cost(aj) ≤ cost(πL). Since the first part of the plan up to

sLi is compliant with πC(tF) and the rest is compliant with πC , πLt is compliant with
πC(tF) ◦ πC as desired.

Theorem 32. �F subsumes � and is exponentially separated from it.

Proof. Subsumption is guaranteed as both relations are based on comparing the same
pricing functions, but�F does so on a subset of leaf states. The exponential separation is
shown by our logistics example, in which decoupled search with� incurs an exponential
blow-up, as explained before.

Note that the prices of (p, l1) and (p, T) are always 0 and 1, respectively. Since the
only leaf action applicable from (p, li) is load(T, p, li) and the price of (p, T) is always
lower than that of (p, li) for i > 1, (p, li) 6∈ F (sF) for i > 2 for any reachable decoupled
state sF . Hence, when using �F , there are at most 2 different decoupled states for
every center state, depending on whether the price of (p, l2) is 2 or∞. Therefore, the
decoupled state space with �F has size linear in n instead of exponential.

Theorem 33. �E is a decoupled dominance relation.

Proof. Whenever sF �E tF and a global plan for sF exists, we can construct an at least
as good global plan for tF . Consider any global plan for sF consisting of a center path
πC , and a goal leaf path πL for each leaf starting in sLI compliant with πC(sF) ◦ πC .

294 APPENDIX B. FULL PROOFS OF PART III

As sF �E tF implies that center(sF) = center(tF), πC is applicable to tF as well.
Let sL be a leaf state traversed by πL such that the prefix of πL up to sL is compliant
with πC(sF) and the suffix of πL starting in sL, πLs , is compliant with πC . Denote
πLs = 〈a1, . . . , an〉 and denote the leaf states it traverses by sL = sL0 , . . . , s

L
n = sLG.

Let sLi be the first state visited by πLs such that Eprices(tF)[sLi] = prices(tF)[sLi].
Such state exists by definition since Eprices(tF)[sLn] = prices(tF)[sLn]. Then, for all
j < i, Eprices(tF)[sLj] 6= prices(tF)[sLj], and thus by the definition of effective prices
we have that Eprices(tF)[sLj] ≥ Eprices(tF)[sLj+1] − cost(aj+1). Accumulating these
inequalities, we get (*) Eprices(tF)[sL0] ≥ Eprices(tF)[sLi]−∑i

j=1 cost(aj).
Consider now the path πLt from sLI to sLG constructed as the concatenation of: a

cheapest πC(tF)-compliant path to sLi with the postfix of πLs behind sLi . Then cost(πLt) =
prices(tF)[sLi]+

∑n
j=i+1 cost(aj). As Eprices(tF)[sLi] = prices(tF)[sLi], we get cost(πLt) =

Eprices(tF)[sLi] +
∑n

j=i+1 cost(aj). With (*), we get the desired property that:

cost(πLt)

≤ Eprices(tF)[sL] +
∑i

j=1 cost(aj) +
∑n

j=i+1 cost(aj)

= Eprices(tF)[sL] + cost(πLs)
≤ prices(sF)[sL] + cost(πLs)
= cost(πL)

Theorem 34. �E subsumes �F and is exponentially separated from it.

Proof. To prove that�E subsumes�F , we show that if Eprices(tF)[sL] ≤ prices(sF)[sL]
for all sL ∈ F (sF), then it also holds for all sL 6∈ F (sF).

Consider any sL 6∈ F (sF). Let RL ⊆ F (sF) be the set of leaf states in the frontier
of sF reachable from sL through a path that does not traverse any other state in F (sF).
Note that, since sLG ∈ F (sF), any path from sL to sLG necessarily passes through some
rL ∈ RL. Let rL = argmaxtL∈RLEprices(tF)[tL] − cost(sL, tL), where cost(sL, tL) is
the cost of the cheapest L-path from sL to tL.

First we show that Eprices(tF)[sL] ≤ Eprices(tF)[rL] − cost(sL, rL). By defini-
tion, Eprices(tF)[sL] ≤ max

sL
a−→tL

(Eprices(tF)[tL] − cost(a)). Let sL1 be any tL that
maximizes such expression. If sL1 ∈ RL then Eprices(tF)[sL] ≤ Eprices(tF)[sL1] −
cost(sL, sL1) ≤ Eprices(tF)[rL] − cost(sL, rL) and we are done. If sL1 6∈ RL then we
can compose the definition to obtain Eprices(tF)[sL] ≤ Eprices(tF)[sL1] − cost(a) ≤
max

sL1
a−→sL2

(Eprices(tF)[sL2] − cost(a)). By repeating the same argument we have that

for at least one leaf state uL ∈ RL. This is clear if there are no 0-cost actions because
Eprices(tF)[sLi] < Eprices(tF)[sLi+1] so the effective prices monotonically increase along
this chain and there can be no cycles.

If there are 0-cost actions, there may be a 0-cost cycle, so we must prove that even in
that case, there exists yet another state uL outside the cycle such that Eprices(tF)[sL] ≤

B.2. DOMINANCE PRUNING FOR FORK TOPOLOGIES 295

Eprices(tF)[uL]− cost(sL, uL). Consider the set of states, SLs for which there is a 0-cost
cycle such that SLs ∩RL = ∅ and all the states in SLs have the same effective price. Let c
be a constant such that Eprices(tF)[sLi] = c for all sLi ∈ SLs . Then, there exists tL 6∈ SLs
such that sLi

a−→ tL, and Eprices(tF)[sLi] ≤ Eprices(tF)[tL]− cost(a) for some sLi ∈ SLs .
Otherwise, Eprices(tF)[sLi] = c′ for all sLi ∈ SLi and some c′ < c would satisfy the
equation for which Eprices() is defined to be the minimum point-wise that satisfies it.

Finally, since sL 6∈ F (sF), prices(sF)[sL] ≥ prices(sF)[tL]−cost(a) for all sL a−→ tL.
Since all states in the path from sL to any rL ∈ RL do not belong to F (sF), we have
the inequality prices(sF)[sL] ≥ prices(sF)[rL] − cost(sL, rL). Combining the previous
inequalities we get:

Eprices(tF)[sL]
≤ Eprices(tF)[rL]− cost(sL, rL)
≤ prices(sF)[rL]− cost(sL, rL)
≤ prices(sF)[sL]

For the exponential separation, consider the planning task of our logistics example
with an additional teleport device that allows to teleport the package between any two
locations that are not the goal. Hence, we have a new center variable tel-activated
with domain {⊥,>}, initially set to ⊥ and two new actions activate-teleport that
sets tel-activated to >, and teleport-package(li, lj) for i, j 6= 2 with precondition
{(tel-activated,>), (p, li)} and effect {(p, lj)}. The cost of activate-teleport is n and
all other actions have cost 1.

In this example, decoupled search with�F expands an exponential number of states
with (tel-activated,⊥) since for all reached (p, li) with i > 2, (p, li) ∈ F (sF) as long
as any (p, li) is still not reached. When using �E , prices(IF)[{(p, T)}] = 1 in every
state, so Eprices(sF)[{(p, li)}] = 0. Therefore, the state space is linear in the number of
locations.

Lemma 14. Let �L be a leaf simulation and πC a center path. If sL �L tL and there
exists a path πLs from sL to sLG compliant with πC , then there exists a path πLt from tL to
sLG compliant with πC such that cost(πLt) ≤ cost(πLs).

Proof. Assume without loss of generality that πLs is a shortest optimal L-path compliant
with πC . Proof by induction on |πLs |. Base case, |πLs | = 0. Then, sL = sLG and tL = sLG
because sLG 6�L tL for any tL 6= sLG. Thus, πLs = πLt = 〈〉.

Inductive case. Let sL
aLs−→ sL2 be the first transition in πLs . Since sL �L tL, either (i)

sL2 �L tL or (ii) exists tL
aLt−→ tL2 such that aLt dominates aLs and sL2 �L tL2 . If (i) holds

then the claim follows by induction since it must exist πLt with cost(πLt) ≤ cost(πLs2)
where πLs2 is a shortest optimal πC-compliant plan from sL2 and necessarily cost(πLs2) ≤
cost(πLs) and πLs2 is shorter than πLs .

296 APPENDIX B. FULL PROOFS OF PART III

If (ii) holds, by induction we know that the claim holds for sL2 and tL2 , so there exists a
plan πLt2. Thus, cost(πLt) = cost(πLt2) + cost(aLt) ≤ cost(πLs2) + cost(aLt) ≤ cost(πLs2) +
cost(aLs) = cost(πLs). Moreover, since πLs is compliant with πC and pre(aLt)[C] ⊆
pre(aLs)[C], πLt is also compliant with πC .

Theorem 35. �S is a decoupled dominance relation.

Proof. Whenever sF �S tF and a global plan for sF exists, we can construct an at least
as good global plan for tF . Consider any global plan for sF consisting of a center path
πC , and a goal leaf path πL for each leaf starting in sLI compliant with πC(sF) ◦ πC .
As sF �S tF implies that center(sF) = center(tF), πC is applicable to tF as well.
Let sL be a leaf state traversed by πL such that the prefix of πL up to sL is compliant
with πC(sF) and the suffix of πL starting in sL, πLs , is compliant with πC . Denote
πLs = 〈a1, . . . , an〉 and denote the leaf states it traverses by sL = sL0 , . . . , s

L
n = sLG.

Since sF �S tF , minsL�LtL prices(tF)[tL] ≤ prices(sF)[sL]. Then, there exists tL

such that sL �L tL and prices(tF)[tL] ≤ prices(sF)[sL]. By Lemma 14, there exists
a πC-compliant leaf plan πLt from tL to sLG such that cost(πLt) ≤ cost(πLs). Consider
now the path πL2 from sLI to sLG constructed as the concatenation of: a cheapest πC(tF)-
compliant path to tL and πLt . By definition, πL2 is compliant with πC(tF) ◦ πC . Then,
cost(πL2) = prices(tF)[tL] + cost(πLt) ≤ prices(sF)[sL] + cost(πLs) = cost(πL).

Theorem 36. �S subsumes � and is exponentially separated from it.

Proof. The subsumption holds because �L is reflexive, so minsL�LtL prices(tF)[tL] ≤
prices(tF)[sL].

To show the exponential separation, we use again our running example. Leaf sim-
ulation captures that {(p, li)} �L {(p, T)} for all i 6= 2. As prices(IF)[{(p, T)}] = 1,
prices(sF)[{(p, li)}] = 1 for i > 2 in any decoupled state. Therefore, the size of the
decoupled state space when using �S is linear in the number of locations.

Theorem 37. �ES is a decoupled dominance relation.

Proof. Whenever sF �ES tF and a global plan for sF exists, we can construct an at
least as good global plan for tF . Consider any global plan for sF consisting of a center
path πC , and a goal leaf path πL for each leaf starting in sLI compliant with πC(sF)◦πC .
As sF �ES tF implies that center(sF) = center(tF), πC is applicable to tF as well.
Let sL be a leaf state traversed by πL such that the prefix of πL up to sL is compliant
with πC(sF) and the suffix of πL starting in sL, πLs , is compliant with πC . Denote
πLs = 〈a1, . . . , an〉 and denote the leaf states it traverses by sL = sL0 , . . . , s

L
n = sLG.

By the same arguments as in the proof of Theorem 33, there exists i such that
(a) ESprices(tF)[sL0] ≥ ESprices(tF)[sLi] −∑i

j=1 cost(aj), and (b) ESprices(tF)[sLi] =

minsLi �LtL prices(tF)[tL]. Thus, there exists tL such that prices(tF)[tL] ≤ prices(sF)[sL]+

B.2. DOMINANCE PRUNING FOR FORK TOPOLOGIES 297

c0

cA1

cB1

cA2

cB2

cA3

cB3

c4

l0

lA1

lB1

lA2
1

lB2
1

lA2

lB2

lA2
2

lB2
2

lA3

lB3

lA2
3

lB2
3

l4

cA1

cB1

cA1

cB1

cA2

cB2

cA3

cB3

cA2

cB2

cA2

cB2

cA3

cB3

cA3

cB3

c4

c4

Figure B.1: Illustrative example in which �ES is exponentially better than �S and �E
for n = 3. The center factor is depicted at the top, the leaf at the bottom.

∑i
j=1 cost(aj). Also, by Lemma 14, there exists a πC-compliant leaf path πLt , from tL

to sLG such that cost(πLt) ≤∑n
j=i+1 cost(aj).

We construct our desired path πL2 from sLI to sLG by a cheapest πC(tF)-compliant
path to tL, concatenated with πLt . In summary:

cost(πL2)
= prices(tF)[tL] + cost(πLt)
≤ prices(sF)[sLi] + cost(πLt)

≤ prices(sF)[sL] +
∑i

j=1 cost(aj) + cost(πLt)

≤ prices(sF)[sL] + cost(πLs)
= cost(πL)

Theorem 38. �ES subsumes �E and �S , and is exponentially separated from each of
them.

Proof. By definition, we have ESprices(sF)[sL] ≤ Eprices(sF)[sL] and furthermore
ESprices(sF)[sL] ≤ minsL�LtL prices(tF)[tL], so subsumption follows.

To prove the exponential separation, consider the following planning task, in which
we have a single center variable c (see top of Figure B.1) with domain {c0, cn+1} ∪
{cAi , cBi | i ∈ [1, . . . , n]}, arranged such that we can move from c0 to cX1 , from cXn to
cn+1, and from each cXi to each cYi+1 (X, Y ∈ {A,B}). The initial value is c0. We have

298 APPENDIX B. FULL PROOFS OF PART III

a single leaf variable l with domain {l0, ln+1} ∪ {lAi , lBi , lA2
i , lB2

i | i ∈ [1, . . . , n]} with
initial value l0 and goal value ln+1. The transitions of the leaf l are depicted in Figure B.1
(bottom). l has transitions from l0 to lX1 under center precondition cX1 , from lX2

n to ln+1

under center precondition cn+1, from each lXi to lX2
i under center precondition cXi , and

from each lX2
i to each lXi+1 and lYi+1 under center precondition cXi and cYi , respectively

(X, Y ∈ {A,B}, X 6= Y).
Here, each of the individual methods expands a number of states exponential in n:

• With �, at each step in the center path, one of the two paths, A or B is chosen.
Hence, the pricing function “remembers” which one of the two paths were taken
and there is an exponential number of combinations.

• �F and �E ignore the prices of lXi because they do not belong to the frontier.
However, they still remember whether lA2

i or lB2
i has been reached. �E helps

whenever ln is reached but those states have the largest g-value (equal to n + 1)
so cannot prune any other state.

• �S finds the following leaf-simulation relation:

�L={(lXi , lY 2
j), (lX2

i , lY 2
j) | i ≤ j,X, Y ∈ A,B}

∪ {(x, x), (x, ln) | x ∈ SL}

In summary, according to �L states of the form lA2
i , lB2

i are equivalent and they
simulate all previous states. However, nothing is found for states lAi and lBi .

Therefore, decoupled search with �S expands the same states than with �. The
main reason is that, even though it finds the equivalence between lA2

i and lB2
i ,

depending which path was used, either lAi or lBi will have a lower price.

For example, consider the states sF and tF reached from the initial decoupled
state by following the center transitions c0 → cA1 and c0 → cB1 , respectively. Then,
prices(sF)[lA1] = 1, prices(sF)[lA2

1] = 2, prices(tF)[lB1] = 1, and prices(tF)[lB2
1] =

2. The initial state has price 0 and all other leaf states∞. In this case, sF 6�S tF
(nor tF 6�S sF) because prices(sF)[lA1] = 1 < minlA1 �LtL prices(tF)[tL] = 2.

Finally, by using �ES , the decoupled state space is polynomial in n. Since lA2
i �L

lB2
i and lB2

i �L lA2
i , ESprices(tF)[lA2

i] = ESprices(tF)[lB2
i]. Hence, since the only

transitions from lAi and lBi go to lA2
i and lB2

i , ESprices(tF)[lAi] = ESprices(tF)[lBi] =
ESprices(tF)[lA2

i] − 1. Therefore, the number of different states according to �ES is
polynomial in n.

Theorem 39. �S is exponentially separated from�E , and therefore also from�F . �F ,
and therefore also �E , is exponentially separated from �S .

B.2. DOMINANCE PRUNING FOR FORK TOPOLOGIES 299

Proof. First, we prove that �F can be exponentially better than �S . Consider the fol-
lowing planning task, in which we have a single center variable c (see top of Figure B.2)
with domain {c1, . . . , cn} ∪ {cAi , cBi | i ∈ [1, . . . , n − 1]}, arranged such that we can
move from ci to cXi , and from cXi to ci+1 (X ∈ {A,B}). The initial value is c1.

We have a single leaf variable l with values {l0, . . . , ln} ∪ {lAi lBi , lA2
i , lB2

i | i ∈
[1, . . . , n − 1]} with initial value l0 and goal value ln. The transitions are depicted in
Figure B.2 (middle):

• From l0 to lX1 under center precondition cX1 for X ∈ {A,B}.

• From lX2
n−1 to ln under center precondition cXn for X ∈ {A,B}.

• From each lXi to lY 2
i under center precondition cXi for i ∈ [1, . . . , n − 1], and

X, Y ∈ {A,B}.

• From each lX2
i to lXi+1 under center precondition cXi+1 (for i ∈ [1, . . . , n − 1] and

X ∈ {A,B}).

In this example, the coarsest simulation relation consist only of sL �L sLG for all sL.
ai 6�L bi because the center preconditions of their transitions are different. Note that

lAi 6�L lA2
i because lAi

cAi−→ lB2
i+1 and lA2

i does not have any outgoing transition labeled
with cAi . lA2

i and lB2
i are always reached at the same time, either via lAi or lBi . The pricing

function remembers whether lAi or lBi was used, so there is an exponential number of
decoupled states with the same center state, even under �S pruning.

However, every time lAi or lBi are reached, the center precondition cAi or cBi must be
satisfied. Both lA2

i and lB2
i have always a price of prices(sF)[lA2

i] = prices(sF)[lB2
i] ≤

prices(sF)[lXi] + 1 for X ∈ {A,B}. Therefore, lAi , l
B
i 6∈ F (sF) for all sF and i. Since

prices(sF)[lA2
i] = prices(sF)[lB2

i], there is only a polynomial number of decoupled states
when using dominance pruning with �F .

Next, we show that decoupled search with �S can be exponentially better than de-
coupled search with �E . Consider a planning task with the same center variable as our
previous example. We have a single leaf variable l with values l0, . . . , ln, with initial
value l0 and goal value ln. The transitions of the leaf l are depicted in Figure B.2 (bot-
tom). l has transitions from l0 to l1 without any center precondition, from l0 to li under
center precondition cAi for i ∈ [2, n − 1] and from li to ln under center precondition cn
for i ∈ [1, n− 1].

In this example, decoupled search with � expands an exponential number of states
with the same center state because the pricing function remembers whether cAi was
traversed or not for each i ∈ [2, . . . , n − 1]. Both �F and �E cannot reduce the size
of the decoupled state space in this example, because ln is only reached under center
precondition cn, so li ∈ F (sF) for all 0 < i < n and center(sF) 6= {c = cn}.

300 APPENDIX B. FULL PROOFS OF PART III

c1

cA1

cB1

c2

cA2

cB2

c3

cA3

cB3

c4

l0

lA1

lB1

lA2
1

lB2
1

lA2

lB2

lA2
2

lB2
2

l3

cA1

cB1

cA1

cA1

cB1

cB1

cA2

cB2

cA2

cA2

cB2

cB2

cA3

cB3

l0

l1

l2

l3cA2

c3

c3

Figure B.2: Illustration of the example of the exponential separations used in the proof
of Theorem 39, for n = 3. The center factor is depicted in the top, the leaf factor
where �F is exponentially better than �S in the middle, and Leaf factor where �S is
exponentially better than �E in the bottom.

However, since all li for i ∈ [1, n − 1] have the same outgoing transitions, li �L
l1 for all i ∈ [0, n − 1]. As the transition from l0 to l1 has no center precondition,
prices(sF)[l1] = 1 for any sF . Therefore, minli�LtL prices(sF)[tL] = 1 for i ∈ [1, n−1].
Hence, the number of different decoupled states with �S is polynomial in n.

Bibliography

Aghighi, M., Jonsson, P., and Ståhlberg, S. (2015). Tractable cost-optimal planning over
restricted polytree causal graphs. In Bonet, B. and Koenig, S., editors, Proceedings
of the 29th AAAI Conference on Artificial Intelligence (AAAI’15), pages 3225–3231.
AAAI Press.

Alcázar, V. and Torralba, Á. (2015). A reminder about the importance of computing and
exploiting invariants in planning. In Brafman, R., Domshlak, C., Haslum, P., and Zil-
berstein, S., editors, Proceedings of the 25th International Conference on Automated
Planning and Scheduling (ICAPS’15), pages 2–6. AAAI Press.

Alkhazraji, Y., Wehrle, M., Mattmüller, R., and Helmert, M. (2012). A stubborn set
algorithm for optimal planning. In Raedt, L. D., editor, Proceedings of the 20th Eu-
ropean Conference on Artificial Intelligence (ECAI’12), pages 891–892, Montpellier,
France. IOS Press.

Alrahman, Y. A., Andric, M., Beggiato, A., and Lluch-Lafuente, A. (2014). Can we
efficiently check concurrent programs under relaxed memory models in maude? In
Revised Selected Papers of the 10th International Workshop on Rewriting Logic and
Its Applications (WRLA’14), pages 21–41.

Amir, E. and Engelhardt, B. (2003). Factored planning. In Gottlob, G., editor, Proceed-
ings of the 18th International Joint Conference on Artificial Intelligence (IJCAI’03),
pages 929–935, Acapulco, Mexico. Morgan Kaufmann.

Babiak, T., Blahoudek, F., Duret-Lutz, A., Klein, J., Kretínský, J., Müller, D., Parker,
D., and Strejcek, J. (2015). The hanoi omega-automata format. volume 9206 of
Lecture Notes in Computer Science, pages 479–486. Springer.

Bacchus, F. and Yang, Q. (1994). Downward refinement and the efficiency of hierarchi-
cal problem solving. Artificial Intelligence, 71:43–100.

Bäckström, C. and Nebel, B. (1995). Complexity results for SAS+ planning. Computa-
tional Intelligence, 11(4):625–655.

301

302 BIBLIOGRAPHY

Bahar, R. I., Frohm, E. A., Gaona, C. M., Hachtel, G. D., Macii, E., Pardo, A., and
Somenzi, F. (1997). Algebraic decision diagrams and their applications. Formal
Methods in System Design, 10(2/3):171–206.

Baldan, P., Bruni, A., Corradini, A., König, B., Rodríguez, C., and Schwoon, S. (2012).
Efficient unfolding of contextual Petri nets. Theoretical Computer Science, 449:2–22.

Blum, A. L. and Furst, M. L. (1997). Fast planning through planning graph analysis.
Artificial Intelligence, 90(1–2):279–298.

Bonet, B. and Geffner, H. (2001). Planning as heuristic search. Artificial Intelligence,
129(1–2):5–33.

Bonet, B., Haslum, P., Hickmott, S. L., and Thiébaux, S. (2008). Directed unfolding of
petri nets. Transactions on Petri Nets and Other Models of Concurrency, 1:172–198.

Bonet, B., Haslum, P., Khomenko, V., Thiébaux, S., and Vogler, W. (2014). Recent
advances in unfolding technique. Theoretical Computer Science, 551:84–101.

Brafman, R. and Domshlak, C. (2003). Structure and complexity in planning with unary
operators. Journal of Artificial Intelligence Research, 18:315–349.

Brafman, R. and Domshlak, C. (2006). Factored planning: How, when, and when not.
In Gil, Y. and Mooney, R. J., editors, Proceedings of the 21st National Conference
of the American Association for Artificial Intelligence (AAAI’06), pages 809–814,
Boston, Massachusetts, USA. AAAI Press.

Brafman, R. and Domshlak, C. (2013). On the complexity of planning for agent teams
and its implications for single agent planning. Artificial Intelligence, 198:52–71.

Brafman, R. I. and Domshlak, C. (2008). From one to many: Planning for loosely
coupled multi-agent systems. In Rintanen, J., Nebel, B., Beck, J. C., and Hansen,
E., editors, Proceedings of the 18th International Conference on Automated Planning
and Scheduling (ICAPS’08), pages 28–35. AAAI Press.

Bryant, R. E. (1986). Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, 35(8):677–691.

Bylander, T. (1994). The computational complexity of propositional STRIPS planning.
Artificial Intelligence, 69(1–2):165–204.

Ciardo, G. and Siminiceanu, R. (2002). Using edge-valued decision diagrams for sym-
bolic generation of shortest paths. In Formal Methods in Computer-Aided Design, 4th
International Conference, FMCAD 2002, Portland, OR, USA, November 6-8, 2002,
Proceedings, pages 256–273.

303

Cimatti, A., Clarke, E. M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., and Tacchella, A. (2002). NuSMV 2: An opensource tool for sym-
bolic model checking. In Brinksma, E. and Larsen, K. G., editors, Computer Aided
Verification, 14th International Conference, CAV 2002, Copenhagen, Denmark, July
27-31, 2002, Proceedings, volume 2404 of Lecture Notes in Computer Science, pages
359–364. Springer.

Cimatti, A., Pistore, M., Roveri, M., and Traverso, P. (2003). Weak, strong, and strong
cyclic planning via symbolic model checking. Artificial Intelligence, 147(1–2):35–
84.

Clarke, E., Grumberg, O., Jha, S., Lu, Y., and Veith, H. (2003). Counterexample-guided
abstraction refinement for symbolic model checking. Journal of the Association for
Computing Machinery, 50(5):752–794.

Clarke, E., Grumberg, O., and Peled, D. (2001). Model Checking. MIT Press.

Clarke, E. M., Emerson, E. A., and Sistla, A. P. (1986). Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Trans. Program.
Lang. Syst., 8(2):244–263.

Clarke, E. M., Filkorn, T., and Jha, S. (1993). Exploiting symmetry in temporal logic
model checking. In Courcoubetis, C., editor, Computer Aided Verification, 5th Inter-
national Conference, CAV ’93, Elounda, Greece, June 28 - July 1, 1993, Proceedings,
volume 697 of Lecture Notes in Computer Science, pages 450–462. Springer.

Clarke, E. M., Long, D. E., and McMillan, K. L. (1989). Compositional model check-
ing. In Proceedings of the 4th Annual Symposium on Logic in Computer Science
(LICS ’89), pages 353–362.

Cobleigh, J. M., Giannakopoulou, D., and Pasareanu, C. (2003). Learning assumptions
for compositional verification. In Garavel, H. and Hatcliff, J., editors, Proceedings of
the 9th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’03), pages 331–346. Springer-Verlag.

Courcoubetis, C., Vardi, M. Y., Wolper, P., and Yannakakis, M. (1992). Memory-
efficient algorithms for the verification of temporal properties. Formal Methods in
System Design, 1(2/3):275–288.

Couvreur, J. (1999). On-the-fly verification of linear temporal logic. In Wing, J. M.,
Woodcock, J., and Davies, J., editors, FM’99 - Formal Methods, World Congress
on Formal Methods in the Development of Computing Systems, Toulouse, France,
September 20-24, 1999, Proceedings, Volume I, volume 1708 of Lecture Notes in
Computer Science, pages 253–271. Springer.

304 BIBLIOGRAPHY

Crosby, M., Rovatsos, M., and Petrick, R. P. A. (2013). Automated agent decomposition
for classical planning. In Borrajo, D., Fratini, S., Kambhampati, S., and Oddi, A.,
editors, Proceedings of the 23rd International Conference on Automated Planning
and Scheduling (ICAPS’13), Rome, Italy. AAAI Press.

Domshlak, C. and Dinitz, Y. (2001). Multi-agent offline coordination: Structure and
complexity. In Cesta, A. and Borrajo, D., editors, Proceedings of the 6th European
Conference on Planning (ECP’01), pages 34–43. Springer-Verlag.

Domshlak, C., Hoffmann, J., and Katz, M. (2015a). Red-black planning: A new sys-
tematic approach to partial delete relaxation. Artificial Intelligence, 221:73–114.

Domshlak, C., Katz, M., and Shleyfman, A. (2012). Enhanced symmetry breaking in
cost-optimal planning as forward search. In Bonet, B., McCluskey, L., Silva, J. R.,
and Williams, B., editors, Proceedings of the 22nd International Conference on Au-
tomated Planning and Scheduling (ICAPS’12). AAAI Press.

Domshlak, C., Katz, M., and Shleyfman, A. (2013). Symmetry breaking: Satisficing
planning and landmark heuristics. In Borrajo, D., Fratini, S., Kambhampati, S., and
Oddi, A., editors, Proceedings of the 23rd International Conference on Automated
Planning and Scheduling (ICAPS’13), Rome, Italy. AAAI Press.

Domshlak, C., Katz, M., and Shleyfman, A. (2015b). Symmetry breaking in deter-
ministic planning as forward search: Orbit space search algorithm. Technical Report
IS/IE-2015-02.

Doran, J. E. and Michie, D. (1966). Experiments with the graph traverser program.
Proceedings of the Royal Society of London. Series A. Mathematical and Physical
Sciences, 294(1437):235–259.

Dräger, K., Finkbeiner, B., and Podelski, A. (2006). Directed model checking with
distance-preserving abstractions. In Valmari, A., editor, Proceedings of the 13th In-
ternational SPIN Workshop (SPIN 2006), volume 3925 of Lecture Notes in Computer
Science, pages 19–34. Springer-Verlag.

Edelkamp, S. (2003a). Promela planning. In Ball, T. and Rajamani, S., editors, Pro-
ceedings of the 10th International SPIN Workshop on Model Checking of Software
(SPIN-03), pages 197–212, Portland, OR. Springer-Verlag.

Edelkamp, S. (2003b). Taming numbers and durations in the model checking integrated
planning system. Journal of Artificial Intelligence Research, 20:195–238.

Edelkamp, S. and Helmert, M. (1999). Exhibiting knowledge in planning problems to
minimize state encoding length. In Biundo, S. and Fox, M., editors, Proceedings

305

of the 5th European Conference on Planning (ECP’99), pages 135–147. Springer-
Verlag.

Edelkamp, S. and Kissmann, P. (2008). Limits and possibilities of bdds in state space
search. In Fox, D. and Gomes, C., editors, Proceedings of the 23rd National Confer-
ence of the American Association for Artificial Intelligence (AAAI’08), pages 1452–
1453, Chicago, Illinois, USA. AAAI Press.

Edelkamp, S. and Kissmann, P. (2011). On the complexity of BDDs for state space
search: A case study in connect four. In Burgard, W. and Roth, D., editors, Pro-
ceedings of the 25th National Conference of the American Association for Artificial
Intelligence (AAAI’11), San Francisco, CA, USA. AAAI Press.

Edelkamp, S., Leue, S., and Lluch-Lafuente, A. (2004a). Partial-order reduction and
trail improvement in directed model checking. International Journal on Software
Tools for Technology Transfer, 6(4):277–301.

Edelkamp, S., Lluch-Lafuente, A., and Leue, S. (2001). Directed explicit model check-
ing with hsf-spin. In Vardi, M. Y., Dwyer, M. B., and Chechik, M., editors, Pro-
ceedings of the 8th International SPIN Workshop on Model Checking of Software
(SPIN-01), pages 57–79, Toronto, Canada. Springer-Verlag.

Edelkamp, S., Lluch-Lafuente, A., and Leue, S. (2004b). Directed explicit-state model
checking in the validation of communication protocols. International Journal on
Software Tools for Technology Transfer, 5(2-3):247–267.

Emerson, E. A. and Sistla, A. P. (1993). Symmetry and model checking. In Courcou-
betis, C., editor, Computer Aided Verification, 5th International Conference, CAV ’93,
Elounda, Greece, June 28 - July 1, 1993, Proceedings, volume 697 of Lecture Notes
in Computer Science, pages 463–478. Springer.

Emerson, E. A. and Sistla, A. P. (1996). Symmetry and model-checking. Formal Meth-
ods in System Design, 9(1/2):105–131.

Ernst, G. W. and Newell, A. (1969). GPS: A Case Study in Generality and Problem-
Solving. Academic Press, New York, NY.

Esparza, J. and Heljanko, K. (2000). A new unfolding approach to LTL model checking.
volume 1853 of Lecture Notes in Computer Science, pages 475–486. Springer.

Esparza, J. and Heljanko, K. (2001). Implementing LTL model checking with net un-
foldings. In Vardi, M. Y., Dwyer, M. B., and Chechik, M., editors, Proceedings of the
8th International SPIN Workshop on Model Checking of Software (SPIN-01), pages
37–56, Toronto, Canada. Springer-Verlag.

306 BIBLIOGRAPHY

Esparza, J., Römer, S., and Vogler, W. (2002). An improvement of mcmillan’s unfolding
algorithm. Formal Methods in System Design, 20(3):285–310.

Fabre, E., Jezequel, L., Haslum, P., and Thiébaux, S. (2010). Cost-optimal factored
planning: Promises and pitfalls. In Brafman, R. I., Geffner, H., Hoffmann, J., and
Kautz, H. A., editors, Proceedings of the 20th International Conference on Automated
Planning and Scheduling (ICAPS’10), pages 65–72. AAAI Press.

Fickert, M., Gnad, D., and Hoffmann, J. (2018a). Unchaining the power of partial delete
relaxation, part II: finding plans with red-black state space search. In Lang, J., edi-
tor, Proceedings of the 27th International Joint Conference on Artificial Intelligence
(IJCAI’18), pages 4750–4756.

Fickert, M., Gnad, D., Speicher, P., and Hoffmann, J. (2018b). Saarplan: Combining
Saarland’s greatest planning techniques. In IPC 2018 planner abstracts.

Fikes, R. E. and Nilsson, N. (1971). STRIPS: A new approach to the application of
theorem proving to problem solving. Artificial Intelligence, 2:189–208.

Fišer, D., Gnad, D., Katz, M., and Hoffmann, J. (2021). Custom-design of FDR en-
codings: The case of red-black planning. In Zhou, Z.-H., editor, Proceedings of
the 30th International Joint Conference on Artificial Intelligence (IJCAI’21), pages
4054–4061.

Fortune, S., Hopcroft, J., and Wyllie, J. (1980). The directed subgraph homeomorphism
problem. Theoretical Computer Science, 10(2):111 – 121.

Fox, M. and Long, D. (1999). The detection and exploitation of symmetry in planning
problems. In Pollack, M., editor, Proceedings of the 16th International Joint Con-
ference on Artificial Intelligence (IJCAI’99), pages 956–961, Stockholm, Sweden.
Morgan Kaufmann.

Francès, G., Lipovetzky, N., Geffner, H., and Ramírez, M. (2018). Best-first width
search in the IPC 2018: Complete, simulated, and polynomial variants. In IPC 2018
planner abstracts.

Franco, S., Lelis, L. H., and Barley, M. (2018). The complementary2 planner in the IPC
2018. In IPC 2018 planner abstracts.

Franco, S., Torralba, A., Lelis, L. H., and Barley, M. (2017). On creating comple-
mentary pattern databases. In Sierra, C., editor, Proceedings of the 26th Inter-
national Joint Conference on Artificial Intelligence (IJCAI’17), pages 4302–4309.
AAAI Press/IJCAI.

307

Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability—A Guide to the
Theory of NP-Completeness. Freeman, San Francisco, CA.

Geldenhuys, J. and Valmari, A. (2004). Tarjan’s algorithm makes on-the-fly LTL ver-
ification more efficient. volume 2988 of Lecture Notes in Computer Science, pages
205–219. Springer.

Gentilini, R., Piazza, C., and Policriti, A. (2003). From bisimulation to simulation:
Coarsest partition problems. Journal of Automated Reasoning, 31(1):73–103.

Gerevini, A., Saetti, A., and Serina, I. (2003). Planning through stochastic local search
and temporal action graphs. Journal of Artificial Intelligence Research, 20:239–290.

Ghallab, M., Nau, D., and Traverso, P. (2004). Automated Planning: Theory and Prac-
tice. Morgan Kaufmann.

Giménez, O. and Jonsson, A. (2008). The complexity of planning problems with simple
causal graphs. Journal of Artificial Intelligence Research, 31:319–351.

Giménez, O. and Jonsson, A. (2009). Planning over chain causal graphs for vari-
ables with domains of size 5 is NP-hard. Journal of Artificial Intelligence Research,
34:675–706.

Giménez, O. and Jonsson, A. (2012). The influence of k-dependence on the complexity
of planning. Artificial Intelligence, 177-179:25–45.

Gnad, D. (2021a). Code and Evaluation Results of the Work "Star-Topology Decoupled
State-Space Search for AI Planning and Model Checking". https://zenodo.
org/record/5230126.

Gnad, D. (2021b). Revisiting dominance pruning in decoupled search. In Leyton-
Brown, K. and Mausam, editors, Proceedings of the 35th AAAI Conference on Artifi-
cial Intelligence (AAAI’21), pages 11809–11817. AAAI Press.

Gnad, D., Dubbert, P., Lluch-Lafuente, A., and Hoffmann, J. (2018a). Star-topology
decoupling in SPIN. In del Mar Gallardo, M. and Merino, P., editors, Proceedings of
the 25th International Symposium on Model Checking of Software (SPIN’18), Lecture
Notes in Computer Science. Springer.

Gnad, D., Dubbert, P., Lluch-Lafuente, A., and Hoffmann, J. (2021a). Code and
Benchmark Models of the SPIN 2018 paper “Star-Topology Decoupling in SPIN”.
https://zenodo.org/record/5229954.

https://zenodo.org/record/5230126
https://zenodo.org/record/5230126
https://zenodo.org/record/5229954

308 BIBLIOGRAPHY

Gnad, D., Eisenhut, J., Lluch Lafuente, A., and Hoffmann, J. (2021b). Code and Bench-
mark Models of the CAV’21 paper “Model Checking ω-Regular Properties with De-
coupled Search”. https://zenodo.org/record/4501646.

Gnad, D., Eisenhut, J., Lluch-Lafuente, A., and Hoffmann, J. (2021c). Model check-
ing ω-regular properties with decoupled search. In Silva, A. and Leino, K. R. M.,
editors, Computer Aided Verification - 33rd International Conference, CAV 2021,
Virtual Event, July 20-23, 2021, Proceedings, Part II, volume 12760 of Lecture Notes
in Computer Science, pages 411–434. Springer.

Gnad, D. and Hoffmann, J. (2015a). Beating LM-cut with hmax (sometimes): Fork-
decoupled state space search. In Brafman, R., Domshlak, C., Haslum, P., and Zil-
berstein, S., editors, Proceedings of the 25th International Conference on Automated
Planning and Scheduling (ICAPS’15), pages 88–96. AAAI Press.

Gnad, D. and Hoffmann, J. (2015b). Red-black planning: A new tractability analysis
and heuristic function. In Lelis, L. and Stern, R., editors, Proceedings of the 8th
Annual Symposium on Combinatorial Search (SOCS’15). AAAI Press.

Gnad, D. and Hoffmann, J. (2018). Star-topology decoupled state space search. Artifi-
cial Intelligence, 257:24 – 60.

Gnad, D. and Hoffmann, J. (2019). On the relation between star-topology decoupling
and petri net unfolding. In Proceedings of the 29th International Conference on
Automated Planning and Scheduling (ICAPS’19), pages 172–180. AAAI Press.

Gnad, D., Hoffmann, J., and Domshlak, C. (2015). From fork decoupling to star-
topology decoupling. In Lelis, L. and Stern, R., editors, Proceedings of the 8th Annual
Symposium on Combinatorial Search (SOCS’15), pages 53–61. AAAI Press.

Gnad, D., Hoffmann, J., and Wehrle, M. (2019a). Strong stubborn set pruning for star-
topology decoupled state space search. Journal of Artificial Intelligence Research,
65:343–392.

Gnad, D., Poser, V., and Hoffmann, J. (2017a). Beyond forks: Finding and ranking
star factorings for decoupled search. In Sierra, C., editor, Proceedings of the 26th In-
ternational Joint Conference on Artificial Intelligence (IJCAI’17), pages 4310–4316.
AAAI Press/IJCAI.

Gnad, D., Shleyfman, A., and Hoffmann, J. (2018b). DecStar - star-topology decoupled
search at its best. In IPC 2018 planner abstracts.

Gnad, D., Steinmetz, M., and Hoffmann, J. (2016a). Django: Unchaining the power of
red-black planning. In UIPC 2016 planner abstracts, pages 19–23.

https://zenodo.org/record/4501646

309

Gnad, D., Steinmetz, M., Jany, M., Hoffmann, J., Serina, I., and Gerevini, A. (2016b).
Partial delete relaxation, unchained: On intractable red-black planning and its appli-
cations. In Baier, J. and Botea, A., editors, Proceedings of the 9th Annual Symposium
on Combinatorial Search (SOCS’16). AAAI Press.

Gnad, D., Torralba, Á., Domínguez, M., Areces, C., and Bustos, F. (2019b). IPA
LAMA: Planner abstract. In Sparkle Planning Challenge 2019.

Gnad, D., Torralba, Á., Domínguez, M., Areces, C., and Bustos, F. (2019c). Learn-
ing how to ground a plan – partial grounding in classical planning. In Hentenryck,
P. V. and Zhou, Z.-H., editors, Proceedings of the 33rd AAAI Conference on Artificial
Intelligence (AAAI’19), pages 7602–7609. AAAI Press.

Gnad, D., Torralba, Á., and Hoffmann, J. (2017b). Symbolic leaf representation in
decoupled search. In Fukunaga, A. and Kishimoto, A., editors, Proceedings of the
10th Annual Symposium on Combinatorial Search (SOCS’17). AAAI Press.

Gnad, D., Torralba, Á., Hoffmann, J., and Wehrle, M. (2016c). Decoupled search for
proving unsolvability. In UIPC 2016 planner abstracts, pages 16–18.

Gnad, D., Torralba, Á., Shleyfman, A., and Hoffmann, J. (2017c). Symmetry breaking
in star-topology decoupled search. In Proceedings of the 27th International Con-
ference on Automated Planning and Scheduling (ICAPS’17), pages 125–134. AAAI
Press.

Gnad, D., Wehrle, M., and Hoffmann, J. (2016d). Decoupled strong stubborn sets. In
Kambhampati, S., editor, Proceedings of the 25th International Joint Conference on
Artificial Intelligence (IJCAI’16), pages 3110–3116. AAAI Press/IJCAI.

Godefroid, P. (1996). Partial-Order Methods for the Verification of Concurrent Systems
– An Approach to the State-Explosion Problem, volume 1032 of Lecture Notes in
Computer Science. Springer.

Godefroid, P. and Wolper, P. (1991). Using partial orders for the efficient verification
of deadlock freedom and safety properties. In Proceedings of the 3rd International
Workshop on Computer Aided Verification (CAV’91), pages 332–342.

Groote, J. F. and Sellink, M. P. A. (1995). Confluence for process verification. In Lee,
I. and Smolka, S. A., editors, CONCUR ’95: Concurrency Theory, 6th International
Conference, Philadelphia, PA, USA, August 21-24, 1995, Proceedings, volume 962
of Lecture Notes in Computer Science, pages 204–218. Springer.

Groote, J. F. and van de Pol, J. (2000). State space reduction using partial tau-
confluence. In Nielsen, M. and Rovan, B., editors, Mathematical Foundations of

310 BIBLIOGRAPHY

Computer Science 2000, 25th International Symposium, MFCS 2000, Bratislava, Slo-
vakia, August 28 - September 1, 2000, Proceedings, volume 1893 of Lecture Notes in
Computer Science, pages 383–393. Springer.

Hall, D., Cohen, A., Burkett, D., and Klein, D. (2013). Faster optimal planning with
partial-order pruning. In Borrajo, D., Fratini, S., Kambhampati, S., and Oddi, A.,
editors, Proceedings of the 23rd International Conference on Automated Planning
and Scheduling (ICAPS’13), Rome, Italy. AAAI Press.

Hansen, E. A., Zhou, R., and Feng, Z. (2002). Symbolic heuristic search using deci-
sion diagrams. In Koenig, S. and Holte, R. C., editors, Abstraction, Reformulation
and Approximation, 5th International Symposium, SARA 2002, Kananaskis, Alberta,
Canada, August 2-4, 2002, Proceedings, volume 2371 of Lecture Notes in Computer
Science, pages 83–98. Springer.

Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions on Systems Science and
Cybernetics, 4(2):100–107.

Haslum, P. (2007). Reducing accidental complexity in planning problems. In Veloso,
M., editor, Proceedings of the 20th International Joint Conference on Artificial Intel-
ligence (IJCAI’07), pages 1898–1903, Hyderabad, India. Morgan Kaufmann.

Haslum, P., Botea, A., Helmert, M., Bonet, B., and Koenig, S. (2007). Domain-
independent construction of pattern database heuristics for cost-optimal planning. In
Howe, A. and Holte, R. C., editors, Proceedings of the 22nd National Conference
of the American Association for Artificial Intelligence (AAAI’07), pages 1007–1012,
Vancouver, BC, Canada. AAAI Press.

Haslum, P. and Geffner, H. (2000). Admissible heuristics for optimal planning. In
Chien, S., Kambhampati, R., and Knoblock, C., editors, Proceedings of the 5th In-
ternational Conference on Artificial Intelligence Planning Systems (AIPS’00), pages
140–149, Breckenridge, CO. AAAI Press, Menlo Park.

Haslum, P., Lipovetzky, N., Magazzeni, D., and Muise, C. (2019). An Introduction to the
Planning Domain Definition Language. Synthesis Lectures on Artificial Intelligence
and Machine Learning. Morgan & Claypool Publishers.

Helmert, M. (2004). A planning heuristic based on causal graph analysis. In Koenig, S.,
Zilberstein, S., and Koehler, J., editors, Proceedings of the 14th International Confer-
ence on Automated Planning and Scheduling (ICAPS’04), pages 161–170, Whistler,
Canada. AAAI Press.

Helmert, M. (2006a). Fast (diagonally) downward. In IPC 2006 planner abstracts.

311

Helmert, M. (2006b). The Fast Downward planning system. Journal of Artificial Intel-
ligence Research, 26:191–246.

Helmert, M. (2009). Concise finite-domain representations for PDDL planning tasks.
Artificial Intelligence, 173:503–535.

Helmert, M. and Domshlak, C. (2009). Landmarks, critical paths and abstractions:
What’s the difference anyway? In Gerevini, A., Howe, A., Cesta, A., and Refanidis,
I., editors, Proceedings of the 19th International Conference on Automated Planning
and Scheduling (ICAPS’09), pages 162–169. AAAI Press.

Helmert, M., Haslum, P., Hoffmann, J., and Nissim, R. (2014). Merge & shrink abstrac-
tion: A method for generating lower bounds in factored state spaces. Journal of the
Association for Computing Machinery, 61(3):16:1–16:63.

Henzinger, M. R., Henzinger, T. A., and Kopke, P. W. (1995). Computing simulations
on finite and infinite graphs. In Proceedings of the 36th Annual Symposium on Foun-
dations of Computer Science (FOCS’95), pages 453–462. IEEE Computer Society.

Hickmott, S. L., Rintanen, J., Thiébaux, S., and White, L. B. (2007). Planning via
petri net unfolding. In Veloso, M., editor, Proceedings of the 20th International
Joint Conference on Artificial Intelligence (IJCAI’07), pages 1904–1911, Hyderabad,
India. Morgan Kaufmann.

Hoffmann, J., Kissmann, P., and Torralba, Á. (2014). “Distance”? Who Cares? Tai-
loring merge-and-shrink heuristics to detect unsolvability. In Schaub, T., editor, Pro-
ceedings of the 21st European Conference on Artificial Intelligence (ECAI’14), pages
441–446, Prague, Czech Republic. IOS Press.

Hoffmann, J. and Kupferschmid, S. (2005). A covering problem for hypercubes. In
Kaelbling, L. P., editor, Proceedings of the 19th International Joint Conference on
Artificial Intelligence (IJCAI’05), pages 1523–1524, Edinburgh, UK. Morgan Kauf-
mann.

Hoffmann, J. and Nebel, B. (2001). The FF planning system: Fast plan generation
through heuristic search. Journal of Artificial Intelligence Research, 14:253–302.

Hoffmann, J., Porteous, J., and Sebastia, L. (2004). Ordered landmarks in planning.
Journal of Artificial Intelligence Research, 22:215–278.

Holzmann, G. (2004). The Spin Model Checker - Primer and Reference Manual.
Addison-Wesley.

312 BIBLIOGRAPHY

Holzmann, G. J. and Peled, D. A. (1994). An improvement in formal verification. In
Hogrefe, D. and Leue, S., editors, Formal Description Techniques VII, Proceedings
of the 7th IFIP WG6.1 International Conference on Formal Description Techniques,
Berne, Switzerland, 1994, volume 6 of IFIP Conference Proceedings, pages 197–211.
Chapman & Hall.

Holzmann, G. J., Peled, D. A., and Yannakakis, M. (1996). On nested depth first search.
In Grégoire, J., Holzmann, G. J., and Peled, D. A., editors, The Spin Verification
System, Proceedings of a DIMACS Workshop, New Brunswick, New Jersey, USA,
August, 1996, volume 32 of DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, pages 23–31. DIMACS/AMS.

Ip, C. N. and Dill, D. L. (1996). Better verification through symmetry. Formal Methods
in System Design, 9(1/2):41–75.

Jensen, R. M., Veloso, M. M., and Bryant, R. E. (2008). State-set branching: Leveraging
BDDs for heuristic search. Artificial Intelligence, 172(2-3):103–139.

Jonsson, B. (2008). State-space exploration for concurrent algorithms under weak mem-
ory orderings. SIGARCH Computer Architecture News, 36(5):65–71.

Jonsson, P. and Bäckström, C. (1995). Incremental planning. In European Workshop on
Planning.

Jøsang, A. (1995). Security protocol verication using spin. In The First SPIN Workshop,
Montreal, Quebec, Canada.

Junttila, T. and Kaski, P. (2007). Engineering an efficient canonical labeling tool for
large and sparse graphs. In Proceedings of the Ninth Workshop on Algorithm Engi-
neering and Experiments (ALENEX 2007), pages 135–149. SIAM.

Karpas, E. and Domshlak, C. (2009). Cost-optimal planning with landmarks. In
Boutilier, C., editor, Proceedings of the 21st International Joint Conference on Artifi-
cial Intelligence (IJCAI’09), pages 1728–1733, Pasadena, California, USA. Morgan
Kaufmann.

Katz, M. and Domshlak, C. (2008). New islands of tractability of cost-optimal planning.
Journal of Artificial Intelligence Research, 32:203–288.

Katz, M. and Hoffmann, J. (2014). Mercury planner: Pushing the limits of partial delete
relaxation. In IPC 2014 planner abstracts, pages 43–47.

Katz, M. and Keyder, E. (2012). Structural patterns beyond forks: Extending the com-
plexity boundaries of classical planning. In Hoffmann, J. and Selman, B., editors,

313

Proceedings of the 26th AAAI Conference on Artificial Intelligence (AAAI’12), pages
1779–1785, Toronto, ON, Canada. AAAI Press.

Katz, M., Lipovetzky, N., Moshkovich, D., and Tuisov, A. (2018). MERWIN planner:
Mercury enchanced with novelty heuristic. In IPC 2018 planner abstracts, pages
53–56.

Kelareva, E., Buffet, O., Huang, J., and Thiébaux, S. (2007). Factored planning using
decomposition trees. In Veloso, M., editor, Proceedings of the 20th International
Joint Conference on Artificial Intelligence (IJCAI’07), pages 1942–1947, Hyderabad,
India. Morgan Kaufmann.

Kissmann, P. and Edelkamp, S. (2011). Improving cost-optimal domain-independent
symbolic planning. In Burgard, W. and Roth, D., editors, Proceedings of the 25th Na-
tional Conference of the American Association for Artificial Intelligence (AAAI’11),
pages 992–997, San Francisco, CA, USA. AAAI Press.

Knoblock, C. (1994). Automatically generating abstractions for planning. Artificial
Intelligence, 68(2):243–302.

Kronegger, M., Ordyniak, S., and Pfandler, A. (2014). Backdoors to planning. In Brod-
ley, C. E. and Stone, P., editors, Proceedings of the 28th AAAI Conference on Artificial
Intelligence (AAAI’14), pages 2300–2307, Austin, Texas, USA. AAAI Press.

Kronegger, M., Ordyniak, S., and Pfandler, A. (2015). Variable-deletion backdoors
to planning. In Bonet, B. and Koenig, S., editors, Proceedings of the 29th AAAI
Conference on Artificial Intelligence (AAAI’15), pages 3305–3312. AAAI Press.

Kupferman, O., Vardi, M. Y., and Wolper, P. (2000). An automata-theoretic approach
to branching-time model checking. J. ACM, 47(2):312–360.

Kupferschmid, S., Hoffmann, J., Dierks, H., and Behrmann, G. (2006). Adapting an AI
planning heuristic for directed model checking. In Valmari, A., editor, Proceedings
of the 13th International SPIN Workshop (SPIN 2006), volume 3925 of Lecture Notes
in Computer Science, pages 35–52. Springer-Verlag.

Kupferschmid, S., Hoffmann, J., Dräger, K., Finkbeiner, B., Dierks, H., Podelski, A.,
and Behrmann, G. (2007). Uppaal/DMC – abstraction-based heuristics for directed
model checking. In Grumberg, O. and Huth, M., editors, Proceedings of the 13th
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’07). Springer-Verlag.

Kupferschmid, S., Hoffmann, J., and Larsen, K. G. (2008). Fast directed model check-
ing via Russian doll abstraction. In Ramakrishnan, C. R. and Rehof, J., editors,

314 BIBLIOGRAPHY

Proceedings of the 14th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’08), pages 203–217. Springer-Verlag.

Kwiatkowska, M. Z., Norman, G., and Parker, D. (2011). Prism 4.0: Verification
of probabilistic real-time systems. In Gopalakrishnan, G. and Qadeer, S., editors,
Proceedings of the 23rd International on Conference Computer Aided Verification
(CAV’11), volume 6806 of Lecture Notes in Computer Science, pages 585–591.
Springer.

Laarman, A., Olesen, M. C., Dalsgaard, A. E., Larsen, K. G., and van de Pol, J. (2013).
Multi-core emptiness checking of timed büchi automata using inclusion abstraction.
In Sharygina, N. and Veith, H., editors, Computer Aided Verification - 25th Interna-
tional Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceed-
ings, volume 8044 of Lecture Notes in Computer Science, pages 968–983. Springer.

Lansky, A. L. and Getoor, L. (1995). Scope and abstraction: Two criteria for localized
planning. In Mellish, S., editor, Proceedings of the 14th International Joint Con-
ference on Artificial Intelligence (IJCAI’95), pages 1612–1619, Montreal, Canada.
Morgan Kaufmann.

Lichtenstein, O. and Pnueli, A. (1985). Checking that finite state concurrent programs
satisfy their linear specification. pages 97–107. ACM Press.

Linden, A. and Wolper, P. (2013). A verification-based approach to memory fence inser-
tion in PSO memory systems. In Piterman, N. and Smolka, S. A., editors, Proceedings
of the 19th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’13), pages 339–353. Springer-Verlag.

Lipovetzky, N. and Geffner, H. (2012). Width and serialization of classical planning
problems. In Raedt, L. D., editor, Proceedings of the 20th European Conference on
Artificial Intelligence (ECAI’12), pages 540–545, Montpellier, France. IOS Press.

Lipovetzky, N. and Geffner, H. (2017). Best-first width search: Exploration and ex-
ploitation in classical planning. In Singh, S. and Markovitch, S., editors, Proceedings
of the 31st AAAI Conference on Artificial Intelligence (AAAI’17), pages 3590–3596.
AAAI Press.

Liu, M. T. (1989). Protocol engineering. In Advances in computers, volume 29, pages
79–195. Elsevier.

Long, D. and Fox, M. (1999). Efficient implementation of the plan graph in stan. Jour-
nal of Artificial Intelligence Research, 10:87–115.

315

Luks, E. M. (1993). Permutation groups and polynomial-time computation. In Groups
and Computation, DIMACS Series in Disc. Math. and Th. Comp. Sci., volume 11,
pages 139–175.

Lynch, N. A. (1996). Distributed Algorithms. Morgan Kaufmann.

McCarthy, J. (1959). Programs with common sense. In Proceedings of the Symposium
on Mechanisation of the Thought Process I.

McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld,
D., and Wilkins, D. (1998). The PDDL Planning Domain Definition Language. The
AIPS-98 Planning Competition Comitee.

McDermott, D. V. (1999). Using regression-match graphs to control search in planning.
Artificial Intelligence, 109(1–2):111–159.

McMillan, K. L. (1992). Using unfoldings to avoid the state explosion problem in the
verification of asynchronous circuits. In von Bochmann, G. and Probst, D. K., edi-
tors, Proceedings of the 4th International Workshop on Computer Aided Verification
(CAV’92), Lecture Notes in Computer Science, pages 164–177. Springer.

McMillan, K. L. (1993). Symbolic Model Checking. Kluwer Academic Publishers.

Milner, R. (1971). An algebraic definition of simulation between programs. In Proceed-
ings of the 2nd International Joint Conference on Artificial Intelligence (IJCAI’71),
pages 481–489, London, UK. William Kaufmann.

Moura, L. D. and Bjørner, N. (2008). Z3: An efficient SMT solver. In Proceedings of
the 14th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’08), pages 337–340.

Newell, A. and Simon, H. (1963). GPS, a program that simulates human thought. In
Feigenbaum, E. and Feldman, J., editors, Computers and Thought, pages 279–293.
McGraw-Hill.

Nissim, R. and Brafman, R. (2014). Distributed heuristic forward search for multi-agent
planning. Journal of Artificial Intelligence Research, 51:293–332.

Nissim, R., Brafman, R. I., and Domshlak, C. (2010). A general, fully distributed
multi-agent planning algorithm. In van der Hoek, W., Kaminka, G. A., Lespérance,
Y., Luck, M., and Sen, S., editors, Proceedings of the 9th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS’10), pages 1323–1330. IFAA-
MAS.

Pearl, J. (1984). Heuristics. Morgan Kaufmann.

316 BIBLIOGRAPHY

Peled, D. (1993). All from one, one for all: on model checking using representatives.
In Proceedings of the 5th International Conference on Computer Aided Verification
(CAV’93), pages 409–423.

Peled, D. A. (1996). Combining partial order reductions with on-the-fly model-
checking. Formal Methods in System Design, 8(1):39–64.

Pnueli, A. (1977). The temporal logic of programs. In Proceedings of the 18th IEEE
Symposium on Foundations of Computer Science (FOCS’77).

Pnueli, A. (1985). In transition from global to modular temporal reasoning about pro-
grams. In Logics and Models of Concurrent Systems, volume 13, pages 123–144.

Pochter, N., Zohar, A., and Rosenschein, J. S. (2011). Exploiting problem symme-
tries in state-based planners. In Burgard, W. and Roth, D., editors, Proceedings of
the 25th National Conference of the American Association for Artificial Intelligence
(AAAI’11), San Francisco, CA, USA. AAAI Press.

Podkopaev, A., Lahav, O., and Vafeiadis, V. (2019). Bridging the gap between program-
ming languages and hardware weak memory models. Proc. ACM Program. Lang.,
3(POPL):69:1–69:31.

Pommerening, F. and Helmert, M. (2015). A normal form for classical planning tasks.
In Brafman, R., Domshlak, C., Haslum, P., and Zilberstein, S., editors, Proceed-
ings of the 25th International Conference on Automated Planning and Scheduling
(ICAPS’15), pages 188–192. AAAI Press.

Pommerening, F., Röger, G., and Helmert, M. (2013). Getting the most out of pattern
databases for classical planning. In Rossi, F., editor, Proceedings of the 23rd Inter-
national Joint Conference on Artificial Intelligence (IJCAI’13). AAAI Press/IJCAI.

PromelaManual (2020). Promela manual pages. http://spinroot.com/spin/
Man/promela.html.

Richter, S. and Helmert, M. (2009). Preferred operators and deferred evaluation in
satisficing planning. In Gerevini, A., Howe, A., Cesta, A., and Refanidis, I., edi-
tors, Proceedings of the 19th International Conference on Automated Planning and
Scheduling (ICAPS’09), pages 273–280. AAAI Press.

Richter, S., Helmert, M., and Westphal, M. (2008). Landmarks revisited. In Fox, D. and
Gomes, C., editors, Proceedings of the 23rd National Conference of the American
Association for Artificial Intelligence (AAAI’08), pages 975–982, Chicago, Illinois,
USA. AAAI Press.

http://spinroot.com/spin/Man/promela.html
http://spinroot.com/spin/Man/promela.html

317

Richter, S. and Westphal, M. (2010). The LAMA planner: Guiding cost-based anytime
planning with landmarks. Journal of Artificial Intelligence Research, 39:127–177.

Richter, S., Westphal, M., and Helmert, M. (2011). LAMA 2008 and 2011 (planner
abstract). In IPC 2011 planner abstracts, pages 50–54.

Rintanen, J. (2003). Symmetry reduction for SAT representations of transition systems.
In Giunchiglia, E., Muscettola, N., and Nau, D., editors, Proceedings of the 13th
International Conference on Automated Planning and Scheduling (ICAPS’03), pages
32–41, Trento, Italy. AAAI Press.

Rodríguez, C. and Schwoon, S. (2013). Cunf: A tool for unfolding and verifying petri
nets with read arcs. In Proceedings of the 11th International Symposium on Auto-
mated Technology for Verification and Analysis (ATVA’13), pages 492–495.

Röger, G., Helmert, M., Seipp, J., and Sievers, S. (2020). An atom-centric perspec-
tive on stubborn sets. In Harabor, D. and Vallati, M., editors, Proceedings of the
Thirteenth International Symposium on Combinatorial Search, SOCS 2020, Online
Conference [Vienna, Austria], 26-28 May 2020, pages 57–65. AAAI Press.

Roggenbach, M. (2001). Determinization of büchi-automata. In Grädel, E., Thomas,
W., and Wilke, T., editors, Automata, Logics, and Infinite Games: A Guide to Current
Research [outcome of a Dagstuhl seminar, February 2001], volume 2500 of Lecture
Notes in Computer Science, pages 43–60. Springer.

Rudin, H. (1987). Network protocols and tools to help produce them. Annual Review of
Computer Science, 2(1):291–316.

Sacerdoti, E. D. (1974). Planning in a hierarchy of abstraction spaces. Artificial Intelli-
gence, 5:115–135.

Schmitt, F. (2018). Finding star factorings using integer linear programming. Bachelors
Thesis at Saarland University.

Schmitt, F., Gnad, D., and Hoffmann, J. (2019). Advanced factoring strategies for
decoupled search using linear programming. In Proceedings of the 29th International
Conference on Automated Planning and Scheduling (ICAPS’19). AAAI Press.

Schwoon, S. and Esparza, J. (2005). A note on on-the-fly verification algorithms. vol-
ume 3440 of Lecture Notes in Computer Science, pages 174–190. Springer.

Seipp, J. and Helmert, M. (2013). Counterexample-guided Cartesian abstraction refine-
ment. In Borrajo, D., Fratini, S., Kambhampati, S., and Oddi, A., editors, Proceed-
ings of the 23rd International Conference on Automated Planning and Scheduling
(ICAPS’13), pages 347–351, Rome, Italy. AAAI Press.

318 BIBLIOGRAPHY

Seipp, J., Pommerening, F., Sievers, S., and Helmert, M. (2017). Downward Lab.
https://doi.org/10.5281/zenodo.790461.

Shleyfman, A., Katz, M., Helmert, M., Sievers, S., and Wehrle, M. (2015). Heuristics
and symmetries in classical planning. In Bonet, B. and Koenig, S., editors, Pro-
ceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI’15), pages
3371–3377. AAAI Press.

Sievers, S. and Wehrle, M. (2021). On weak stubborn sets in classical planning. In Zhou,
Z.-H., editor, Proceedings of the 30th International Joint Conference on Artificial
Intelligence (IJCAI’21), pages 4167–4174.

Sievers, S., Wehrle, M., Helmert, M., Shleyfman, A., and Katz, M. (2015). Factored
symmetries for merge-and-shrink abstractions. In Bonet, B. and Koenig, S., editors,
Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI’15), pages
3378–3385. AAAI Press.

Sistla, A. P., Miliades, L., and Gyuris, V. (1997). SMC: A symmetry based model
checker for verification of liveness properties. In Grumberg, O., editor, Proceed-
ings of the 9th International Conference on Computer Aided Verification (CAV’97),
Lecture Notes in Computer Science, pages 464–467. Springer.

Somenzi, F. (2021). CUDD: CU decision diagram package release 3.0.0. At https:
//github.com/ivmai/cudd.

Speck, D., Geißer, F., and Mattmüller, R. (2018). Symbolic planning with edge-valued
multi-valued decision diagrams. In Proceedings of the 28th International Conference
on Automated Planning and Scheduling (ICAPS’18), pages 250–258. AAAI Press.

Speicher, P., Steinmetz, M., Gnad, D., Hoffmann, J., and Gerevini, A. (2017). Beyond
red-black planning: Limited-memory state variables. In Proceedings of the 27th
International Conference on Automated Planning and Scheduling (ICAPS’17), pages
269–273. AAAI Press.

Starke, P. (1991). Reachability analysis of petri nets using symmetries. Journal of
Mathematical Modelling and Simulation in Systems Analysis, 8(4/5):293–304.

Tauriainen, H. (2006). Nested emptiness search for generalized büchi automata. Fun-
damenta Informaticae, 70(1-2):127–154.

Torralba, Á. (2016). Sympa: Symbolic perimeter abstractions for proving unsolvability.
In UIPC 2016 planner abstracts, pages 8–11.

https://doi.org/10.5281/zenodo.790461
https://github.com/ivmai/cudd
https://github.com/ivmai/cudd

319

Torralba, Á. (2017). From qualitative to quantitative dominance pruning for optimal
planning. In Sierra, C., editor, Proceedings of the 26th International Joint Conference
on Artificial Intelligence (IJCAI’17), pages 4426–4432. AAAI Press/IJCAI.

Torralba, Á. (2018). Completeness-preserving dominance techniques for satisficing
planning. In Lang, J., editor, Proceedings of the 27th International Joint Conference
on Artificial Intelligence (IJCAI’18), pages 4844–4851.

Torralba, Á., Alcázar, V., Borrajo, D., Kissmann, P., and Edelkamp, S. (2014). SymBA*:
A symbolic bidirectional A* planner. In IPC 2014 planner abstracts, pages 105–109.

Torralba, Á., Alcázar, V., Kissmann, P., and Edelkamp, S. (2017). Efficient symbolic
search for cost-optimal planning. Artificial Intelligence, 242:52–79.

Torralba, Á., Gnad, D., Dubbert, P., and Hoffmann, J. (2016). On state-dominance crite-
ria in fork-decoupled search. In Kambhampati, S., editor, Proceedings of the 25th In-
ternational Joint Conference on Artificial Intelligence (IJCAI’16), pages 3265–3271.
AAAI Press/IJCAI.

Torralba, Á. and Hoffmann, J. (2015). Simulation-based admissible dominance prun-
ing. In Yang, Q., editor, Proceedings of the 24th International Joint Conference on
Artificial Intelligence (IJCAI’15), pages 1689–1695. AAAI Press/IJCAI.

Torralba, Á. and Kissmann, P. (2015). Focusing on what really matters: Irrelevance
pruning in merge-and-shrink. In Lelis, L. and Stern, R., editors, Proceedings of the
8th Annual Symposium on Combinatorial Search (SOCS’15), pages 122–130. AAAI
Press.

Tozicka, J., Jakubuv, J., Svatos, M., and Komenda, A. (2016). Recursive polynomial
reductions for classical planning. In Coles, A., Coles, A., Edelkamp, S., Magazzeni,
D., and Sanner, S., editors, Proceedings of the 26th International Conference on Au-
tomated Planning and Scheduling (ICAPS’16), pages 317–325. AAAI Press.

Travkin, O., Mütze, A., and Wehrheim, H. (2013). SPIN as a linearizability checker un-
der weak memory models. In Proceedings of the 9th International Haifa Verification
Conference (HVC’13), pages 311–326.

Valmari, A. (1989). Stubborn sets for reduced state space generation. In Proceedings
of the 10th International Conference on Applications and Theory of Petri Nets, pages
491–515.

Valmari, A. (1992). A stubborn attack on state explosion. Formal Methods in System
Design, 1(4):297–322.

320 BIBLIOGRAPHY

Wang, D. and Williams, B. C. (2015). tburton: A divide and conquer temporal planner.
In Bonet, B. and Koenig, S., editors, Proceedings of the 29th AAAI Conference on
Artificial Intelligence (AAAI’15), pages 3409–3417. AAAI Press.

Wehrle, M. and Helmert, M. (2012). About partial order reduction in planning and
computer aided verification. In Bonet, B., McCluskey, L., Silva, J. R., and Williams,
B., editors, Proceedings of the 22nd International Conference on Automated Planning
and Scheduling (ICAPS’12). AAAI Press.

Wehrle, M. and Helmert, M. (2014). Efficient stubborn sets: Generalized algorithms and
selection strategies. In Chien, S., Do, M., Fern, A., and Ruml, W., editors, Proceed-
ings of the 24th International Conference on Automated Planning and Scheduling
(ICAPS’14). AAAI Press.

Wehrle, M., Helmert, M., Alkhazraji, Y., and Mattmüller, R. (2013). The relative
pruning power of strong stubborn sets and expansion core. In Borrajo, D., Fratini,
S., Kambhampati, S., and Oddi, A., editors, Proceedings of the 23rd International
Conference on Automated Planning and Scheduling (ICAPS’13), Rome, Italy. AAAI
Press.

Wehrle, M., Helmert, M., Shleyfman, A., and Katz, M. (2015). Integrating partial
order reduction and symmetry elimination for cost-optimal classical planning. In
Yang, Q., editor, Proceedings of the 24th International Joint Conference on Artificial
Intelligence (IJCAI’15). AAAI Press/IJCAI.

West, C. H. (1978). General technique for communications protocol validation. IBM
Journal of Research and Development, 22(4):393–404.

Winterer, D., Alkhazraji, Y., Katz, M., and Wehrle, M. (2017). Stubborn sets for fully
observable nondeterministic planning. In Proceedings of the 27th International Con-
ference on Automated Planning and Scheduling (ICAPS’17). AAAI Press.

Zhu, L. and Givan, R. (2003). Landmark extraction via planning graph propagation. In
ICAPS 2003 Doctoral Consortium, pages 156–160.

	I Introduction and Planning Background
	Introduction
	Illustrative Example
	Contributions
	Publications
	Outline

	Background
	Classical Planning
	Heuristic Search
	Problem Structure – The Causal Graph
	Exponential Separation

	II Star-Topology Decoupled State-Space Search
	Decoupled State-Space Search
	Problem Decomposition
	Decoupled State Space
	Compliant-Path Graph
	The Transition System

	Correctness
	Decoupled State-Space Size and Pruning
	Finiteness and Dominance Pruning
	Size Blow-Up and Hypercube Pruning

	Heuristic Search
	Heuristic Functions
	Heuristic Search Algorithms
	Anytime Decoupled A*

	g-Value Adaptation

	Problem Decomposition – Factoring Strategies
	Factoring Characteristics
	Complexity
	Factoring Based on the Causal Graph
	Factoring via Integer Linear Programming
	Strict-Star Factorings
	General-Star Factorings
	Objective Function

	Related Work – Exponential Separations
	Petri-Net Unfolding
	Background – Petri-Net Unfolding
	Results Overview
	Separation Theorems
	Domination Theorems

	Partial-Order Reduction – Stubborn Sets
	Symbolic State Representation
	Factored Planning
	Other Methods

	Experimental Evaluation
	Implementation
	Experimental Setup
	Factoring Statistics
	State-Space Size
	Satisficing Planning
	Optimal Planning
	Proving Unsolvability
	Discussion

	Summary

	III Combination with Other State-Space Reduction Methods
	Introduction
	Partial-Order Reduction
	Background
	Decoupled Strong Stubborn Sets
	Basic Concepts
	Non-Goal Decoupled States
	Goal Decoupled States

	Special Cases Facilitating More Effective Handling
	Forks
	Inverted Forks
	Fork/Inverted-Fork Leaves in General Star Topologies

	Exponential Separation from Base Methods
	Experimental Evaluation

	Symmetry Breaking
	Background
	Symmetry Relations over Decoupled States
	Finding Decoupled-State Symmetries
	Symmetry Breaking in Decoupled Search
	Mapping to Canonical Representatives
	Solution Reconstruction
	Completeness and Optimality

	Exponential Separation from Base Methods
	Experimental Evaluation

	Symbolic Leaf Representation
	Background
	Symbolic Leaf Representation
	Connecting Symbolic Leaves to Heuristics
	Experimental Evaluation

	Dominance Pruning for Fork Topologies
	Decoupled State Dominance
	Frontier-Based Dominance
	Effective-Price Dominance
	Simulation-Based Dominance
	Method Interrelations and Combination
	Experimental Evaluation

	Summary

	IV Model Checking
	Introduction
	Background
	Non-Deterministic Automata
	Composition of Automata

	The Model Checking Problem

	Decoupled Composition of Automata
	Decoupled Composition
	Correctness

	Decoupled Search for Safety Checking
	Implementation in SPIN
	Experimental Evaluation

	Decoupled Search for Liveness Checking
	NDFS for Decoupled Search
	Issues with a Naïve Adaptation of NDFS
	Reference-State Splits
	Putting Things Together: Decoupled NDFS

	Decoupled NDFS Correctness
	Experimental Evaluation

	Related Work – Exponential Separations
	Exponential Separations
	Safety Checking
	Liveness Checking

	Summary

	V Conclusion
	Conclusion
	Appendices
	Full Proofs of Part II
	Correctness of the Decoupled State Space
	Decoupled State-Space Size
	Relation to Petri-net Unfolding
	Technical Background – Details
	Proofs

	Relation to Stubborn-Sets Pruning
	Technical Background – Details
	Proofs

	Relation to Symbolic State Representation

	Full Proofs of Part III
	Decoupled Strong Stubborn Sets
	DSSS Special Case Topologies
	Exponential Separations

	Dominance Pruning for Fork Topologies

	Bibliography

