Symbolic Leaf Representation in Decoupled Search — Technical Report

Daniel Gnad and Alvaro Torralba and Jorg Hoffmann
Saarland University
Saarland Informatics Campus
Saarbriicken, Germany
{gnad,torralba,hoffmann } @cs.uni-saarland.de

Abstract

Star-Topology Decoupled Search has recently been intro-
duced in classical planning. It splits the planning task into a
set of components whose dependencies take a star structure,
where one center component interacts with possibly many
leaf components. Here we address a weakness of decoupled
search, namely large leaf components, whose state space is
enumerated explicitly. We propose a symbolic representation
of the leaf state spaces via decision diagrams, which can be
dramatically smaller, and also more runtime efficient. We
further introduce a symbolic version of the LM-cut heuristic,
that nicely connects to our new leaf representation. We show
empirically that the symbolic representation indeed pays off
when the leaf components are large.

Introduction

Classical planning is the task of checking whether there ex-
ists a sequence of (deterministic) actions that leads from a
given initial state to a goal state, in a large state space de-
scribed compactly through state variables. A prominent ap-
proach to tackle this is (heuristic) forward search.

Decoupled state space search is a recent paradigm to
search reformulation (Gnad and Hoffmann 2015; Gnad,
Hoffmann, and Domshlak 2015). It partitions the state
variables into subsets (components), called factors. This
is inspired by factored planning (e.g., Amir and Engel-
hardt (2003), Kelareva et al. (2007), Fabre et al. (2010),
Brafman and Domshlak (2013)). Decoupled search proves
to be particularly effective, through imposing a restriction on
the interaction across factors: a star topology. In a star topol-
ogy, a single center factor interacts with possibly many leaf
factors, while no direct leaf-leaf interactions are allowed.

Such a topology entails a particular form of “conditional
independence” between leaf factors, given a fixed move se-
quence by the center. Decoupled search branches over only
the center-affecting actions. It enumerates, for each center-
action sequence (each center path), the possible moves by
the leaf factors — yet for each leaf factor separately.

To capture the possible movements of each leaf, the
search maintains the so-called pricing function. Such a func-
tion maps each leaf state s* of a given leaf factor (a value
assignment to the leaf factor’s variables) onto the cost of
the cheapest sequence of leaf-affecting actions (the cheapest
leaf path) that leads to s, and that is compliant with (can

be embedded into) the given center path. In other words,
the price of a leaf state is its cost given the current center
path. The pricing function for a leaf factor can be main-
tained in time low-order polynomial in the size of the leaf
factor’s state space. This is done through a fixed-point op-
eration after each application of a new center action, explor-
ing all compliant leaf-path continuations. This works well
for small leaf factors, but can be prohibitive for large leaves
containing several state variables, thus severely limiting the
kinds of factorings that can be usefully considered.

We address this through symbolic leaf-state-space repre-
sentation. This results in a new hybrid of explicit and sym-
bolic search, performing explicit search on the center com-
ponent and symbolic search on the leaf state spaces.

Binary decision diagrams (BDDs) have been used in
the past as an alternative to explicit search, as they al-
low to represent large state spaces compactly (Bryant 1986;
McMillan 1993; Edelkamp and Helmert 1999). We build on
prior work in planning that has derived efficient techniques
to run symbolic search (Jensen, Veloso, and Bryant 2008;
2008; Kissmann and Edelkamp 2011; Torralba et al. 2017).
But we use BDDs merely to maintain the leaf state spaces,
not the entire search space.

Heuristic search is essential for the performance of for-
ward search planning (e. g. (Bonet and Geffner 2001; Hoff-
mann and Nebel 2001; Richter and Westphal 2010)). Gnad
and Hoffmann (2015) introduced a compilation technique
that allows to plug any planning heuristic function into de-
coupled search. The compilation does not suit our frame-
work, however, as it requires to enumerate all leaf states. We
overcome this here through a variant of the LM-cut heuris-
tic (Helmert and Domshlak 2009), which is an admissible
heuristic widely-used in planning. Our variant allows to
avoid explicit enumeration, thus benefiting from our com-
pact symbolic leaf representation.

We show that, on standard planning benchmark domains,
the performance of our explicit-symbolic hybrid search is
competitive with its explicit-search counterpart from prior
work. On several domains, where leaves are large, our new
techniques perform significantly better.

Preliminaries

We use the finite-domain representation (FDR) of planning
(e. g. Bickstrom and Nebel (1995), Helmert (2006)), where

a planning task is a tuple IT = (V, A, I,G). V is a set of
finite domain state variables, where each v € V' is associ-
ated with its domain D(v). A (partial) variable assignment
is a set of variable/value pairs. A complete assignment to V'
is called a state. I is the initial state, and G is the goal, a
partial assignment to V. A is a finite set of actions, where
each action a € A is a triple (pre(a), eff(a), cost(a)). The
precondition pre(a) and effect eff (a) are partial assignments
to V, and cost(a) € R%" is the action’s non-negative cost.
For a partial assignment p, we denote the subset of state
variables instantiated by p as V(p) C V. For any V' C
V(p), p|V’] denotes the value of all v € V' in p. An action
a is applicable in a state s if pre(a) C s, i.e., if for all
v € V(pre(a)) : s[v] = pre(a)[v]. Applying a in s results in
a state where the value of each v € V(eff(a)) is changed to
eff(a)[v], and the value of all other variables is unchanged.
The outcome state is denoted s[a]. The outcome of applying
a sequence of (respectively applicable) actions to a state s is
denoted s[{ay,...,a,)]. An action sequence {aj,...,an)
is called a plan for II if it maps the initial state to a state
satisfying G, i.e., G C I[{aq,...,ay)]; it is optimal if its
summed-up cost is minimal among all plans for II.

Base Methods

Each of decoupled search and symbolic search can reduce
search effort exponentially, though for entirely different rea-
sons. As pointed out, our new technique can be understood
as a hybrid of both. We briefly introduce both techniques.

Decoupled Search

In decoupled search, a planning task is split into a set of
factors F, partitioning its state variables. The dependencies
across factors are required to take the form of a star, where
a center factor F© may arbitrarily interact with each of the
set of leaf factors F* := F \ {F“}, but no other interac-
tions are allowed. The key observation is that, given this,
for a fixed sequence of center actions (actions with an effect
on FC), the movements of the leaf factors are independent
of each other, and can be maintained separately. Decoupled
search then only branches over the center actions, enumer-
ating the compliant leaf paths for each leaf. A leaf path 7*,
i.e., a sequence of actions affecting a single F'* € FE, is
compliant with a given center path 7, if it can be embedded
into 7€ such that the resulting action sequence is applicable
to I when projecting onto the variables F¢ U F'~.

Each center path 7€ ends in a decoupled state s, which
is defined as a center state cs(s”), a complete assignment to
FY, and a pricing function prices(s”). The pricing function
maps each leaf state s (an assignment to an F©' ¢ FL) to
a non-negative price prices(s”)[s"], namely the cost of a
cheapest leaf path to s© compliant with 7€ If no such path
exists for s, its price is prices(s”)[s] = oc. A decoupled
state thus consists of a single center state, augmented with a
set of leaf states for each F'", annotated by their price.

Pricing functions are maintained as follows. To ex-
pand a decoupled state s”, (1) the applicable center ac-
tions are obtained by checking if their center precondi-
tion holds in s7; and by checking, whenever V(pre(a®)) N

FL £ (), if there exists a reached leaf state s” that
satisfies this precondition (CheckPre(s”,a“)), i.e., where
pre(a®)[V(pre(a®))NFL] C s, and prices(s”)[s*] < .
(2) Applying a center action o to a decoupled state s
(Apply(s”,a®)) results in a new decoupled state ¢+ that is
a copy of s7. In t7 the price of all inconsistent leaf states
s, where pre(a®)[V(pre(a)) N F¥] € s, is set to oo, and
the leaf effects of a™ are applied to all remaining leaf states
with finite price. Finally, (3) the pricing function is up-
dated (UpdatePrices(s”)), by computing the continuations
of the cheapest compliant paths given the new leaf actions
now enabled. To avoid duplicate states, decoupled search
uses a (4) dominance check (CheckDominance(s” ,t7)). A
newly generated decoupled state s” is dominated by a pre-
viously seen t7 if cs(s”) = cs(t”) and, for all leaf states
st prices(t”)[st] < prices(s”)[s"].

Symbolic Search

Symbolic search is a state space exploration technique that
uses efficient data structures to represent and manipulate
sets of states (McMillan 1993). Binary Decision Diagrams
(BDDs), in particular, often yield exponential gains com-
pared to explicit enumeration (Bryant 1986). A number of
operations allow to manipulate BDDs efficiently.

To perform search, planning actions are represented via
transition relations (TRs). A TR T represents a set of ac-
tions A’ C A of the same cost, through a BDD that contains
the set of all pairs (s, s’) such that s’ is reachable from s
by applying an action a € A’. Given a set of states .S and
a TR T, the image operation computes the set of successor
states of .S through 7T'. The image operation has worst-case
complexity exponential in the number of state variables, but
is often more efficient than expanding the states in .S one by
one. The symbolic variant of standard search algorithms is
implemented by starting from the BDD representation of the
initial state, and iteratively computing the image.

Algebraic Decision Diagrams (Bahar et al. 1997) are an
extension of BDDs that represent functions mapping each
state to a value among a finite set of different values. In
the context of planning, they have been used to represent
heuristic functions and to perform A* search (Hansen, Zhou,
and Feng 2002).

Symbolic Leaf Representation

When dealing with leaves that have a small state space, the
pricing function can be kept explicitly. This requires a sin-
gle entry per reachable leaf state that stores its price. Glob-
ally caching transitions between leaf states then allows to
efficiently update the pricing function. This becomes pro-
hibitive, however, both memory and runtime wise, for large
leaf state spaces. We propose to use a symbolic representa-
tion of the pricing function, using decision diagrams (DDs).

We use different types of DDs to address the different re-
quirements of the operations working on the pricing func-
tion. For each leaf F'” and price p, we keep a BDD Bﬁ that
represents all leaf states of F'* with price p. Additionally,
we compute a BDD B% that represents all leaf states of F'-
reached with finite price, as well as an ADD P’ that repre-

sents all BI’;‘ in a single data structure. As we will describe
next, different data structures ease the computation of cer-
tain of the previously detailed operations required to perform
decoupled search. For efficiency reasons, these operations
must be performed directly on the symbolic representation,
without enumerating all leaf states at any point, so that the
complexity of each operation depends on the DD size, not
on the size of the represented leaf state space. Additionally,
due to the independence of the leaves, the operations are al-
ways performed for each individual leaf separately. We next
describe how to do so using standard BDD and ADD opera-
tions.

To compute CheckPre(s” ,a®) of a center action a®, we

encode the leaf preconditions of a“ on a leaf F' as a BDD
BL that describes the set of leaf states that satisfy such

pre
preconditions. Then, a® is applicable if the intersection of

Bzfre and the set of reached leaf states BIL% is not empty.

Apply(s”,a®) applies a® to the pricing function of a
decoupled state s7. If a® has preconditions on a leaf,
we compute the intersection of the BDDs BIE representing

prices(s”) with Bf, . If a® has an effect on the leaf, this
can be applied to each Bzf using the standard image opera-

tion with respect to the TR of a® projected on F'~.
UpdatePrices(s”) is a fundamental operation in decou-
pled search. The price updates correspond to performing
a symbolic uniform-cost search for every leaf factor F'©' ¢
FE, using only those TRs corresponding to leaf actions with
an effect on F'’ whose center preconditions are satisfied by
cs(s7). The open list of this search is initialized to the pre-
vious pricing function, i.e. the BL, inserting a leaf state s”

with a g-value of prices(s”)[s”]. The search is run until the
open list is empty, exhausting the leaf state space reachable
with the center preconditions provided by cs(s”). After the
search, the closed list represents the desired pricing func-
tion, with a new BDD B for each cost layer containing the

P
set of leaf states with this price.

The computation of CheckDominance(s” ,t”) makes use
of the ADD representation of pricing functions. Dominance
corresponds to the standard “lower or equal” operation on
ADDs, which checks whether one ADD has lower or equal
value than the other for every possible assignment.

The described implementation is suitable for optimal
planning, where we need to keep the price of each leaf state.
When cost is not of interest, e. g., for satisficing planning,
or proving unsolvability, there is no need to keep the ac-
tual price of every leaf state. The only thing that matters is
whether a state is reachable, or not. This corresponds to a
task transformation where the cost of all leaf actions is set to
0, so the pricing function of any leaf state is either 0 or oco.
Therefore, it suffices to keep a single BDD BII%’ to represent
the reached leaf states of each leaf factor. The operations
are similar, except that updates can be done with the simpler
symbolic breadth first search, and dominance is performed
by checking whether one BDD is a subset of another.

Connecting Symbolic Leaves to Heuristics

In previous work, Gnad and Hoffmann (2015) introduced a
compilation that allows the usage of standard heuristics in
decoupled search. This compilation depends on the decou-
pled state s* for which the heuristic is computed. The key
is to add a new auxiliary action aSLL for each reached leaf

state s with empty precondition, effect s”, and whose cost
is prices(s”)[s']. Thereby, the heuristic has to “buy” a leaf
state before being able to perform any other operation on the
variables of the corresponding leaf. Gnad and Hoffmann im-
plemented the compilation for many delete-relaxation-based
heuristics, like h™* (Bonet and Geffner 2001), hfF (Hoft-
mann and Nebel 2001), or A"M to which this concept
naturally applies. However, it does not easily extend to the
symbolic leaf representation, since we must avoid the ex-
plicit enumeration of leaf states. We re-use the ADD repre-
sentation of the pricing function to compute the heuristic.

A rather easy case is A™**, where it suffices to add an aux-
iliary action for each leaf fact. We set the cost of these ac-
tions to the minimum price of any leaf state containing that
fact. This can be computed easily for each leaf by a single
traversal over the ADD that represents its pricing function.
Intuitively, we pretend that the h™** algorithm does not start
from a full variable assignment, but a “delete-relaxed” ex-
tension thereof. This extended state contains the center facts
reached in the given decoupled state s” (at a cost of 0), as
well as possibly many facts per leaf variable, at the cost of

the minimum price leaf state that contains the fact in s7.

Algorithm 1: Decoupled Symbolic LM-cut.

Input: Task IT = (V, A, I, G), decoupled state s”.

Output: Heuristic value h-M-cut

h<+0;

P« prices(s”) ;

Aguz < {aya|deD),ve FE FF e F},

(ay,q) ¢ mingrepr sniy—q P[s¥Vd € D(v),v €
FL Fle F,

while h™* (A U Aguz, cs(s7)) > 0do

cut <— Compute disjunctive action landmark ;

Cmin < minaecut C(CL) 5

h < h+ cmin s

// Decrease cost of actions in the cut
9 foreach a € cut,a & Ay, do

10 | cla) < c(a) = cmin:

11 end

// Decrease cost of auxiliary actions

12 foreach 'L ¢ F do

7)

AW N -

w1 AW

13 BDDcut + \/av JEcutwe L BDD(v,d);

14 ADDecut < ¢pmin - ADD(BDDcut) ;

15 P[FL] + P[FL] — ADDcut ;

16 c(amd) — miHSLeFLVSL[,U]:d P[SL}Vd S
D(v),v € FE;

17 end

18 end

19 return h ;

The case of LM-cut is more complicated. The heuris-
tic iteratively runs A™, and computes a disjunctive ac-
tion landmark (Zhu and Givan 2003; Hoffmann, Porteous,
and Sebastia 2004; Richter, Helmert, and Westphal 2008;
Richter and Westphal 2010) after each iteration. This land-
mark is called the cut, a set of non-zero cost actions at least
one of which must be applied in any plan. The cost of the
actions in the cut is decreased by the minimum ¢,,;,, of their
costs. This process is repeated until the value of h™ is 0.
The final A" value is the sum of all ¢,,;,,. We provide the
full details of our symbolic LM-cut variant in Algorithm 1.

The computation of h™* within LM-cut can be performed
as described above, by adding an auxiliary action per leaf
fact. The difficulty is to determine for which of the aux-
iliary actions we have to reduce the cost in each iteration.
For single-variable leaves, this is just the set of actions in
the cut, as usual. For multi-variable leaves, however, there
is no auxiliary-fact-action to leaf-state mapping, and it can
be necessary to reduce the cost of some auxiliary actions
that are not in the cut. For example, consider a planning
task with a single leaf of two variables, where D(v;) =
{q1,4,}, D(v2) = {qo,q5}. Let s” be a decoupled state
with two finite-price leaf states, prices(s”)[{q1,q2}] =
0, prices(s”)[{q1,95}] = 1. The goal is {¢i,q5}, so
h*(s7) = 1. Say the first iteration of LM-cut finds the cut
{@v, q, } with a single auxiliary action, SO Cpmin = 1. In
this case, the cost of the auxiliary action a,, 4, must be re-
duced as well, because otherwise the cost of acquiring the
same leaf state would be counted more than once, resulting
in an inadmissible heuristic. This is because the cost of both
Gy, ,q;> and @y, g, is due to the same leaf state. Thus, de-
creasing the cost of one auxiliary-fact-action may cause a
reduced cost of other auxiliary actions.

Instead of directly reducing the cost of the auxiliary ac-
tions involved in the cut, we reduce the prices of the cor-
responding states in the symbolic pricing function, and re-
compute the cost of the auxiliary actions with respect to the
new pricing function. Given a cut, we construct an ADD
that assigns a value of c¢,,;, to all leaf states containing a
fact whose corresponding auxiliary action is in the cut and 0
elsewhere. We subtract this ADD from the pricing function
and recompute the cost of each auxiliary action by a new
traversal over the resulting ADD. So whenever the cost of
an auxiliary action a, for a leaf fact g is decreased by c,in,
we subtract ¢,,;, from every leaf state that satisfies g. This
results in a non-negative price, i.e., PX[s'] — cpin > 0
for all s¥, because ¢, is the minimum action cost of all
actions in the cut 0 ¢y, < cost(ag) < PL[s).

Furthermore, this procedure will reduce the price of ex-
actly those leaf states containing a fact whose correspond-
ing auxiliary leaf actions would be in the cut when using
the explicit LM-cut implementation (modulo different tie-
breaking). This is due to the fact that each leaf fact ¢ in
the initial layer of LM-cut’s landmark graph can only result
from the application of an auxiliary leaf action. So, if the
auxiliary achiever of ¢ is in the cut in the symbolic version,
so are all auxiliary leaf actions whose effect contains ¢ in the
explicit variant, and vice versa.

Blind Search Mot
Domain #|| A* TA IAS mIA mIAS| S||A* IA IAS mIA mIAS| SB
Chsnack 20 0O 0 O 0 o] 4 0o 0 O 0 0
Depots 22| 4 4 4 4 41 4 7 7 71 7 71 5
Driverl 20| 7 11 11 10 11| 11§ 13 13 13 12 12| 14
Elevator 50(| 26 16 19 16 19| 35|| 40 40 40 40 40| 44
Floortile 40| 2 2 2 2 21 2| 13 8 8 8 8| 34
GED 201 15 15 15 13 15 15|] 15 15 15 15 15| 19
Logistic 63| 12 24 24 24 24| 20{| 26 35 35 35 35| 25
Miconic 145|| 50 45 46 45 46| 91|{136 135 135 135 135]102
Mystery 1 1 1 1 1 1 1 1 1 1 1 1 1
NoMyst 20(| 8 19 19 19 19| 11(| 14 20 20 20 20| 15
Openst 70| 42 35 36 34 35| 70|| 40 35 35 34 34| 70
Pathw 30/ 4 4 4 4 41 511 5 5 5 5 5| 5
PSR 48| 47 46 46 46 46| 48|| 47 47 47 47 47| 48
Satellite 36| 6 5 5 5 5711 7 9 9 9 9| 8
Scanaly 14(10 4 4 4 4] 10| 8 8 8 8 8| 10
Tetris 13y 7 5 6 5 51 7| 4 5 5 5 5| 5
Transp 36| 19 17 17 17 17] 19| 18 18 18 18 18] 19
Trucks 27|| 5 4 4 10 10 10 10/ 9
Zenotr 20 8 6 8 11 12 11 12| 10
> 695|273 263 271 260 269|376||416 422 423 420 421|446

~
® B
*
—
w O

Freecell 42| 3 0 2 0 20 2 2 1 2 1 2 2
Grid 5 1 1 1 0 1 2 2 2 0 2| 2
Mprime 6| 6 4 6 3 6| 6| 6 4 6 3 6

ParcP 23 1 5 7 7 11| 3 7 13 13 11 9| 3
Rovers 40| 6 7 8 7 91 13| 7 9 10 8 10| 13
Tidybot 40 8 19 19 19 19| 15(| 22 24 24 23 24

TPP 29 5 5 5 23 23| 7 5 5 5 18 18| 7
Woodw 43 9 9 12 13 14| 23]l 23 26 27 29 31| 30

> 228(| 39 50 60 72 85| 70|| 74 84 89 93 102| 69
> 923|312 313 331 332 354|446|{490 506 512 513 523|515

Table 1: Coverage data (number of solved instances). Best
performance in bold face. The top part shows domains with
small leaves, domains with large leaves are in the bottom.

Experiments

Our techniques are implemented in Fast Downward
(Helmert 2006), extending the decoupled search implemen-
tation of Gnad et al. (2015). We use the CUDD library by
Fabio Somenzi to store and manage the symbolic leaf rep-
resentations. Planners are run on a cluster of Intel E5S-2660
machines with 2.20 GHz, using time (memory) cut-offs of
30 minutes (4 GB). We conduct experiments in optimal plan-
ning, on all [PC STRIPS benchmarks (1998 —2014).

We use Gnad et al’s (2017) incident arcs (IA) factor-
ing strategy and a modification thereof (mIA), which both
greedily compute a factoring by putting variables with many
causal graph dependencies to the center, and setting the
leaves to be the connected components in the remaining part
of the causal graph. Both return the factoring with the high-
est number of mobile leaves, i.e., those that have at least
one leaf-only action. Gnad et al.’s method breaks ties by
choosing the factoring with the largest center factor, i.e.,
with small leaves, our new variant chooses the one with the
smallest center, to illustrate the benefit of our symbolic rep-
resentation with large leaf factors. Like Gnad et al., we ab-
stain from solving the task if the obtained factoring has less
than two (mobile) leaf factors, because the potential gain of
decoupled search is exponential in the number of leaves.

smallieaves & JE small leaves | + X
1000 Jarge leaves A2 1000 X

large leaves X %

00 1000 .01 0.1 00 1000

1 1 10 1 1 10 i
Runtime (s) of mIA Runtime (s) of mIA

Figure 1: The plots show per-instance runtime comparisons
using blind search (left) and A"M-t (right). Instances with
large leaves are highlighted in blue.

Table 1 shows coverage results for our new symbolic
leaf representation of both factoring strategies (IAS/mIAS)
compared to the explicit variants, standard search (A™),
symbolic forward search (S), and the SymBA™ planner
(SB) (Torralba, Linares Lopez, and Borrajo 2016). To
get a fair comparison, we disabled the h2-preprocessor of
SymBA™ (Alcdzar and Torralba 2015). The table includes
data for blind search, and search with AIM<U We split it
into two parts, where the upper one contains domains with
small leaves — estimating the size of a leaf F'“ by the do-
main size product of its variables. The lower part contains
domains with large leaves, i.e., at least one solved instance
has an average leaf size > 1000 when using mIA. In the
top part, we see that the coverage is only little influenced by
the leaf representation. In most domains, the coverage does
not change — even less when using K™% where only in
Zenotravel the coverage differs by 41 instance. With blind
search, the highest difference occurs in Elevators, where the
symbolic leaf representation inherits the apparent strength
of pure symbolic search. In the bottom part, observe that us-
ing the symbolic representation clearly pays off if the leaves
are large. The only negative outlier is ParcPrinter, where
we loose coverage with mIAS and ™t probably due to
the computational overhead of our symbolic LM-cut imple-
mentation. In all other domains except TPP the symbolic
representation gains coverage, often by 2 to 4 instances.

Figure 1 sheds more light on the runtime performance of
the two representations. Observe that there is an initial over-
head of the symbolic leaf variant, which is mostly due to
the initialization of the symbolic data-structures. With blind
search (left), we see the benefit of the symbolic leaves for
non-trivially solved tasks (above around 20s). While for
small leaves (the black points), there is just a minor improve-
ment, the advantage is clearly visible for instances with large
leaves. This is also true when using K™%, though coming
at an increased risk, where the overhead of symbolic LM-cut
can outweigh the gain from the leaf representation.

We also conducted experiments in proving unsolvability.
Here, the picture is similar to optimal planning, but most
domains of the unsolvability IPC have only small leaves.

Conclusion

We have introduced a new hybrid of explicit and symbolic
state space search, within the framework of star-topology
decoupled search. Empirically, our approach works well in

planning domains with large leaf factors. Having derived a
well-working adaptation for LM-cut, a topic for future work
is to connect our symbolic representation to other heuristic
functions, and to other improvements of decoupled search,
like partial-order reduction (Gnad, Wehrle, and Hoffmann
2016) and structural symmetries (Gnad et al. 2017).

Acknowledgments.

D. Gnad was supported by the German Research Founda-
tion (DFG), grant HO 2169/6-1. A. Torralba was supported
by the German Federal Ministry of Education and Research
(BMBF), CISPA grant no. 16KIS0656.

References

Alcazar, V., and Torralba, A. 2015. A reminder about the
importance of computing and exploiting invariants in plan-
ning. In Brafman et al. (2015), 2-6.

Amir, E., and Engelhardt, B. 2003. Factored planning. In
Gottlob, G., ed., Proceedings of the 18th International Joint
Conference on Artificial Intelligence (IJCAI’03), 929-935.
Acapulco, Mexico: Morgan Kaufmann.

Bickstrom, C., and Nebel, B. 1995. Complexity results
for SAS™ planning. Computational Intelligence 11(4):625—
655.

Bahar, R. I.; Frohm, E. A.; Gaona, C. M.; Hachtel, G. D.;
Macii, E.; Pardo, A.; and Somenzi, F. 1997. Algebraic
decision diagrams and their applications. Formal Methods
in System Design 10(2/3):171-206.

Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1-2):5-33.

Brafman, R., and Domshlak, C. 2013. On the complexity
of planning for agent teams and its implications for single
agent planning. Artificial Intelligence 198:52-71.

Brafman, R.; Domshlak, C.; Haslum, P.; and Zilberstein, S.,
eds. 2015. Proceedings of the 25th International Conference

on Automated Planning and Scheduling (ICAPS’15). AAAI
Press.

Bryant, R. E. 1986. Graph-based algorithms for boolean
function manipulation. [EEE Transactions on Computers
35(8):677-691.

Edelkamp, S., and Helmert, M. 1999. Exhibiting knowledge
in planning problems to minimize state encoding length.
In Biundo, S., and Fox, M., eds., Proceedings of the
Sth European Conference on Planning (ECP’99), 135-147.
Springer-Verlag.

Fabre, E.; Jezequel, L.; Haslum, P.; and Thiébaux, S. 2010.
Cost-optimal factored planning: Promises and pitfalls. In
Brafman, R. I.; Geffner, H.; Hoffmann, J.; and Kautz, H. A.,
eds., Proceedings of the 20th International Conference on
Automated Planning and Scheduling (ICAPS’10), 65-72.
AAALI Press.

Gnad, D., and Hoffmann, J. 2015. Beating LM-cut with
h™* (sometimes): Fork-decoupled state space search. In
Brafman et al. (2015), 88-96.

Gnad, D.; Torralba, A.; Shleyfman, A.; and Hoffmann,
J. 2017. Symmetry breaking in star-topology decoupled

search. In Proceedings of the 27th International Conference
on Automated Planning and Scheduling (ICAPS’17). AAAI
Press.

Gnad, D.; Hoffmann, J.; and Domshlak, C. 2015. From fork
decoupling to star-topology decoupling. In Lelis, L., and
Stern, R., eds., Proceedings of the 8th Annual Symposium
on Combinatorial Search (SOCS’15), 53—-61. AAAI Press.

Gnad, D.; Poser, V.; and Hoffmann, J. 2017. Beyond
forks: Finding and ranking star factorings for decoupled
search. In Sierra, C., ed., Proceedings of the 26th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI'17).
AAAI Press/IJCAL

Gnad, D.; Wehrle, M.; and Hoffmann, J. 2016. Decoupled
strong stubborn sets. In Kambhampati (2016), 3110-3116.

Hansen, E. A.; Zhou, R.; and Feng, Z. 2002. Symbolic
heuristic search using decision diagrams. volume 2371 of
Lecture Notes in Computer Science, 83-98. Springer.

Helmert, M., and Domshlak, C. 2009. Landmarks, criti-
cal paths and abstractions: What’s the difference anyway?
In Gerevini, A.; Howe, A.; Cesta, A.; and Refanidis, I.,
eds., Proceedings of the 19th International Conference on
Automated Planning and Scheduling (ICAPS’09), 162—169.
AAAI Press.

Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191-246.

Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253-302.

Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
landmarks in planning. Journal of Artificial Intelligence Re-
search 22:215-278.

Jensen, R. M.; Veloso, M. M.; and Bryant, R. E. 2008. State-
set branching: Leveraging BDDs for heuristic search. Arti-
ficial Intelligence 172(2-3):103-139.

Kambhampati, S., ed. 2016. Proceedings of the 25th In-
ternational Joint Conference on Artificial Intelligence (1J-
CAI’16). AAAI Press/IJCAL

Kelareva, E.; Buffet, O.; Huang, J.; and Thiébaux, S. 2007.
Factored planning using decomposition trees. In Veloso, M.,
ed., Proceedings of the 20th International Joint Conference
on Artificial Intelligence (IJCAI’07), 1942-1947. Hyder-
abad, India: Morgan Kaufmann.

Kissmann, P., and Edelkamp, S. 2011. Improving cost-
optimal domain-independent symbolic planning. In Bur-
gard, W., and Roth, D., eds., Proceedings of the 25th Na-
tional Conference of the American Association for Artificial
Intelligence (AAAI’11), 992-997. San Francisco, CA, USA:
AAALI Press.

McMillan, K. L. 1993. Symbolic Model Checking. Kluwer
Academic Publishers.

Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research 39:127-1717.

Richter, S.; Helmert, M.; and Westphal, M. 2008. Land-
marks revisited. In Fox, D., and Gomes, C., eds., Pro-
ceedings of the 23rd National Conference of the American

Association for Artificial Intelligence (AAAI'0S8), 975-982.
Chicago, Illinois, USA: AAAI Press.

Torralba, A Alcézar, V.; Kissmann, P.; and Edelkamp, S.
2017. Efficient symbolic search for cost-optimal planning.
Artificial Intelligence 242:52-79.

Torralba, A.; Linares Lépez, C.; and Borrajo, D. 2016.
Abstraction heuristics for symbolic bidirectional search. In
Kambhampati (2016), 3272-3278.

Zhu, L., and Givan, R. 2003. Landmark extraction via plan-
ning graph propagation. In ICAPS 2003 Doctoral Consor-
tium, 156-160.

