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Abstract

Partial delete relaxation methods, like red-black planning, are
extremely powerful, allowing in principle to force relaxed
plans to behave like real plans in the limit. Alas, that power
has so far been chained down by the computational overhead
of the use as heuristic functions, necessitating to compute a
relaxed plan on every search state. For red-black planning
in particular, this has entailed an exclusive focus on tractable
fragments. We herein unleash the power of red-black plan-
ning on two applications not necessitating such a restriction:
(i) generating seed plans for plan repair, and (ii) proving
planning task unsolvability. We introduce a method allowing
to generate red-black plans for arbitrary inputs – intractable
red-black planning – and we evaluate its use for (i) and (ii).
With (i), our results show promise and outperform standard
baselines in several domains. With (ii), we obtain substan-
tial, in some domains dramatic, improvements over the state
of the art.

Introduction
The use of relaxations (aka abstractions, over-
approximations) has been extremely successful in AI
Planning, for the generation of heuristic functions
guiding the search (e. g. (Haslum and Geffner 2000;
Bonet and Geffner 2001; Hoffmann and Nebel 2001;
Edelkamp 2001; Gerevini, Saetti, and Serina 2003;
Helmert 2006; Haslum et al. 2007; Helmert and
Domshlak 2009; Richter and Westphal 2010;
Helmert et al. 2014)). The delete relaxation in partic-
ular is prominent, with so-called relaxed plan heuristics
playing a major role in almost all successful satisficing
(non-optimal) planning systems since more than 15 years
(e. g. (Bonet and Geffner 2001; Hoffmann and Nebel 2001;
Richter and Westphal 2010)). The delete relaxation pretends
that “what was once true will remain true forever”, in the
optimistic sense where, e. g., after driving from A to B a car
is at both A and B simultaneously.

The downsides of this relaxation – being unable to ac-
count for to-and-fro, ignoring resource consumption– are
evident, and it has been an active area from the outset
to devise heuristic functions “taking some deletes into ac-
count” (e. g. (Fox and Long 2001; Helmert 2004; Keyder
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and Geffner 2008; Helmert and Geffner 2008; Cai, Hoff-
mann, and Helmert 2009; Coles et al. 2013)). Recent par-
tial delete relaxation methods take this idea to the extreme:
they allow, in principle, to force relaxed plans to behave like
real plans in the limit, thus interpolating all the way between
delete-relaxed planning and real planning. Two such meth-
ods are known, namely explicit conjunctions (Haslum 2012;
Keyder, Hoffmann, and Haslum 2012; 2014), which forces
relaxed plans to more accurately handle a given set C
of conjunctions; and red-black planning (Katz, Hoffmann,
and Domshlak 2013b; 2013a; Katz and Hoffmann 2013;
Domshlak, Hoffmann, and Katz 2015), which delete-relaxes
only a subset of the state variables (the “red” ones), keeping
the original semantics of the other (“black”) variables.

Alas, partial delete relaxation of course becomes costly
as it approaches real planning, and a heuristic function com-
putes a (partially delete-) relaxed plan anew for every search
state. Hence the power to compute almost-real relaxed plans
has been chained down by the computational overhead in-
curred. Explicit-conjunction heuristics are time-effective
only with small C, and red-black planning heuristics have
exclusively been based on tractable fragments. Are there
alternate ways of using partial delete relaxation, employ-
ing it more sparsely and hence unchaining its power? More
generally, how to best employ accurate, information-rich yet
computationally expensive, relaxations in planning?

Focusing on red-black planning, we consider (i) gener-
ating seed plans for plan repair, and (ii) proving planning
task unsolvability. Neither of these are, per se, new applica-
tions of relaxation. Research on the LPG system (Gerevini,
Saetti, and Serina 2003), which conducts a local search in
plan space, has already considered (i) the use of fully delete-
relaxed plans as seed plans. Research on state-space abstrac-
tions has considered (ii) their use for proving unreachabil-
ity as in Verification (Domshlak, Hoffmann, and Sabharwal
2009). The empirical results haven’t been very promising
for either. What is new in our work is the very different re-
laxation given by red-black planning.

Red-black planning is promising for (i) because red-black
plans will be much closer to real plans, and hence a better
starting point for plan-space search/plan repair. It is promis-
ing for (ii) because the red variables still carry the informa-
tion “what needs to be done”, while avoiding full enumer-
ation across these variables. Consider, for example, a truck



with restricted fuel having to transport some packages. If
we delete-relax (“paint red”) the packages, they still need to
be transported, to the effect that (i) any non-redundant red-
black plan is a real plan, and (ii) if there is insufficient fuel
then the red-black relaxation is unsolvable. (Contrast the lat-
ter with projections, recently suggested for proving unsolv-
ability (Bäckström, Jonsson, and Ståhlberg 2013): project-
ing away the packages, the task becomes trivially solvable
as there is no goal anymore.)

As prior work on red-black planning was concerned ex-
clusively with tractable fragments, to realize our aims first
of all we require a red-black planning method applicable to
arbitrary inputs, i. e., arbitrary planning tasks and red/black
“paintings” of its variables. This profile generalizes classical
planning, and is PSPACE-complete, so a search is required.
We introduce red-black state space search, which mixes
standard forward state space search with standard delete-
relaxed planning methods (Hoffmann and Nebel 2001), es-
sentially by searching over black-variable states and aug-
menting each state transition with a delete-relaxed planning
step over the red variables. If all variables are black, this de-
faults to forward search. If all variables are red, it defaults to
delete-relaxed planning. In between, we have a hybrid. We
evaluate the use of red-black plans generated this way for ap-
plications (i) and (ii). For (i), our results show promise, con-
sistently improving the efficiency of plan repair as the num-
ber of black variables increases, and outperforming standard
baseline planners (LPG, FD with hFF and greedy best-first
search) in several domains. For (ii), we obtain substantial,
partly dramatic, improvements over the state of the art.

Preliminaries
Our approach is placed in the finite-domain representation
(FDR) framework (initially introduced by Bäckström and
Nebel (1995) under the less intuitive name “SAS+”). An
FDR planning task is a 4-tuple Π = (V,A, I,G). V is a fi-
nite set of state variables, short variables v, each associated
with a finite domain Dv . A complete assignment to V is a
state. I is the initial state, and the goal G is a partial assign-
ment to V . A is a finite set of actions, each a ∈ A being
a triple (prea, effa, ca), where the precondition prea and the
effect effa are partial assignments to V , and ca is the action’s
real-valued cost. We often refer to (partial) assignments as
sets of facts, i. e., variable-value pairs v = d. For a partial
assignment p, V(p) denotes the subset of V instantiated by
p. For V ′ ⊆ V(p), p[V ′] denotes the value of V ′ in p.

The semantics of a planning task Π is defined in terms of
its state space, which is a (labeled) transition system. Such
a system is a 5-tuple Θ = (S, T, s0, SG), where S is a finite
set of states, L is a finite set of labels, T ⊆ S×L×S is a set
of (labeled) transitions, s0 ∈ S is the start state, and SG ⊆
S is the set of goal states. We will usually write transitions
(s, l, s′) ∈ T as s l−→ s′, or s → s′ if the label does not
matter. Assuming that the transition system is deterministic,
i. e., for every state s and action a there exists at most one
outgoing transition labeled with a, we define a solution for
Θ to be a transition path from s0 to a state in SG.

The state space of a planning task Π is the transition sys-

tem ΘΠ where: S is the set of all states in Π; the labels
L = A are the task’s actions; s ∈ SG if G ⊆ s; and s a−→ s′

if a is applicable to s and s′ is the outcome state of applying
a to s. Here, a is applicable to s if s[V(prea)] = prea, i. e.,
if s[v] = prea[v] for all v ∈ V(prea). The outcome state, de-
noted sJaK, is obtained by changing the value of v ∈ V(effa)
to effa[v]. A solution for ΘΠ is called a plan for Π.

Red-Black Planning
The delete relaxation, originally defined for STRIPS plan-
ning, can be captured in FDR in terms of state variables that
accumulate, rather than switch between, their values. Red-
black planning is the partial delete relaxation resulting from
doing so only for a subset of the state variables (the “red”
ones), keeping the original value-switching semantics for
the others (the “black” ones) (Katz, Hoffmann, and Domsh-
lak 2013b; Domshlak, Hoffmann, and Katz 2015).

Formally, a red-black planning task, short RB planning
task, is a 5-tuple Π = (V B, V R, A, I,G). Here, V B are
the black variables, and V R are the red ones. We require
that V B ∩ V R = ∅, and given the overall set of variables
V := V B ∪ V R, the remainder of the task syntax is defined
exactly as before. The major change lies in the semantics,
i. e., the definition of the state space ΘΠ.1

We refer to variable/value pairs over V B as black facts,
and to variable/value pairs over V R as red facts. A red-
black state, short RB state and denoted sRB, assigns non-
empty value subsets, rather than values, to the state vari-
ables, where |sRB(v)| = 1 for v ∈ V B. An action a is
applicable in sRB if prea[v] ∈ sRB[v] for all v ∈ V(prea).
Applying a in sRB changes the value of v ∈ V(effa) ∩ V B

to {effa[v]}, and changes the value of v ∈ V(effa) ∩ V R to
sRB[v] ∪ {effa[v]}. The outcome state is denoted sRBJaK.

The red-black initial state, short RB initial state and de-
noted sRB0 , is the one where every variable contains just its
initial value as prescribed by I . Red-black goal states, short
RB goal states, are those sRB where G[v] ∈ sRB[v] for all
v ∈ V(G). A solution for ΘΠ is called a red-black plan,
short RB plan, for Π.

Given an FDR task Π = (V,A, I,G), a painting is a
partition of the variables V into two subsets, V B and V R.
Given a painting, a plan for the red-black planning task
(V B, V R, A, I,G) is called a red-black plan for Π.
Example 1. As a running example, we consider the IPC
NoMystery domain, where a truck has to transport packages
subject to fuel restrictions. We will be using simple examples
with two packages and locations, as illustrated in Figure 1.

Our examples will differ only in the initial amount of fuel.
The FDR encoding for all examples has four state vari-
ables: the truck position t ∈ {A,B}, the current amount
of fuel f ∈ {0, 1, 2}, and the positions of the packages
p1, p2 ∈ {T,A,B} (T meaning that the package is cur-
rently in the truck). There are actions to drive the truck

1We intentionally do not refer to ΘΠ as the “red-black state
space”, because we will use that name for the transition system
introduced in the next section, which branches only over black state
transitions. The definition of ΘΠ here is impractical, and is relevant
only to the semantics definition.



A B

Figure 1: Running example: transportation with limited
fuel.

from location X to location Y , assuming remaining fuel Z,
and consuming one fuel unit; to load package X at loca-
tion Y ; and to unload package X at location Y . For ex-
ample, drive(A,B, 2) has precondition {t = A, f = 2}
and effect {t = B, f = 1}. In the initial state, shown
in Figure 1, the truck and p1 are at A, and p2 is at B.
The goal is to swap the positions of the packages, i. e.,
G = {p1 = B, p2 = A}. Throughout, we will use the
painting V B = {t, f}, V R = {p1, p2}, i. e., truck and fuel
are black, packages are red.

For an initial fuel amount of f = 2, an RB plan is
〈load(p1, A), drive(A,B, 2), unload(p1, B), load(p2, B),
drive(B,A, 1), unload(p2, A)〉. Note that this RB plan
does not “cheat” – it is a plan for the original input plan Π.
For t and f , this is necessarily so as they are painted black.
For the packages, the red-black plan could in principle
insert invalid additional actions (like loading p1 twice at
A), but a non-redundant red-black plan won’t do that.2

Say now that instead f = 1 in the initial state. Then,
obviously, a real plan for the task does not exist. Remark-
ably, a red-black plan does not exist either: (a) the pack-
age goals still obligate the truck to be at A,B,A in this se-
quence, while (b) this cannot be done given that both t and
f are black. Note here the contrast to projection onto the
black variables t and f (Bäckström, Jonsson, and Ståhlberg
2013) which foregoes (a), and delete-relaxed planning/hmax

(Bonet and Geffner 2001; Hoffmann and Nebel 2001) which
foregoes (b): these known methods cannot detect the dead-
end here. Combining their virtues, red-black planning can.

If V B = V , then the red-black plans for Π coincide with
the (real) plans for Π. If V R = V , then the red-black
plans for Π coincide with the (fully) delete-relaxed ones. In
this sense, red-black planning is a partial delete relaxation
method, allowing to interpolate between delete-relaxed and
real planning. Yet, as outlined in the introduction, prior work
hardly made use of that power, limiting itself to tractable
fragments of red-black planning (more precisely, tractable
fragments for red-black plan generation). We next introduce
a generally applicable red-black planning method, allowing
to handle arbitrary input FDR tasks and paintings.

Red-Black State Space Search
In principle, one could of course generate red-black plans
simply by search in the state space of a red-black plan-

2Indeed, in our painting here, only “causal graph leaf variables”
are painted red, in which case every non-rendundant red-black plan
is guaranteed to be a real plan (Katz, Hoffmann, and Domshlak
2013b). This is not so in general of course. Our examples here are
merely intended as simple illustrations of our main points.

ning task, as defined above. This would, however, not
benefit much from the monotonic behavior of red vari-
ables. In particular, if all variables are red, then this would
be a search in the state space over delete-relaxed actions,
as opposed to the known efficient algorithm for that case,
which just performs a forward fixed point operation ap-
plying all actions in parallel layers (Blum and Furst 1997;
Hoffmann and Nebel 2001). Our key observation here is
that the latter algorithm can be combined with state space
search into a hybrid, red-black state space search, which
branches only over those actions affecting black variables,
while handling the other actions through red forward fixed
points associated with individual state transitions.

The forward phase of red-black state space search chains
forward until reaching the goal (for readers familiar with re-
laxed planning: “state space search with a relaxed planning
graph at each transition”), at which point a backward phase
extracts a red-black plan (“extracting the solution path with
a relaxed plan extraction step at each transition”). In what
follows, we specify first the former, then the latter. We con-
clude the section by examining the algorithm’s runtime be-
havior, as a function of the fraction of black variables.

Forward Phase: States & Transitions
As stated, we distinguish two kinds of actions, those affect-
ing black variables vs. those that don’t. More precisely ac-
tually, our definition of red actions is dependent on the RB
state sRB in question, collecting all those whose black ef-
fects do not affect that state. These are exactly the actions
we do not need to branch over in sRB. We project these ac-
tions onto the red variables, for the purpose of the relaxed
(the “red”) fixed point in sRB:

Definition 1 (Red Actions). Let Π = (V B, V R, A, I,G) be
an RB planning task, and let sRB be an RB state. The set of
red actions in sRB, denoted AR(sRB), contains an action aR
for every a ∈ Awhere prea[V B] ⊆ sRB and effa[V B] ⊆ sRB.
aR is defined as preaR := prea[V R] and effaR := effa[V R].

The red forward fixed point in sRB, and the red plan ex-
traction later on, are easiest to formulate via a fully delete-
relaxed planning task. We formalize this here as a red-black
planning task with red variables only:

Definition 2 (Red Relaxation). Let Π = (V B, V R, A, I,G)
be an RB planning task. Let sRB be an RB state, and
let g be a set of red facts. The red relaxation of sRB
given g, denoted Π+(sRB, g), is the RB task Π+(sRB, g) :=
(∅, V R, AR(sRB), sRB[V R], g). If the set g is not relevant, we
will just use Π+(sRB).

This task is defined as one would expect, using the red
variables V R only, using the red actions AR(sRB) as per
above, using the red facts sRB[V R] of sRB as the initial state.
The set g here will play a role only during the red plan ex-
traction step later on (it will be the red-fact subgoals prop-
agated into this step from the postfix of the red-black plan
extraction). For the forward step, we are interested merely
in what red facts are reachable given Π+(sRB) (“the relaxed
planning graph fixed point layer”). It will be convenient to
perceive these red facts as an extension of the RB state sRB



we started out with, enriching sRB with the additional red
facts reachable when applying red actions only:

Definition 3 (Red Fixed Point). Let Π = (V B, V R, A, I,G)
be an RB planning task, and let sRB be an RB state. The
red fixed point of sRB, denoted F+(sRB), is the RB state tRB
where tRB[V B] = sRB[V B], and tRB[V R] is the set of all red
facts reachable from sRB[V R] in Π+(sRB).

The red-black state space can now be specified very eas-
ily, as a labeled transition system interleaving black-variable
transitions with red-variable fixed points:

Definition 4 (RB State Space). Let Π = (V B, V R, A, I,G)
be an RB planning task. The red-black state space of Π,
short RB state space and denoted ΘRB

Π , is the transition sys-
tem ΘRB = (SRB, TRB, sRB0 , SRB

G ) where:
• SRB is the set of all RB states.
• sRB0 is the RB initial state.
• SRB

G contains the RB states sRB where F+(sRB) is an RB
goal state.

• TRB is the set of transitions sRB
a−→ tRB where

eff(a)[V B] 6⊆ sRB[V B], a is applicable to F+(sRB), and
tRB = F+(sRB)JaK.

Note that this definition is modular, in the sense that it
is independent of how exactly red fixed points are being
computed. Standard methods, like relaxed planning graphs
(Hoffmann and Nebel 2001), take low-order polynomial
runtime. To illustrate the definition, consider again our run-
ning example:

Example 2. We consider first the solvable variant where we
have two fuel units, f = 2, in the initial state. Figure 2
shows part of the red-black state space.

sRB0 :{tA, f2, p1A,
p2B}

F+: {p1T}
sRB1 :{tB, f1, p1A,

p2B, p1T}
F+: {p1B, p2T}

sRB2 :
{tA, f0, p1A,

p2B, p1T ,
p1B, p2T}

F+: {p2A}

Figure 2: Part of the RB state space of our solvable running
example. Variable-value pairs v = d (facts) are abbreviated
by omitting the “=”. Black facts shown in black, red facts
in red, goal facts in boldface. F+ gives only those red facts
not already contained in the state itself.

We show here the part of the RB state space
corresponding to the solution path – the solution
of the labeled transition system ΘRB

Π – given by
〈sRB0 , drive(A,B, 2), sRB1 , drive(B,A, 1), sRB2 〉. Observe

how, in the transitions, e. g. sRB0

drive(A,B,2)−−−−−−−−→ sRB1 , the tar-
get state (sRB1 ) accumulates the red fixed point of the source
state (sRB0 ), and then in its own red fixed point accumulates
the now additionally reachable red facts. For sRB1 , the latter
facts are p1 = B and p2 = T , which were not reachable
in sRB0 as they rely on the black precondition t = B. Note
that the solution path does not specify what exactly to do
about the red variables; this is the task of the backward step
described in the next subsection.

Importantly, in each of sRB0 and sRB1 , the action we apply
labels the only outgoing transition in ΘRB

Π : the only black-
affecting actions are the drive ones, and these are the only
applicable such actions. In other words, Figure 2 actually
shows the entire RB state space up to the first goal state en-
countered. The same phenomenon leads to an even more
compact RB state space in the unsolvable example variant,
depicted in Figure 3.

sRB0 :{tA, f1, p1A,
p2B}

F+: {p1T}
sRB1 :{tB, f0, p1A,

p2B, p1T}
F+: {p1B, p2T}

Figure 3: The (entire) RB state space of our unsolvable run-
ning example. Notations as in Figure 2.

It is easy to see that the red-black state space preserves
red-black plans, in the following sense:

Theorem 1 (Completeness). Let Π = (V B, V R, A, I,G) be
an RB planning task. Let π = 〈a0, . . . , an−1〉 be an RB
plan for Π traversing RB states sRB0 , . . . , sRBn . Let πB be the
subsequence of ai in π where effai [V

B] 6⊆ sRBi [V B]. Then
πB labels a solution for ΘRB.

This is true simply because the red-black state space
branches over all actions that change the black part of the
state, while the red fixed point in each state captures every-
thing that can be done without changing that part of the state.

Note that the red-black state space is a labeled transition
system, just like the standard FDR state space. To find solu-
tions, we can apply any search algorithm. Indeed, our imple-
mentation in Fast Downward (FD) (Helmert 2006) merely
exchanges the state and state transition data structures, pre-
serving all search algorithms. We can also use any classical-
planning heuristic function that can be defined on red-black
states sRB. In our implementation, we realized this for the
standard delete-relaxed plan heuristic hFF (Hoffmann and
Nebel 2001), simply by applying hFF to the delete-relaxed
initial state containing all facts (red or black) true in sRB.

If all variables are black, then the RB state space is just
the standard state space, i. e., for the special case of fully
un-relaxed planning, the RB state space defaults to standard
forward search. More importantly, if all variables are red,
then the RB state space has a single state only, whose red
fixed point contains exactly those facts delete-relaxed reach-
able from the task’s initial state. In other words, as desired,
for the special case of fully delete-relaxed planning, the RB
state space defaults to a standard polynomial-time delete-
relaxed forward reachability check. In between, we obtain a
hybrid between these two. In particular, if there are red vari-
ables, then an additional RB plan extraction step is needed.

Backward Phase: Red-Black Plan Extraction
To extract an RB plan, where the forward phase built a re-
laxed planning graph at every transition sRB

a−→ tRB, we
now perform a corresponding relaxed plan extraction step.
The only difference to standard relaxed plan extraction lies
in the “initial state” and “goal” of this relaxed plan extrac-
tion. These are instantiated here with the red-black source



state sRB of the transition, respectively with the red sub-
goals propagated to the transition’s target state tRB, from the
previous relaxed plan extraction steps at the postfix behind
sRB

a−→ tRB.
To formalize this in a modular way – independently of

how exactly relaxed plans are being extracted – we specify
in what follows only the relaxed planning tasks to be solved,
not how they are being solved. Standard methods for the
latter are readily available (e. g. (Hoffmann and Nebel 2001;
Keyder and Geffner 2008)). To specify the propagation of
red subgoals without an explicit relaxed/red plan extraction
mechanism, we rely on regression: new red subgoals will
result from previous ones by regression over the red plan.
Definition 5 (Red Regression). Let Π = (V B, V R, A, I,G)
be an RB planning task. Let g be a set of red facts, and
let a ∈ A be an action. The red regression of g over a is
defined as RegressR(g, a) := prea[V R]∪ (g \effa[V R]). The
red regression of g by a sequence of actions a1, . . . , an ∈
An is recursively defined as RegressR(g, 〈a1, . . . , an〉) :=

RegressR(RegressR(g, an), 〈a1, . . . , an−1〉).

Red-black plan extraction can now conveniently be spec-
ified in a recursive manner, assuming in each step that the
postfix has already been dealt with, and pre-pending the plan
extracted so far with an additional red plan extraction step:
Definition 6 (RB Plan Extraction). Let Π = (V B, V R, A, I,
G) be an RB planning task. Let π = 〈sRB0 , a0, s

RB
1 , . . . ,

an−1, s
RB
n 〉 be a solution for ΘRB

Π . The red-black plan ex-
tracted from π, short RB plan and denoted πRB, is con-
structed as follows:

(ii) If n = 0, then πRB is defined as a plan for the task
Π+(sRB0 , G[V R]).

(iiii) Otherwise, let πRB
1 be the RB plan for the postfix

of π, i. e., for 〈sRB1 , a1, . . . , an−1, s
RB
n 〉. Let g :=

RegressR(G[V R], 〈a0〉◦πRB
1 ) be the regression of the

red goal facts over the concatenation of a0 with πRB
1 .

Finally, let π+
0 be a plan for the task Π+(sRB0 , g).

Then πRB is defined as π+
0 ◦ 〈a0〉 ◦ πRB

1 .

To illustrate red-black plan extraction, consider the solv-
able variant of our running example:
Example 3. Reconsider the RB state space shown in Fig-
ure 2, and the solution path π = 〈sRB0 , drive(A,B, 2), sRB1 ,
drive(B,A, 1), sRB2 〉. The recursion in Definition 6 contin-
ues until n = 0, i. e., until we consider just the trivial postfix
〈sRB2 〉. At this point, case (i) applies and we merely have
to construct a plan for Π+(sRB2 , G[V R]), i. e., the red-black
planning task which considers only the red package posi-
tion variables, starts from the red facts in sRB2 , and whose
goal is the original goal {p1 = B, p2 = A}. Say we ex-
tract the (obvious/only optimal) plan for Π+(sRB2 , G[V R]),
〈unload(p2, A)〉.

Going back up in the recursion, we consider next
the last transition on π, in the form of the postfix
〈sRB1 , drive(B,A, 1), sRB2 〉. Definition 6 case (ii) applies. In
the notation of that case, we have πRB

1 = 〈unload(p2, A)〉,
and we have g = RegressR(G[V R], 〈drive(B,A, 1)〉 ◦
〈unload(p2, A)〉) = {p2 = T, p1 = B}. In other words,

the red-black plan postfix is to unload p2 at A, and the
corresponding subgoal propagated here is for p2 to be in
the truck, plus the other top-level goal p1 = B, which
has not been addressed in the postfix so far. We need
to extract a plan for the task starting from the red facts
in sRB1 and achieving this subgoal. Say we extract the
plan 〈load(p2, B), unload(p1, B)〉. Then at this point our
red-black plan postfix is 〈load(p2, B), unload(p1, B)〉 ◦
〈drive(B,A, 1)〉 ◦ 〈unload(p2, A)〉.

The next step of the recursion considers the whole path
π, with πRB

1 as just specified, and with the regressed
red subgoal g = {p2 = B, p1 = T}. Starting
from the red facts in sRB0 , this subgoal can be achieved
by 〈load(p1, A)〉. Thus the final red-black plan πRB

constructed is 〈load(p1, A), drive(A,B, 2), load(p2, B),
unload(p1, B), drive(B,A, 1), unload(p2, A)〉.

By a simple inductive argument using the same recursion
as Definition 6, we get soundness:

Theorem 2 (Soundness). Let Π = (V B, V R, A, I,G) be an
RB planning task. Let π be a solution for ΘRB, and let πRB

be the RB plan extracted from π. Then πRB is an RB plan
for Π.

Performance Profile
Red-black state space search allows to interpolate between
(easy) delete-relaxed planning and (hard) real planning. But
how many variables can we paint black without making that
search prohibitively costly to conduct? The answer is: typi-
cally, more than you would expect. Have a look at Figure 4.
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Figure 4: Coverage and average runtime of red-black state
space search, compared to Fast Downward, as a function of
the fraction of black variables. Explanations see text.

The “FD” part of Figure 4 refers to the canonical con-
figuration of Fast Downward for satisficing planning, i. e.,
greedy best-first dual-queue search with hFF and preferred
operators. For red-black state space search, we use the ex-
act same search algorithm and implementation, based on
our aforementioned adaptation of the underlying state-space
data structures and hFF. Thus the only difference between
the configurations tested are the red variables.

We run all satisficing-planning STRIPS benchmarks from
the International Planning Competitions (IPC) 1998–2014,
as well as the resource-constrained benchmarks of Nakhost
et al. (2012), for a total of 1897 benchmark instances. We



use a cluster of Intel E5-2660 machines running at 2.20
GHz, with a runtime limit of 30 minutes, and a memory
limit of 4 GB (these same machines and limits will be used
throughout). The x-axis in Figure 4 shows the fraction of
black variables, i. e. |V B|/|V |, in percent. The underlying
paintings are obtained by fixing an ordering of the variables
– namely the “SCC-DFS” ordering introduced in the next
section – and painting the first x% of the variables black.
The runtime shown is the geometric average over the bench-
mark instances solved by at least one configuration (i. e., ei-
ther by FD, or by red-black state space search for some value
of x), and solving which takes non-trivial runtime (> 1 sec-
ond) for at least one configuration. For unsolved instances,
we insert the time-out of 1800 seconds into the average.

As Figure 4 shows quite clearly, we can typically paint
a large fraction of variables black while still being able to
solve the red-black task quickly. Even if we paint 90% of
the variables black, the average runtime is still less than half
that of the fully black (FD) search. We do lose coverage
substantially as x grows, from the full 1897 instances for
x = 0 to 1584 instances for x = 90, but we consistently
remain far above the 1358 instances solved by FD.

In summary, it is feasible to obtain highly informed red-
black plans. We next proceed to exploring two possible uses
of such plans, namely (i) generating seed plans for plan re-
pair, and (ii) proving planning task unsolvability. We con-
sider these applications in this order.

Red-Black Plan Repair
The idea here is to generate a red-black plan πRB, then hand
πRB over to a plan repair method to turn it into a real plan.
We baptize this approach red-black plan repair.

There are two basic design decisions to be made, namely
how to obtain the painting, and which plan repair mecha-
nism to use. Regarding the former, the fraction of black
variables encompasses a trade-off between the effort for red-
black state space search vs. that for plan repair. A natural
choice thus is to make the fraction of black variables an in-
put parameter, which we will denote by FB .

The question of choosing a painting now boils down to
choosing the given fraction of most preferred variables. Fol-
lowing Domshlak et al.’s (2015) work on painting strate-
gies for red-black planning heuristic functions, we formu-
late such preferences in terms of variable orderings. The
bFB ∗ |V |c first variables will be painted black.

It remains to specify the variable ordering. Intuitively,
variables “close to the causal graph root” should preferrably
be black. This suggests to use the level ordering, originally
introduced by Helmert (2004) and also used by Domshlak et
al. (2015). On the other hand though, intuitively the plan re-
pair mechanism will have an easier task if the part of the
problem it still needs to tackle is “coherent”, i. e., if the
painting does not put tightly linked parts of the problem on
different sides of the red/black border. To illustrate with an
extreme case: if the input task has two completely indepen-
dent parts, then intuitively each part should be completely
black or completely red, rather than a combination thereof.
We hence design a variant of the level ordering, where the

causal graph strongly connected components (SCC) are as-
signed increasing levels from root SCCs to leaf SCCs. Start-
ing at a level-0 SCC, we include successor SCCs in a depth-
first manner. We will refer to this ordering as SCC-DFS.

For repairing the red-black plan, we considered two meth-
ods. First, the aforementioned LPG planner – local search
in the space of partial plans – run in plan-adaptation mode
(Fox et al. 2006; Gerevini, Saetti, and Serina 2003). Second,
the plan-adaptation system ADJ (Gerevini and Serina 2000;
2010), which revises a flawed input plan by replacing incre-
mentally growing flawed plan portions, called “replanning
windows”, by new (sub)plans having incrementally bounded
lengths.3 We will refer to the first of these methods as LPG-
RB, and to the second one as ADJ-RB.

As before, we run all IPC satisficing-planning STRIPS
benchmarks, and Nakhost et al.’s (2012) resource-
constrained benchmarks. Figure 5 gives an overview of per-
formance for LPG-RB, aggregated over these benchmarks.
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Figure 5: Coverage and average runtime of red-black plan
repair with LPG-RB, compared to the FD and LPG base-
lines, as a function of the fraction of black variables. Expla-
nations see text.

FD in Figure 5 is the same canonical satisficing config-
uration as before, LPG is the default configuration starting
from an empty seed plan. Like in Figure 4, the runtime aver-
ages are geometric, and are taken over those instances solved
by at least one configuration, and solving which takes non-
trivial runtime for at least one configuration. The time-out
of 1800 seconds is inserted in unsolved cases.

In terms of overall coverage, FD is best by far. We will see
below that this is not so in some individual domains. LPG-
RB is slightly worse than LPG for x = 0, reflecting a known
observation about LPG, namely that seeding it with a fully
delete-relaxed plan tends to result in worse performance than
using an empty/no seed plan. However, this changes as we
increase the number of black variables, showing that, as ex-
pected, using red-black plans is better for plan repair. In
particular, LPG-RB is much more effective than LPG. Com-
pared to FD (whose runtime is the horizontal line directly
below that for LPG coverage), LPG-RB’s runtime is clearly
worse up to x = 70, and thereafter is marginally better.

3The (sub)plans of ADJ can be generated using any base plan-
ner. In our experiments here, we use the default incorporated plan-
ner Metric-FF (Hoffmann 2003).
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Figure 6: Overview data like Figure 5, for ADJ-RB.

Figure 6 shows the data for ADJ-RB. All settings are as
in Figure 5. The overall conclusions are similar as for LPG-
RB. The FD baseline dominates overall performance. ADJ-
RB profits substantially and consistently, in both coverage
and runtime, from a growing fraction of black variables.

There is, of course, a lot of variance across domains. In
particular, in several domains, performance over the base-
line(s) is strictly, sometimes vastly, improved.4

For space reasons, we don’t include detailed data for
our 55 test suites. For LPG-RB, in 13 test suites cover-
age becomes worse relative to LPG; in 6 suites, coverage
is not affected; in 13 suites, coverage increases but remains
worse than that of FD; in 15 suites, coverage increases up to
that of FD; and in 7 suites, coverage for LPG-RB exceeds
that of both baselines. The latter suites are Airport (cover-
age LPG 35, coverage for the best LPG-RB configuration
46, coverage FD 36); 3 NoMystery suites (overall LPG 9,
best LPG-RB 228, FD 103); 2 resource-constrained Rovers
suites (overall LPG 13, best LPG-RB 60, FD 33); and Tidy-
bot (LPG 10, best LPG-RB 17, FD 15).

For ADJ-RB, in 9 suites coverage becomes worse as x
grows; in 13 suites, it is not affected; in 14 suites, it increases
but remains worse than that of FD; in 11 suites, it increases
up to that of FD; in 8 suites, coverage for ADJ-RB exceeds
that of FD. The latter suites are Childsnack (best ADJ-RB
4, FD 3); 3 NoMystery suites (overall best ADJ-RB 228,
FD 103); Pathways (best ADJ-RB 21, FD 20); 2 resource-
constrained Rovers suites (overall best ADJ-RB 60, FD 33);
and Tidybot (best ADJ-RB 19, FD 15).

In resource-constrained NoMystery, LPG-RB and ADJ-
RB are state of the art. Together with decoupled search
(Gnad and Hoffmann 2015a; 2015b), they are the only plan-
ners that can solve all 175 instances of the “small” test suite.
The previously best planner, as per Nakhost et al.’s (2012)
extensive experiments, was FD-AutoTune which solves 152.

4Note also that we are somewhat “abusing” plan repair mecha-
nisms here. LPG in adaptation mode, and ADJ, are designed and
intended to be run in an execution & monitoring setting, where
failed plans may require repair, and these repairs can be expected
to be small, and/or the plans satisfy assumptions (“plan stability”
(Fox et al. 2006) or the “regular world” assumption” (Borrajo et al.
2015)) not considered here. In such settings, plan repair has been
shown to be much more efficient than planning from scratch.

Proving Unsolvability
We now turn our attention to proving the input planning task
Π unsolvable, within the red-black relaxation, i. e., by fully
building the red-black state space ΘRB for a suitable paint-
ing. If there is no solution for ΘRB, then by Theorem 1 there
is no red-black plan, hence no real plan for Π either. As il-
lustrated in Example 2, this is promising because painting
variables red preserves their need to reach their goals, yet
allows to avoid enumerating their value combinations.

But what is a “suitable painting”? Similarly as before,
we simplify this question here, to a decision about in which
order to paint variables black. Instead of fixing a ratio of
black variables, however, here we can use an incremental ap-
proach. We start with the empty set V B of black variables.
We then build ΘRB. We terminate if ΘRB has no solution.
Otherwise, we add the next variable into V B, and iterate.
This way, we don’t need to guess a priori how many black
variables we will need. As red-black tasks with few black
variables are typically solved quickly, the overhead from un-
successful iterations can be expected to be small – provided
of course that Π can be proved unsolvable with few black
variables. But if this is not so, then red-black state space
search is not a good approach anyhow.

So, how to order the variables? On Π that can be proved
unsolvable with few black variables, how to find those vari-
ables? Intuitively, as before, variables “close to the causal
graph root” should preferrably be black. In difference to
red-black plan repair, there is no second solver to which we
want to leave a coherent part of the problem, so instead of
a depth-first strategy we here use a breadth-first one, SCC-
BFS, which paints SCCs black by increasing level.

We also explore an alternative, more “conflict-directed”,
source of guidance, taking inspiration from the “C” paint-
ing strategy Domshlak et al. (2015) design for their heuristic
function. That strategy considers a fully delete-relaxed plan
π+, and counts for each variable v the number of action pre-
conditions that would be violated along π+ when painting v
black. Variables with a higher number of such conflicts are
painted black. We adopt this here by using, instead of a fully
delete-relaxed plan, the red-black plan πRB found in the pre-
vious iteration of the incremental process: the next variable
is one with the maximal number of conflicts in πRB. This
provides a more dynamic form of guidance, honing in on
the “holes” left over by the previous insufficient painting.
We refer to this strategy as Conf. We also experiment with a
simple combined strategy SCC-BFS-Conf, which breaks ties
in SCC-BFS, within each SCC, by the number of conflicts.

We use the suite of unsolvable benchmarks underlying
the current state-of-the-art experiments by Hoffmann et al.
(2014). Table 1 shows coverage data, i. e., the number of
instances proved unsolvable.

Our three painting strategies are shown as “RBb” for
SCC-BFS, “RBc” for Conf, and “RBbc” for SCC-BFS-
Conf. We compare against a selection of approaches from
Hoffmann et al.’s (2014) extensive experiments, namely
blind search (“Bli”) and search with hmax as canonical sim-
ple methods; exhaustive testing of small projections (“SP”)
as per Bäckström et al. (2013) to compare against this re-
cently proposed method; constrained BDDs (Torralba and



Domain # Bli hmax SP BDD MS1 MS2 RBb RBc RBbc BP DS

Bottleneck 25 10 21 10 15 10 21 12 25 25 5 0
3UNSAT 30 15 15 0 15 15 15 15 15 15 5 0
Mystery 9 2 2 6 9 9 6 7 2 2 0 0
NoMystery 25 0 0 8 14 25 25 24 24 24 14 24
PegSol 24 24 24 0 24 24 24 12 22 22 8 0
Rovers 25 0 1 3 10 17 9 25 11 25 0 0
Tiles 20 10 10 10 10 10 10 10 10 10 10 0
TPP 25 5 5 2 1 9 9 2 1 1 0 0∑

183 66 78 39 98 119 119 107 110 124 42 24

Table 1: Number of instances proved unsolvable. Best val-
ues highlighted in boldface. Left part: state of the art as per
Hoffmann et al. (2014). Middle part: red-black state space
search. Right part: particular comparisons. Explanations
and abbreviations see text.
Alcázar 2013) (“BDD”) as a competitive symbolic method
(named “BDD H2 in (Hoffmann, Kissmann, and Torralba
2014)); as well as the two most competitive variants of
merge-and-shrink by Hoffmann et al., namely their “Own+A
H2” (here: “MS1”) and their “Own+K N100k M100k hmax”
(here: “MS2”). This selection of planners represents the
state of the art in proving unsolvability in planning.

Our best configuration, RBbc, beats the state of the art in
overall coverage. It excels in Bottleneck and Rovers, where
red-black state space search is the only method able to solve
all instances. In NoMystery, together with merge-and-shrink
and DS (regarding which: see below), it performs way better
than all other planners. In the remaining domains, the per-
formance of red-black state space search is not as remark-
able, about in the mid-range in Mystery, PegSol, and TPP,
and on par with other planners in 3UNSAT and Tiles where
no planner seems to manage to do something interesting.

The “BP” and “DS” columns stand for black-projection,
respectively decoupled search (Gnad and Hoffmann 2015a;
2015b). BP is like our incremental RBbc method but con-
sidering the black variables only. It follows RBbc’s variable
ordering, SCC-BFS-Conf, until RBbc terminates; if the pro-
jection onto the black variables is at this point still solvable,
then BP continues with the SCC-BFS variable ordering. BP
has not been previously explored, and is included here to
show the benefit of considering red variables in addition to
the black ones. The data clearly attests to that benefit.

DS identifies a partition of the variables inducing a “star
topology”, then searches only over the “center” component
of the star, enumerating the possible moves for each “leaf”
component separately. We include it here because, like red-
black state space search, it can avoid the enumeration across
packages in NoMystery (each package is a leaf component).
DS is, however, limited to tasks with a useful star topology
that can be identified with the current variable partitioning
methods. The latter is rare on this benchmark set, and the
data clearly shows the benefit of not having that limitation.

In Rovers, red-black state space search clearly outper-
forms all competitors even when looking at coverage only.
In its other strongest domain, Bottleneck, the coverage dif-
ferences are less pronounced. Figure 7 shows runtime data
to point out the substantial runtime advantage. (The be-
havior of MS2 arises from having similar pruning power as
hmax on its own, but incurring a large runtime overhead from
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Figure 7: Runtime of the strongest planners in Bottleneck.

building the merge-and-shrink abstraction.) We remark that,
in NoMystery, all RB variants as well as DS have coverage
close to MS, yet lag far behind in runtime.

Consider finally Figure 8, a direct comparison between
red-black state space search and black-projection, as the set
of black variables V B grows. This provides an in-depth view
of the advantages of taking into account the remaining vari-
ables V \ V B as red ones, rather than ignoring them com-
pletely. The coverage advantage is dramatic, as red-black
state space search can make do with much smaller sets V B.
The runtime averages are taken over the commonly solved
instances for each value of x. We see that, as expected, red-
black state space search incurs a substantial overhead for
those tasks tackled also by projection with small V B. Yet as
the V B required in projection grows larger, that disadvantage
becomes smaller and finally disappears completely.
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Figure 8: Coverage and average runtime of red-black state
space search, compared to black-projection, as a function of
the fraction of black variables. Explanations see text.

Conclusion
Partial delete relaxation is powerful, yet has been chained to
the ground by its use in heuristic functions. Our investiga-
tion shows that other, intractable, applications may be very
useful. Red-black plan repair still requires further research;
promising options are, e. g., reordering steps to reduce con-
flicts, or using only parts (applicable prefixes, only black ac-
tions, . . . ) of the red-black plan. An interesting alternative is
to keep painting variables black until a real plan is found, ex-
ploiting in each iteration the information from the previous
one. Further directions are the generation of preferred oper-
ators, meta-heuristics intelligently selecting which method
to use (à la (Domshlak, Karpas, and Markovitch 2012)), etc.
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Bäckström, C., and Nebel, B. 1995. Complexity results
for SAS+ planning. Computational Intelligence 11(4):625–
655.
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detection of unsolvable planning instances using local con-
sistency. SOCS’13.
Blum, A. L., and Furst, M. L. 1997. Fast planning through
planning graph analysis. AIJ 90(1-2):279–298.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. AIJ 129(1–2):5–33.
Borrajo, Daniel and Roubı́čková, Anna and Serina, Ivan
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