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Abstract

Despite the widespread success of pattern database (PDB)
heuristics in classical planning, to date there has been no
application of PDBs to planning with numeric variables. In
this paper we attempt to close this gap. We address optimal
numeric planning involving conditions characterized by lin-
ear expressions and actions that modify numeric variables by
constant quantities. Building upon prior research, we present
an adaptation of PDB heuristics to numeric planning, intro-
ducing several approaches to deal with the unbounded na-
ture of numeric variable projections. These approaches aim
to restrict the initially infinite projections, thereby bounding
the number of states and ultimately constraining the resulting
PDBs. We show that the PDB heuristics obtained with our
approach can provide strong guidance for the search.

Code — https://github.com/dgnad/numeric-fast-downward
Datasets — https://doi.org/10.5281/zenodo.14502394

Introduction
In this work, we concentrate on simple numeric planning
(SNP) with instantaneous actions. Numeric state fluents in-
troduce a degree of complexity over classical planning,
making the plan existence problem undecidable in gen-
eral (Helmert 2002). Nevertheless, since the introduction of
numeric variables in PDDL2.1 (Fox and Long 2003), several
methods have been proposed to solve satisficing and optimal
variants of numeric planning problems (Hoffmann 2003b;
Shin and Davis 2005; Gerevini, Saetti, and Serina 2008; Ey-
erich, Mattmüller, and Röger 2009; Coles et al. 2013; Scala
et al. 2016; Illanes and McIlraith 2017; Li et al. 2018; Scala,
Haslum, and Thiébaux 2016; Scala et al. 2017; Aldinger and
Nebel 2017; Piacentini et al. 2018a,b; Kuroiwa et al. 2022;
Kuroiwa, Shleyfman, and Beck 2022). We consider here op-
timal planning in simple numeric planning, where numeric
variables can be increased or decreased by constant quanti-
ties and preconditions and goals are linear inequalities.

Previous works have utilized heuristics based on pattern
databases (PDBs) (Culberson and Schaeffer 1996, 1998) in
classical planning (Edelkamp 2002; Holte et al. 2004; Fel-
ner, Korf, and Hanan 2004; Haslum, Bonet, and Geffner
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2005; Holte et al. 2006; Anderson, Holte, and Schaeffer
2007; Haslum et al. 2007; Katz and Domshlak 2009). A
PDB heuristic considers only a subset of the state variables,
called the pattern, and captures this sub-task exactly. Other
variables are projected away in the heuristic calculation.

While showing state-of-the-art performance in classical
planning, to the best of our knowledge, PDB heuristics have
never been used in the numeric planning setting. Address-
ing this gap may be desirable for two reasons: (1) multi-
ple other heuristics known from classical planning, such as
hmax (Bonet and Geffner 2001), or LM-cut (Helmert and
Domshlak 2009), have been adopted successfully in numeric
planning, and (2) as PDB heuristics perform very well in
classical planning, it is reasonable to assume that their suc-
cess may be brought to the numeric realm.

Unlike in classical planning, the transition systems in-
duced by a projection of a task onto a set of variables that
include numeric fluents have infinitely many states. Thus,
to adopt approaches used in classical planning to gener-
ate informative PDBs, we need to bound the numeric tran-
sition system. We introduce several strategies that can be
employed to that end, bounding numeric transition sys-
tems effectively. One approach is to restrict the numeric flu-
ents within the transition system, reducing the infinite state
space to an incomplete finite one. Another approach defines
structure-specific constraints or rules that limit the possi-
ble values of numeric fluents during the transition, thereby
constraining the state space. Additionally, abstraction tech-
niques can be utilized to represent the numeric transition
system at a higher level of granularity, focusing only on rele-
vant aspects while abstracting away unnecessary details. By
implementing these strategies, it becomes feasible to gener-
ate informative PDBs for tasks involving numeric fluents in
planning domains. We discuss these approaches and provide
them with a theoretical background.

We evaluate our numeric PDBs by adapting established
pattern generation methods and using the canonical heuristic
to combine multiple PDBs admissibly. We compare against
state-of-the-art optimal planners for simple numeric tasks.

Preliminaries
We work over a fragment of numeric planning based on the
finite-domain representation (FDR) formalism (Bäckström
and Nebel 1995; Helmert 2009) extended with numeric flu-



ents called integer-restricted task (IRT). This is a variant
of the restricted numeric task (RT) formalism (Hoffmann
2003a), where all values of the numeric state variables are
integers. Hoffmann (2003a) shows that RTs are equivalent to
simple numeric tasks, and Helmert (2002) demonstrates that
any RT can be transformed into an IRT.

An IRT is a tuple Π = ⟨V,A, s0, G⟩, where V = Vn ∪ Vp
is a set of numeric and finite-domain variables, respectively.
A is the set of the actions of Π, s0 is the initial state, and
G is the goal description. All these sets are finite. The task
with no numeric variables, Vn = ∅, is called an FDR task.

Let v ∈ V , and letD(v) be its domain. Then, |D(v)| <∞
if v ∈ Vp and D(v) = Z otherwise. A state of Π is a full
assignment over the variables in V . The set of all states is
denoted S . Each state s ∈ S can be represented as a tu-
ple ⟨sp, sn⟩, where sp ∈

Ś

v∈Vp
D(v) and sn ∈

Ś

v∈Vn
Z.

⟨v, d⟩ denotes a fact, where v ∈ V and d ∈ D(v). We say
that s |= ⟨v, d⟩ or ⟨v, d⟩ ∈ s iff s[v] = d, where s[v] in-
dicates the value of v in s. A state s can be seen as a set of
facts, thus as a minor abuse of notation we write s = sp∪sn.
A set of facts spt is a partial state if spt ⊆ s and s ∈ S.

Conditions can be either propositional or numeric. Propo-
sitional conditions are formed out of facts ⟨v, d⟩, a non con-
tradicting set of such propositions forms a partial state spt.
spt is satisfied by the state s if spt ⊆ s. Numeric conditions
have the form v ▷◁ w, with ▷◁∈ {>,≥,=,≤, <}, v ∈ Vn,
andw ∈ Z. s |= v ▷◁ w if s[v] ▷◁ w. For a set of conditions
Ψ we say s |= Ψ if s |= ψ for each ψ ∈ Ψ.

A tuple ⟨pre(a), eff(a), cost(a)⟩ forms an action a ∈ A,
where pre(a) is the precondition, eff(a) is the effect, and
cost(a) is the cost of a. A precondition pre(a) := prep(a)∪
pren(a) consists of propositional and numeric conditions,
respectively. Similarly, an effect eff(a) := effp(a)∪ effn(a)
is a set of propositional and numeric effects. Numeric effects
in an IRT have the form (v += m), where v ∈ Vn and m ∈
Z \ {0}. We say that a is applicable in s if s |= pre(a), the
result of this application is sJaK := s′p∪s′n, with s′p[v] = d if
⟨v, d⟩ ∈ effp(a), s′n[v] = sn[v]+m if (v += m) ∈ effn(a),
and sJaK[v] = s[v] otherwise. We assume that each action
has at most one effect on each variable.

The goal descriptionG comprises both propositional con-
ditions, Gp, and numeric conditions, Gn. A state s∗ is con-
sidered a goal state if it satisfies the goal description, i.e.,
s∗ |= G. An s-plan, denoted as π, is a sequence of actions
applied consecutively, starting from the state s and leading
to some s∗. A plan for Π is an s0-plan. The cost of an s-plan
π is the sum of all its action costs and an optimal s-plan has
minimal cost among all possible s-plans. The optimal cost of
an s-plan is denoted by h∗(s) and called perfect heuristic. If
no goal state is reachable from s we define h∗(s) :=∞.

Let T = ⟨S,L, cost, T, s0, S∗⟩ be a directed weighted la-
beled graph called a labeled transition system (LTS), where
S denotes the set of states, L is the set of labels, cost : L→
R0+ is the cost function, T ⊆ S×S×L is the set of transi-
tions, s0 ∈ S is the initial state, and S∗ the set of goal states.
By (s, s′, l) ∈ T we denote a transition from s to s′ under la-
bel l. Note that every planning task Π defines an LTS, which
we denote by TΠ. The main difference between classical and

numeric planning is that in the former there is finite number
of states, while in the latter it often occurs that |S| =∞.

A path from s ∈ S to s′ ∈ S, denoted path(s, s′) is
a sequence ⟨t1, . . . , tn⟩ of transitions such that there ex-
ists a sequence of states s = s0, . . . , sn = s′ with ti =
(si−1, si, li) ∈ T for all i ∈ [n]. We allow the special case
of an empty path from s to s, denoted ⟨⟩. The cost of a path is
given by cost(s, s′) := cost(path(s, s′)) =

∑n
i=1 cost(li),

the cost of an empty path is zero, and if no path exists, we
set the cost to be infinity. cost∗(s, s′) is the minimal cost of
a path from s to s′.

The state space of an IRT Π = ⟨V,A, s0, G⟩ is the LTS
TΠ = ⟨S,A, cost, T, s0, S∗⟩, where S := S, the labels are
the action names in A and the transitions are defined by
(s, sJaK, a) with cost cost(a). The initial states s0 coincide
and the goal states are S∗ = {s ∈ S | s |= G}. A plan π for
Π corresponds to a path from s0 to some goal state s∗ ∈ S∗.
An optimal plan π is given by the cheapest path from s0 to
some s∗ ∈ S∗, i.e., cost(π) = mins∗∈S∗ cost

∗(s, s∗).

PDBs for Classical Planning
One of the most employed algorithms to optimally solve
planning tasks is A∗ search (Hart, Nilsson, and Raphael
1968) with an admissible heuristic, which estimates the cost
of reaching a goal state. A heuristic h : S → R0+ ∪ {∞} is
called admissible if it assigns every state s an estimate such
that h(s) ≤ h∗(s). A Pattern Database (PDB) heuristic, de-
noted as h

∣∣
P

, is induced by a subset of variables P ⊆ V
comprising the variables of Π, known as the pattern. All
variables that are not in the pattern are ignored, thus induc-
ing an abstraction of the state space. A projection maps each
state in the original state space to a state in the abstract state
space. h

∣∣
P
(s) is defined as the perfect heuristic in the projec-

tion Π
∣∣
P

of Π onto P . Such a projection can be computed
by eliminating all occurrences of variables from V \ P in
Π. PDB heuristics are usually precomputed once by deter-
mining the optimal solution costs, h

∣∣
P
(s
∣∣
P
), for all abstract

states s
∣∣
P
∈ S

∣∣
P

in the abstract planning task Π
∣∣
P

.
Regression search is commonly used for calculating dis-

tances in abstract state spaces instead of progression search.
Unlike progression, which starts from the initial abstract
state and requires two iterations to compute the heuristic,
regression begins from the abstract goal states and works
backwards, computing the heuristic in a single exploration.
This avoids redundant distance calculations and can identify
dead ends, which are the abstract states that are not reach-
able from a goal state during regression.

During the search process, concrete states s are projected
onto the variables in P . A perfect hash function (Sievers, Or-
tlieb, and Helmert 2012) is used for efficient lookup of the
heuristic value. This hash function is well-defined for all par-
tial states spt defined over the variables in P . PDBs grow ex-
ponentially in the number of included variables, which lim-
its the heuristic accuracy of single-PDB heuristics. Conse-
quently, state-of-the-art planners employ various techniques
to admissibly combine multiple small PDB heuristics.

Combining Multiple PDBs Let H be a set of admissible
heuristics. For any state s a maximum over this set of heuris-



tics is an admissible estimate. We say that H is additive if∑
h∈H h(s) is admissible. A sufficient condition for a set of

PDB heuristics H to be additive was proposed by Haslum
et al. (2007) who introduced the canonical heuristic based
on the disjoint additivity of patterns underlying the PDBs.
Two patterns P1 and P2 are disjoint-additive if there exists
no action a that affects at least one variable in each pattern.
For a set (collection) of patterns C, the heuristic hC is de-
fined as the maximum over the sums of PDB heuristics in-
duced by patterns in maximal disjoint-additive subsets, i.e.,
hC = maxM∈M(C)

∑
P∈M h

∣∣
P

, where M(C) is a set of
maximal disjoint-additive subsets of C. hC is admissible.

Causal Graphs for Numeric Planning
Planning tasks are often complex, prompting the use of var-
ious methods to study their structure. One such method is
the causal graph (CG), commonly used in classical plan-
ning (e.g. Knoblock (1994); Bacchus and Yang (1994); Braf-
man and Domshlak (2003)). Shleyfman et al. (2023) ap-
plied Helmert’s (2004) compact definition of CGs to RTs.
Let vars(Ψ) be the set of variables involved in a set of for-
mulas Ψ. For each formula ψ ∈ Ψ, vars(ψ) returns a single
variable. Since, in RTs, all conditions and effects, whether
numeric or propositional, involve exactly one variable per
formula, the CG definition can be applied almost directly.

The CG of an IRT planning task Π = ⟨V,A, s0, G⟩ is a
digraph CG(Π) = ⟨V, E⟩ with nodes V , where (u, v) ∈ E
if u ̸= v and there exists an a ∈ A, s.t. u ∈ vars(pre(a)) ∪
vars(eff(a)) and v ∈ vars(eff(a)). In essence, in a causal
graph, there is an edge from a variable v to a variable v′ if
changing the value of v′ might necessitate a change in the
value of v, showing that v′ depends on v.

PDB Heuristics for Integer Variables
Common techniques employed to compute PDBs for classi-
cal planning involve computing the entire LTS across the
specified projection. In the context of numeric planning,
though, even projecting the task onto a subset of variables,
with at least one being numeric, may yield an infinite LTS.
In this section we introduce several approaches that are ca-
pable of dealing with potentially infinite LTSs. We define
infinite LTSs and discuss the challenges involved in having
PDBs with infinite state spaces.

How to Deal with Numeric Variables?
The first question is which numbers PDB heuristics can han-
dle. We use integers, covering much of numeric planning
(Helmert 2002; Hoffmann 2003a; Gnad et al. 2023). But this
is not a strict requirement; our approach supports any setting
where only a finite set of values needs to be distinguished
for each numeric variable. A more significant limitation in-
volves numeric effects. In IRTs, effects are restricted to con-
stant additions. Allowing effects like x := y would cause
infinite branching in the abstract LTS if x ∈ P but y /∈ P .
To avoid this, we transform the task into IRT form, where
action effects are independent of other variables.

PDB heuristics compute the abstract state space for a pat-
tern P and minimal goal distances for all abstract states. For

this, usually regression search is used for efficiency. In pres-
ence of numeric non-goal variables in P or goal expressions
using inequalities, however, which imply infinitely many ab-
stract goal states, this fails. We use progression search from
the abstract initial state s0

∣∣
P

to address this, exploring up
to N states or until exhaustion. We then compute goal dis-
tances using regression. If the state limitN is reached, fringe
states lack distances, which we approximate, e.g. by the min-
imum action cost. After constructing the abstract LTS, we
store goal distances in a lookup table with hashing. Details
are shown in Algorithm 1. Since only finitely many numeric
values are reachable during the LTS construction, numeric
variables can be treated as finite-domain, and hashes are
computed similar to classical planning.

A downside of partially constructing the abstract state
space is that we may visit a concrete state s in the main
search without an abstract counterpart s|P in the PDB. This
occurs when an insufficient portion of the domain of nu-
meric variables x ∈ P ∩ Vn is generated during PDB con-
struction. We propose to ignore this PDB using a heuristic
value of 0, since large collections of PDB heuristics are typ-
ically used, another PDB heuristic is likely to cover state s.

Exploit Known Bounds of Tractable IRT Fragments
Prior work has established multiple conditions that allow to
bound the state space of a numeric planning task (Helmert
2002; Shleyfman, Gnad, and Jonsson 2023; Gigante and
Scala 2023; Helal and Lakemeyer 2024). Of particular in-
terest for our work are results that impose conditions on the
variables dependencies of a planning task, e. g., by restrict-
ing the structure of the CG. If we select the pattern P ⊆ V
such that the projection Π

∣∣
P

can be bounded, then we have
the guarantee that the abstract state space can be exhausted.
For some fragments of RT Shleyfman, Gnad, and Jonsson
(2023) provide a recipe to compute the bounded domain in-
tervals, which can be used to estimate the size of a PDB.

Care is needed as ignoring dependencies outside P is an
approximation. If a numeric variable v ∈ P depends cycli-
cally on a variable not in P , the projection’s bound may be
invalid in the full task. Even valid bounds might fail if states
in the search exceed them. CG analyses consider in-bound
values sufficient but do not ensure others are unreachable.
We address this by discarding PDBs for out-of-bound states.

Homomorphisms of Infinite LTSs
Since numeric tasks typically induce infinite LTSs, we
present below a standard definition for mapping one LTS
to another, bearing in mind that in our case the number of
states is infinite. We argue that the distance-to-goal in the
image LTS is an admissible heuristic in the original one.

LTSs can be viewed as first-order relational structures
used in logic and model theory. Formally, an LTS T =
⟨S,L, cost, T, s0, S∗⟩ is a relational structure defined in
S ∪ L endowed with unary predicates that define states and
labels, a ternary relation T , a constant s0, and a unary pred-
icate S∗. Thus, we can use the standard definition of homo-
morphism from model theory. In the planning literature, LTS
homomorphisms are also called abstractions (Libkin 2004).



Algorithm 1: Numeric PDB Construction
Input: IRT Π = ⟨V,A, s0, G⟩, pattern P , max. # of statesN
Output: PDB heuristic hPDB(s)

1: open.insert(s0
∣∣
P
, 0), closed← ∅, goals← ∅

2: while open ̸= ∅ and |closed|+ |open| < N do
3: s← open.pop min()
4: closed← closed ∪ {s}
5: if s |= G

∣∣
P

then
6: goals← goals ∪ {s}
7: for each a ∈ A : s |= pre(a)

∣∣
P

do
8: s′ ← sJaK
9: s′.parents← s′.parents ∪ {(s, a)}

10: g(s′)← g(s) + cost(a)
11: if s′ /∈ closed then
12: open.insert(s′, g(s′))

13: backward← ∅
14: for each s ∈ goals do
15: backward.insert(s, 0)

16: for each s ∈ open do
17: hPDB(s)← Approximate distance to goal
18: backward.insert(s, hPDB(s))

19: while backward ̸= ∅ do
20: s′ ← backward.pop min()
21: for each (s, a) ∈ s′.parents do
22: hPDB(s)← min(hPDB(s), hPDB(s

′) + cost(a))
23: backward.insert(s, hPDB(s))

Definition 1. Let T = ⟨S,L, cost, T, s0, S∗⟩ and T ′ =
⟨S′, L′, cost′, T ′, s′0, S

′
∗⟩ be two LTSs. We say that the map

α : S ∪ L→ S′ ∪ L′ is anLTS homomorphism if:

1. α(S) ⊆ S′ and α(L) ⊆ L′,
2. α(T ) ⊆ T ′, where α((s, s′, l)) = (α(s), α(s′), α(l)),
3. cost(α(l)) ≤ cost(l) for each l ∈ L, and
4. α(s0) = s′0 and α(S∗) ⊆ S′

∗.

To ease notation, we extend the mapping α to se-
quences α(⟨x1, . . . , xn⟩)=⟨α(x1), . . . , α(xn)⟩ and sets
α({x1, . . . , xn})={α(x1), . . . , α(xn)}. By α(T ) we de-
note the image of T under α.

The special case of LTS homomorphisms that map the
LTS to itself is called an endomorphism and was defined by
Horčı́k and Fišer (2021). A bijective endomorphism is called
an automorphism. These morphisms were studied by Shleyf-
man et al. (2015; 2023) in the context of numeric planning.
The methods mentioned deal with state and action pruning.

Since existential-positive formulas are invariant under ho-
momorphisms, they also preserve plans, i. e., the cost of a
resulting plan is no greater than the cost of the original plan.

Theorem 1. For a homomorphismα of an LTS T and plan π
for T , α(π) is a plan for α(T ) with cost(α(π)) ≤ cost(π).

Proof. Let π be a sequence of transitions that starts at s0
and ends at some s∗. Note that while T may be an infinite
transition system, π is always finite. Then, π is a path due to
Property 2., the initial and goal states go to initial and goal

state, respectively, due to Property 4., and the non-increasing
cost Property 3. of Definition 1.

Let π∗
s be an optimal s-plan for T , and let π∗

α(s) be an
optimal α(s)-plan for α(T ). Then, by Theorem 1 we have
that cost(π∗

α(s)) ≤ cost(π∗
s ), and the function hα(s) :=

cost(π∗
α(s)) is an admissible and consistent heuristic for T .

Orthogonal Projections of Infinite LTSs
We next discuss a method for combining estimates of dif-
ferent PDB heuristics additively. Here, we show that while
orthogonal projections are additive in the IRT setting, it is
impossible for a numeric variable with goal conditions to
appear in two patterns that are combined additively.

Let Π = ⟨V,A, s0, G⟩ be an IRT and let P be a sub-
set of V . For a ∈ A and s ∈ S , the mapping α(s) :=
s
∣∣
P

and α(a) := a defines a homomorphism between
the transition systems TΠ = ⟨S,A, cost, T, s0, S∗⟩ and
T
∣∣
P

= ⟨S
∣∣
P
,A, cost, α(T ), s0

∣∣
P
, S∗

∣∣
P
⟩, where the tran-

sitions in α(T ) are given by the action ⟨pre(a)
∣∣
P
, eff(a)

∣∣
P
⟩,

i.e., α((s, sJaK, a)) := (s
∣∣
P
, s
∣∣
P

JaK, a). Checking that the
last map is well-defined proves that α is a homomorphism.

As we want to combine multiple heuristics admissibly, we
next look into additivity of multiple patterns. We recall the
definition of orthogonal projections and adopt it for IRTs.

Definition 2. Let T be an LTS, and let α and β be homo-
morphisms for T . We say that α and β are orthogonal if for
every transition (s, s′, l) ∈ T in every plan for T it holds
that α(s) = α(s′) or β(s) = β(s′).

In classical planning orthogonal abstractions yield an ad-
missible additive heuristic estimate for every s that is reach-
able from s0. The same result holds for infinite LTSs.

Proposition 1. Let α and β be orthogonal LTS homo-
morphisms and let s be reachable from s0. Then hα(s) +
hβ(s) ≤ h∗(s).

Proof. Since s is reachable from s0, each s-plan can be ex-
tended into an s0-plan. Let πs = ⟨t1, . . . , tn⟩ be an optimal
s-plan. Then, by orthogonality we have that each transition
for t ∈ T in πs is a self-loop in α(T ) or β(T ). Thus, there
are sub-sequences π1 and π2 of πs s.t. α(π1) is an α(s)-plan
for α(T ), β(π2) is an β(s)-plan for β(T ), and π1 and π2 do
not share any transitions. Since α(π1) and β(π2) are s-plans,
but not necessary optimal plans, we have:

hα(s) + hβ(s) ≤ cost(α(π1)) + cost(β(π2)) ≤ h∗(s).

Thus, as in classical planning, one can use additive heuris-
tics with projection patterns that do not have similar non-
looping transitions. Unfortunately, there are also challenges.
Unlike finite domain variables, there are no loop transitions
for actions that affect numeric variables in the pattern.

Proposition 2. Let Π = ⟨V,A, s0, G⟩ be an IRT with a nu-
meric variable x ∈ Vn s.t. s0[x] ̸|= G

∣∣
{x}, and let α and

β be two projections on patterns P and P ′, respectively, s.t.
x ∈ P ∩ P ′. Then, α and β are not orthogonal.
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Figure 1: Per-instance comparison of the number of ex-
panded states of finite-domain vs. numeric iPDB.

Proof. Let π be a plan for Π. Since s0[x] ̸|= G
∣∣
{x} there

must be an action a along π that changes the value of x.
Assume this action corresponds to the transition (s, s′, a)
where s[x] ̸= s′[x]. Thus, s

∣∣
P
̸= s′

∣∣
P

and s
∣∣
P ′ ̸= s′

∣∣
P ′ .

Hence, both transitions (α(s), α(s′), a) and (β(s), β(s′), a)
are both not loops, i.e., α and β are not orthogonal.

Bounding Infinite LTSs
We conclude this section by presenting an algorithm to par-
tially generate an infinite LTS in order to obtain an admissi-
ble heuristic. Note that the proposed heuristic will be infor-
mative only on a subset of the original states.

Let T be an LTS with the initial state s0. Let us look at the
states that are reachable from s0. Consider a sub-transition
system T ′ over the states S′ = SE ∪ SF , s.t.

1. T ′ ⊆ T and S′
∗ ⊆ S∗,

2. all states in SE ∪ SF are reachable from s0,
3. if s ∈ SE and (s, s′, l) ∈ T then (s, s′, l) ∈ T ′, i.e., all

successors of s are in T ′,
4. if s is in SF , then none of its successors are in T ′, i.e., s

has no outgoing edges in T ′, and lastly
5. if s∗ ∈ S′

∗ then s∗ ∈ SF .

Note that T ′ corresponds to the Best First Search (BFS)
paradigm, where we gradually traverse the LTS by expand-
ing nodes one by one by taking candidates from a fringe.
In our case, SE corresponds to the expanded nodes and
SF to the open nodes in the fringe. Unlike a regular BFS,
instead of a search tree, we keep the full graph structure.
We also note that there is no point in expanding the goal
states, since we are interested in the shortest path to the goal.
The pseudocode for computing a PDB heuristic hPDB is pro-
vided in Algorithm 1. There, SE corresponds to the states in
open ∪ goals and SF corresponds to the states in closed.

For this finite sub-LTS T ′, we define the following heuris-
tic for the states in SE ∪ SF :

hPDB(s) = min
s′∈SF

{cost∗(s, s′) + d(s′)},

where d(s′) = 0 if s′ is a goal state and the minimal cost of
any action applicable in s′ otherwise.
Proposition 3. hPDB is admissible on the states in SE ∪SF .

Proof. Note that no state in SF ∪ SE can be reached from
s ∈ SF , so hPDB(s) is admissible by the definition of d(s)
for all s ∈ SF . It remains to show admissibility for s ∈ SE .

Let π∗
s be an optimal s-plan. Since, by definition of a sub-

LTS T ′, for each s ∈ SE , along each s-plan π there is at
least one state s′ such that s′ ∈ SF . In the LTS T ′ we are
always looking at the first such state, since states in SF have
no outgoing edges. Let s∗F be such a state for π∗

s . Then,

h∗(s) = cost∗(s, s∗F ) + h∗(s∗F )

≥ min
s′∈SF

{cost∗(s, s′) + h(s′)} = hPDB(s).

For a pattern P ⊆ V , the projection of Π onto P is a
valid planning task, thus using the heuristic hPDB(s) we can
construct a PDB for a bounded number of states.

We proposed the first adaptation of PDB heuristics for
SNP, addressing the unbounded nature of numeric variables.
We now explore adapting pattern generation for IRT.

Pattern Generation for Numeric Variables
The success of PDB heuristics in classical planning relies
on generating multiple patterns to capture different aspects
of a task and combining several PDB heuristics admissibly.
These components are tightly connected and often studied
together, see Haslum (2007) and Pommerening et al. (2013).

A strong method for both components, called iPDB, uses
hill-climbing to optimize heuristic quality on sampled states,
creating a pattern collection evaluated during the process
(Haslum et al. 2007). The hill-climbing extends patterns by
adding variables, improving the pattern collection over time.
Another approach, systematic pattern generation, enumer-
ates all patterns with k variables, focusing on interesting pat-
terns that include goal and causally related variables (Pom-
merening, Röger, and Helmert 2013). Both methods com-
bine patterns with the canonical PDB heuristic, identifying
additive patterns by checking action dependencies.

We adapt pattern generation methods to handle numeric
variables. As with finite-domain variables, we start with goal
variables and use the numeric CG to identify related vari-
ables, constructing systematic patterns without additional
reasoning. For iPDBs, we guide the hill-climbing process
to prevent overly large abstract state spaces.

The base iPDB variant bounds the pattern size by the
domain-size product of variables, which does not apply
to numeric variables. Instead, we approximate the relevant
range of values for each variable using explicit numeric in-
tervals [M−

x ,M
+
x ] (ENI) and maximum additive constants

C+
x and C−

x (Shleyfman, Gnad, and Jonsson 2023). We esti-
mate reachable values in [M−

x −C−
x ,M

+
x +C+

x ] by dividing
the range by the GCD of the effects on x. While not a sound
bound, this provides a reasonable approximation.

Experimental Evaluation
Our planner is based on the Numeric Fast Downward frame-
work (NFD) (Aldinger and Nebel 2017; Kuroiwa et al.
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Figure 2: Per-instance comparison of the search-space size (number of state expansions until last f -layer) and runtime of blind
search and A∗ with LM-cut vs. numeric iPDB. Points below the diagonal favor our approach.

2022). We adapted the implementation of pattern-database
heuristics from Fast Downward (Helmert 2006) to support
numeric variables. All experiment data and code is avail-
able online (Gnad et al. 2024), and our code is maintained
in a public repository.1 The experiments were conducted on
a cluster of Intel Xeon Gold 6130 CPUs using Downward
Lab 8.2 (Seipp et al. 2017), adopting the runtime and mem-
ory limits of 30 min and 8GiB from the recent International
Planning Competition (IPC) 2023 (Taitler et al. 2024). We
also adopt the simple numeric benchmark set from IPC’23.
We extend it with existing benchmarks from the litera-
ture (Scala, Haslum, and Thiébaux 2016; Scala et al. 2017,
2020; Shleyfman, Kuroiwa, and Beck 2023) and introduce
two benchmark sets ourselves, forestfire and minecraft. For
minecraft we generated 20 so-called “advanced” instances
for each of the two variants of the domain, crafting a pogo-
stick, respectively a sword (Benyamin et al. 2024).

We compare our approach against the interval-relaxed
hmax heuristic (imax) (Aldinger and Nebel 2017), the rep-
etition hmax heuristic (rmax) (Scala et al. 2020), the nu-
meric landmark heuristic (LM) (Scala et al. 2017), and the
winning heuristics from IPC’23’s numeric track, numeric
LM-cut (LMc) (Kuroiwa et al. 2022) and numeric opera-
tor counting (OPC) (Kuroiwa et al. 2021). For consistency,
orbit-space search (Shleyfman, Kuroiwa, and Beck 2023),
orthogonal to heuristics, is disabled in the IPC planner con-
figurations. Results for rmax and LM use NFD reimplemen-
tations, shown to closely match the original ENHSP versions
(Kuroiwa et al. 2021). All configurations use NFD with A∗.

For the numeric PDB heuristics, we translate the simple
numeric PDDL tasks using NFD’s translator component as
usual, and then transform them to restricted tasks (RT) for
the heuristics. We impose a limit on the number of abstract
states that are generated during the progression phase for
numeric PDBs. This limit has a large impact both on the ac-
curacy of the resulting heuristic and the computational cost
of constructing the abstract state space. We empirically de-
termined these limits for each pattern generation method.

We evaluate a single-PDB heuristic with the greedy pat-
tern generation of FD as a baseline (greedy), the canoni-
cal PDB heuristic over pattern collections generated with

1See link on first page.

systematic patterns (sysC), and iPDB, the hill-climbing ap-
proach of Haslum et al. (2007). For the greedy PDB, we
limit the number of abstract states to 100k. For the system-
atic pattern generation, we compute all interesting patterns
with two variables, which performed best in our evaluation,
and limit the number of abstract states by 50k. iPDB is the
state-of-the-art method for finite-domain pattern generation
when combining patterns with the canonical heuristic. We
limit the collection size (sum of individual pattern sizes) of
iPDB by 10 million abstract states, the hill-climbing time
by 15min, and initially sample 1000 states to estimate im-
provement, similar to the finite-domain variant of iPDB. We
limit the number of abstract states to 10k and use 1 million
as an upper bound on the domain-size product of variables
allowed in a pattern. The latter is used by iPDB as a mech-
anism to obtain many small patterns. State sampling is done
using NFD’s default random seed.

As a first sanity check, we compare our numeric PDBs
with finite-domain PDBs that ignore all numeric variables.
Figure 1 illustrates the heuristic accuracy by showing the
search-space size (number of states expanded until the last
f -layer in A∗) on a per-instance basis. We compare finite-
domain iPDB (x-axis) to numeric iPDB (y-axis). It is clearly
visible that taking numeric variables into account has a huge
impact on the search effort, leading to a reduction of up to
six orders of magnitude in terms of state expansions.

Figure 2 sheds more light onto the differences between
blind search, respectively LMc, and numeric iPDB. The two
leftmost plots show the search-space size, the two rightmost
plots show overall runtime. Compared to blind search, we
observe that numeric PDBs are indeed an informed heuris-
tic that provides a strong guidance to the A∗ search. The
LM-cut heuristic shows complementary strengths to iPDB,
with many instances ending up on both sides of the diago-
nal. Overall, though, there are more instances in which LMc
offers better search guidance. In the runtime plots, we ob-
serve the common pattern for abstraction heuristics, where
the initial computation of the heuristic takes some time to
complete. After that, iPDB is often faster than blind search
and shows complementarity compared to LMc.

Table 1 presents coverage results (number of solved in-
stances) for all planners, summarizing domains where all
planners perform equally under “others”. Numeric PDBs



FDR Numeric PDBs Time Score % Missed
Domain # blind imax rmax LM OPC LMc iPDB greedy sysC iPDB LMc iPDB greedy iPDB

IP
C

20
23

delivery 20 2 2 2 2 2 3 2 2 2 2 1.73 1.55 0 0
drone 20 3 2 3 3 3 3 3 4 3 4 3.00 3.38 0 0
expedition 20 5 0 6 5 5 6 6 6 6 6 4.02 4.82 0 0
farmland 20 4 4 15 15 15 15 4 4 4 4 12.32 3.20 26 0
hydropower 20 9 8 11 8 9 11 9 9 9 9 4.38 6.75 24 66
mprime 20 6 10 10 5 14 15 12 11 11 12 11.28 8.04 0 0
rover 20 4 0 4 4 4 4 4 4 4 4 3.53 3.56 51 0
sailing 20 0 0 5 4 9 8 0 0 1 0 3.84 0 - -
sugar 20 2 0 2 1 12 12 2 4 3 3 5.03 1.67 0 0
zenotravel 20 6 6 6 6 8 8 6 6 6 6 6.43 5.43 0 0

fr
om

lit
er

at
ur

e

counters 20 3 3 4 5 5 5 3 3 5 5 4.70 3.82 0 0
counters-sym 11 2 2 3 10 11 11 2 2 5 9 7.71 5.51 0 0
depots 20 4 5 5 3 7 7 7 6 7 7 4.70 4.96 0 0
depots-sym 20 4 5 4 2 6 7 6 6 5 6 3.98 3.92 0 0
farmland 30 12 11 30 30 30 30 12 12 12 12 23.92 10.53 24 0
fn-counters-small 8 6 7 7 7 7 7 6 6 7 7 6.42 6.39 30 0
petri-net 20 2 2 6 4 8 9 2 3 7 9 2.26 2.98 72 0
plant-watering 63 63 21 63 63 63 63 63 63 63 63 60.72 60.74 0 0
rover-unit 20 4 2 4 4 7 7 6 4 5 6 5.37 4.87 32 0
sailing 40 10 12 28 20 40 40 11 11 17 14 37.63 9.63 23 2
satellite 20 1 0 1 1 2 2 2 1 1 2 1.55 1.77 0 0
zenotravel 23 6 7 7 7 12 12 9 7 10 11 9.83 6.85 4 0

no
ve

l forestfire 20 10 0 10 6 9 11 10 10 10 10 6.81 7.81 0 0
minecraft-pogo 20 14 9 0 0 5 5 14 19 17 18 2.11 4.43 0 0
minecraft-sword 20 20 17 0 0 9 9 20 20 20 20 4.93 10.77 0 0

others 80 1 1 1 1 1 1 1 1 1 1 1.00 0.91 0 0∑
635 203 136 237 216 303 311 222 224 241 250 239.2 184.3 11 3

Table 1: Coverage results of the baseline planners (columns “blind”–“FDR iPDB”) and a single numeric PDB (greedy), numeric
canonical PDBs with systematic patterns (sysC), and numeric iPDB. We refer to the text for a detailed explanation.

significantly outperform the baseline hmax and landmark
heuristics, but fall short of OPC and LMc by 53 and 61 in-
stances, respectively. This gap is largely due to the farmland
and sailing domains, where OPC and LMc solve 63 more
instances combined. Conversely, iPDB excels in the two
minecraft variants, solving 24 additional instances. Finite-
domain iPDB shows similar performance to single-pattern
numeric PDBs but lags behind the numeric variant overall.

The “Time Score” columns provide per-domain runtime
statistics, calculated as 1 − log(t)/ log(1800), where t is
the solution time in seconds. iPDB remains competitive with
LMc in several domains, reflecting LMc’s slower runtime.

Lastly, the final two columns report how often greedy
and iPDB planners evaluate states where no abstract state
was generated (lookup misses). For iPDB, this only includes
cases where all PDBs in the collection missed. The aver-
age percentage of lookup misses across solved instances is
significantly lower for iPDB, indicating the benefit of using
multiple smaller PDBs to cover different parts of the task.

Overall, our evaluation shows that numeric PDB heuris-
tics perform well for optimal numeric planning, even though
the evaluated variants using the canonical heuristic cannot
compete with LMc and OPC in terms of total coverage.

Conclusion
We introduce the first adaptation of pattern-database (PDB)
heuristics, which are among the state of the art in optimal
classical planning, to tasks with numeric variables. A ma-
jor obstacle is the possibly unbounded abstract state space,
for which we propose several solutions. Our empirical eval-
uation confirms that these solutions work well on common
numeric planning benchmarks and bring numeric PDBs in
reach of the strongest admissible heuristics in simple nu-
meric planning. There are many possibilities to further im-
prove the results, such as computing lower bounds for un-
expanded abstract states using other heuristics. We leave the
investigation of these optimizations for future work.

More generally, there is the question of how to combine
multiple abstraction heuristics for numeric planning effi-
ciently in a better way using cost partitioning. Another inter-
esting direction is the application of PDBs and merge-and-
shrink heuristics tailored to detecting unsolvability in clas-
sical planning (Hoffmann, Kissmann, and Torralba 2014) to
its numeric counterpart. Finally, the approach of construct-
ing finite sub-transition systems for infinite projections can
be naturally combined with strong numeric heuristics such
as LM-cut (Kuroiwa et al. 2022; Kuroiwa, Shleyfman, and
Beck 2022). We want to investigate how different heuristics
interact and can be made compatible to each other.
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tance”? Who Cares? Tailoring Merge-and-Shrink Heuristics
to Detect Unsolvability. In the European Conference on Ar-
tificial Intelligence (ECAI), volume 263, 441–446.
Holte, R.; Felner, A.; Newton, J.; Meshulam, R.; and Furcy,
D. 2006. Maximizing over Multiple Pattern Databases
Speeds up Heuristic Search. Artificial intelligence (AIJ),
170(16–17): 1123–1136.
Holte, R.; Newton, J.; Felner, A.; Meshulam, R.; and Furcy,
D. 2004. Multiple Pattern Databases. In the Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 122–131.
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